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Abstract:

• The Birnbaum–Saunders distribution is asymmetrical and has received considerable attention due
to its properties and its relationship with the normal distribution. In this paper, we propose a
methodology for estimating the mean of small areas based on a Birnbaum–Saunders distribution
which is reparameterized in terms of its mean, similarly to the normal distribution, but in an
asymmetric framework. In addition, the variance of the reparameterized Birnbaum–Saunders dis-
tribution is a function of its mean, similarly to the gamma distribution, which allows a GLM type
modeling to be conducted. The Birnbaum–Saunders area model has properties that are unavailable
in its competing models, as describing the mean in the original scale, unlike the existing models
which employ a logarithmic transformation that reduces the test power and complicates the in-
terpretation of results. The Birnbaum–Saunders area model can be formulated similarly as the
Gaussian area model, permitting us to capture the essence of the small area estimation based on
sample means and variances obtained from the areas. The methodology includes a formulation
based on the Fay–Herriot model, estimation of model parameters with the maximum likelihood
and Bayes empirical methods, as well as diagnostics using residuals. We illustrate the method-
ology with real-world survey data and compare the results with those obtained by the standard
Fay–Herriot model.
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1. INTRODUCTION

In sample surveys, it is of interest to obtain estimates for some parameters of the
population from which the data are collected (Lumley and Scott, 2017 [31]). These estimates
can be obtained not only for the target population, but also for sub-populations usually
named small areas or domains. The small area estimation is a statistical technique used to
estimate parameters in small sub-populations (Rao, 2003 [39]; Avila et al., 2020 [3]), which
may consist of geographical areas or socio-demographic groups, as a country, region, county,
municipality or neighborhood.

Due to the high acceptance in relation to small area estimation, several models have
been derived, used and analyzed. A summary of design-based small area estimation method-
ologies is presented in the book of Särndal et al. (2003) [46], whereas reviews of model-based
small area estimation methodologies are provided in Ghosh and Rao (1994) [21], Rao (2003)
[39], Datta (2009) [12], Lehtonen and Veijanen (2009) [25] and, more recently, in Coelho and
Casimiro (2008) [9], Coelho and Pereira (2011) [10], Pereira and Coelho (2012) [36], Avila et

al. (2020) [3] and Rueda et al. (2019) [43].

For small area estimation, the area model was first proposed by Fay and Herriot (1979)
[19]. The Fay–Herriot (FH) model is considered as a generalization of the model formulated
by Carter and Rolph (1974) [7], incorporating auxiliary variables (covariates). The FH model
proposes an adaptation to the Carter-Rolph and James-Stein estimators, which was applied to
income estimates in small areas during the population and housing census of the United States
in 1970. The FH model assumes normality and incorporates linear regression in the context
of heterogeneity of variances, so that it can be considered as a mixed model. To estimate the
components of variance, different methods have been considered. Fay and Herriot (1979) [19]
used weighted residual square sums and the moment method. Prasad and Rao (1990) [37]
proposed an ordinary least square estimator. Datta and Lahiri (2000) [13] used the maximum
likelihood (ML) and restricted maximum likelihood (REML) estimators.

When estimating means of small areas based on sampling design, there are desirable
properties, such as unbiasedness and consistency, at country and region levels, but at lower
levels (for example municipalities), the consistency property of the estimator is not fulfilled
(Rao, 2003 [39]). Small area estimation is often based on the FH model, which allows for
results in a more reliable way in order to produce statistics at lower levels than countries or
regions. The FH model has good properties at low geographic levels when combining survey
data with data from other sources, such as administrative or census records. In particular,
the Chilean government has used the FH model since 2010 to estimate small areas (Casas-
Cordero et al., 2016 [8]). However, one of the drawbacks of the FH model is the assumption
of normality for the response variable and random effect, because often this assumption
is not fulfilled, due to asymmetry in the data distribution (Berg and Chandra, 2014 [5]).
A solution to solve the problem of asymmetrical patterns present in the data is working
with their log-transformations. However, data analyses performed under a wrong transfor-
mation reduces the power of the study (Huang and Qu, 2006 [22]; Dreassi et al., 2014 [15]).
Therefore, the research question is whether there is a gain in modifying the distributional
assumption in terms of the accuracy of the estimator for producing statistics at a small area
level or not.



The Fay–Herriot Model in Small Area Estimation 401

Small-area estimation in non-normal models has been studied by few authors, even
though this was postulated by Rao (2003) [39, Chap. 9] as an open problem. Fabrizi and
Trivisano (2010) [18] extended the FH model assuming that the random effects follow power
exponential distributions. Berg and Chandra (2014) [5] presented an empirical Bayes (EB)
estimator for small area estimation based on a log-normal model and Fabrizi et al. (2016)
[17] used the beta model for small area estimation.

The Birnbaum–Saunders (BS) distribution is asymmetrical and it has good properties
(Ferreira et al., 2012 [20]; Santos-Neto et al., 2014 [44]; Bourguignon et al., 2017 [6]). Sta-
tistical modeling based on the BS distribution has received much attention because of its
relationship with the normal distribution and other properties. Rieck and Nedelman (1991)
[41] were the pioneers in deriving BS regression models, whereas Villegas et al. (2011) [47]
extended this regression model considering mixed effects and using an EB estimator to pre-
dict the random effects. Leiva et al. (2014) [29] and Santos-Neto et al. (2016) [45] focused
on a reparameterized BS (RBS) distribution to model the response with no transformations
following the idea of generalized linear models (McCullagh and Nelder, 1989 [32]). This mod-
eling approach was based on fixed effects and no studies were reported using random effects.
One of the parameters of the RBS distribution is its mean, such as the normal distribution,
but in an asymmetric framework. In addition, the variance of the RBS distribution is a
function of its mean, such as the gamma distribution. In Balakrishnan and Kundu (2019)
[4] and Leiva et al. (2019) [27], detailed information is reviewed for these models. However,
to the best of our knowledge, no area models for small area estimation based on BS, gamma
and log-normal distributions have been reported in the literature.

In small area estimation, an alternative solution to solve the problem of asymmetric
data is considering generalized linear models and, in particular, the RBS distribution (Leiva et

al., 2014 [29]). This solution provides some advantages over the log-transformation solution.
First, the mean is modeled directly, making inference straightforward and avoiding the need of
re-transformations back to the original scale. Second, this solution enables us to go beyond
exponential family and allows some flexibility through the choice of a link function (for
example, logarithmic, inverse or logit) and a distribution for the response through its mean-
variance relationship. Moreover, the use of the the RBS distribution permits us to capture the
essence of the small area estimation problem based on sample means and variances obtained
from the areas, because it is possible to express its precision parameter as a function of these
area means and variances, such as in the normal case; see Santos-Neto et al. (2014) [44] and
Subsection 2.2 for more details about this important aspect. Therefore, the RBS distribution
seems to be a good alternative to the FH type models for small area estimation.

The main objective of this work is to estimate the mean of small areas based on an
RBS area model. The specific objectives are: (i) to establish an algorithm for estimating
parameters from an RBS area model; (ii) to propose a residual for this model, allowing the
examination of the model assumptions; and (iii) to illustrate the proposed methodology with
survey data and to compare its results to the standard FH model. This methodology is
implemented in the R software (www.r-project.org and R Core Team, 2016 [38]).

The paper is organized as follows. In Section 2, we present a background about the
standard FH structure and a modeling approach based on the RBS distribution. Section 3
proposes the new RBS area model and its corresponding estimation, inference and residual
analysis for its diagnostic. In Section 4, the methodology is illustrated with unpublished
Chilean survey data, comparing it to a standard methodology. Section 5 gives our conclusions
about this research.

www.r-project.org
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2. BACKGROUND

In this section, we provide some preliminaries aspects related to the standard FH model
and RBS regression.

2.1. The Fay–Herriot model

Fay and Herriot (1979) [19] proposed their model to improve the accuracy of the es-
timator Yi = θ̂i based on the sampling design (direct estimator) used to infer on the true
small area mean θi, for i = 1, ...,m, where m is the number of areas. The FH model has a
hierarchical structure consisting of the following two levels:

(2.1)
Level 1. Sampling model: Yi|θi

IND∼ N(θi, ψi), for i = 1, ...,m,

Level 2. Linking model: θi
IND∼ N(x>i β, σ

2), for i = 1, ...,m,

where “IND” denotes “independent”, ψi corresponds to the variance of the sampling error,
xi = (1, x1i, ..., x(p−1)i) are the values of p− 1 covariates for the area i, β = (β0, β1, ..., βp−1)>

is a vector of unknown regression parameters, and σ2 is the unknown variance of the area
random effect, both to be estimated. Note that Level 1 describes the variability of the direct
estimator θ̂i of θi attributed to the sampling, whereas Level 2 links θi to the vector of p− 1
known area covariates (Jiang and Lahiri, 2006 [23]; Li and Lahiri, 2010 [30]). Mixing the
components of both models at Levels 1 and 2, we get the linear mixed model

(2.2) Yi|θi = x>i β + bi + εi, εi
IND∼ N(0, ψi), i = 1, ...,m,

where bi
IID∼ N(0, σ2) are independent and identically distributed (IID) area random effects

with unknown σ2 to be estimated from the data, whereas εi
IND∼ N(0, ψi) are the sampling

errors with known variances ψi. Furthermore, it is assumed that bi and εi are independent
random variables.

We want to estimate/predict the small area mean θi = x>i β + bi, for i = 1, ...,m, and
to obtain an uncertainty measurement related to this estimation/prediction. Considering the
model defined in (2.2), the best predictor (BP) of θi (Rao and Molina, 2015 [40]), which
minimizes the mean squared error, may be formulated as a weighted average of the direct es-
timator θ̂i and the regression-synthetic estimator x>i β (Rao and Molina, 2015 [40]), expressed
as

(2.3) θ̂ BP
i = (1−Bi)θ̂i +Bi x

>
i β, i = 1, ...,m,

with the weight 0 < Bi < 1 defined as Bi = ψi/(σ2 + ψi). Observe that (1−Bi) is function
of the variance ratio σ2/ψi and measures the uncertainty when θi is estimated in relation to
the total variance σ2 + ψi (Rao and Molina, 2015 [40]). In addition, the parameter σ2 is a
homogeneity measure of the areas after accounting for the values xi of covariates. If σ2 is
known, β may be approximated using the standard weighted least square estimator β̃ (Mert,
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2015 [33]). Hence, by replacing it in (2.3), we obtain the best linear unbiased prediction
(BLUP) of θi (Rao and Molina, 2015 [40]) by

(2.4) θ̂ BLUP
i = (1−Bi)θ̂i +Bi x

>
i β̃, i = 1, ...,m,

where

(2.5) β̃ =

m∑
i=1

xiθ̂i/(σ2 + ψi)

m∑
i=1

xix
>
i /(σ2 + ψi)

.

The BLUP of θi defined by (2.4) depends on σ2 through of β̃, which is unknown in practice.
From (2.4), we get the empirical best linear unbiased predictor (EBLUP) of θi as

(2.6) θ̂ EBLUP
i = (1− B̂i)θ̂i + B̂i x

>
i β̃,

where B̂i is the estimate of Bi = ψi/(σ2 + ψi) when σ2 is replaced by an estimator σ̂ 2, and
β̃ is given in (2.5). Note that the model defined in (2.2) may be rewritten as matrix by

(2.7) Y = Xβ + Imb+ ε,

where Y = (Y1, ..., Ym)>, with Yi = θ̂i, for i = 1, ...,m, X = (x1, ..., xm)> is of full rank, Im is
the m×m identity matrix, β is given below (2.1), b = (b1, ..., bm)> and ε = (ε1, ..., εm)>. Fur-
thermore, b and ε are independently distributed with b ∼ Nm(0m×1,G), ε ∼ Nm(0m×1,R),
where 0m×1 is m× 1 vector of zeros, G = σ2Im and R is a diagonal matrix defined as
R = diag{ψ1, ..., ψm}. The model defined in (2.7) is a particular case of a linear mixed
model with its variance-covariance matrix assuming the form V = G + R (Datta et al., 2005
[14]).

Observe that the EBLUP given in (2.6) depends on σ̂ 2, with several methods being
proposed in the literature for doing this estimation (Fay and Herriot, 1979 [19]; Prasad and
Rao, 1990 [37]). The ML method has been widely used in small area estimation (Jiang and
Lahiri, 2006 [23]; Rao and Molina, 2015 [40]), with Datta and Lahiri (2000) [13] using it in
the context of the FH model. In this case, the log-likelihood function takes the form

(2.8) `(σ2, β; y) = c− 1
2

log(|V |)− 1
2
(y −Xβ)>V −1(y −Xβ),

where c is a constant that is independent of σ2 and y is the observed value of Y . By taking
derivatives of (2.8) with respect to β and σ2, we obtain

∂`(σ2, β; y)
∂β

= X>V −1y −X>V −1Xβ,(2.9)

∂`(σ2, β; y)
∂σ2

=
1
2
(y −Xβ)>V −2(y −Xβ)− 1

2
tr(V −1),(2.10)

where tr(A) is the trace of the matrix A. Thus, equating (2.9) and (2.10) to zero, and solving
them simultaneously with respect to σ2 and β, we generate the corresponding ML estimators.
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2.2. Birnbaum–Saunders statistical modeling

The BS distribution can be parameterized in terms of its mean µ and precision δ from
its original parameterization by α =

√
2/δ and β = δ µ/(δ + 1) (Leiva, 2016 [26]). Thus, we

have δ = 2/α2 and µ = β (1 + α2/2), where δ > 0 and µ > 0 (Santos-Neto et al., 2016 [45]).
Hence, if Y ∼ RBS(µ, δ), its probability density function (PDF) is given by

(2.11) f(y;µ, δ) =
exp (δ/2)

√
δ + 1

4
√
πµ y3/2

(
y +

δµ

δ + 1

)
exp

(
−δ

4

(
(δ + 1)y
δµ

+
δµ

(δ + 1)y

))
, y > 0.

The RBS PDF defined in (2.11) has diverse shapes as µ changes, when δ is fixed, and similarly
as δ changes when µ is fixed. Note that the µ controls the scale of the RBS distribution but
it is also its mean, which may be proved because b Y ∼ RBS(bµ, δ), with b > 0. Notice that
the parameter δ controls the shape of the RBS distribution, making it more platykurtic as δ
increases. In addition, the RBS variance decreases when δ increases, converging to 5.0, as δ
approaches zero, doing it to be a precision parameter, as mentioned. For more details about
the graphical plots and shape analysis of the RBS distribution, see Leiva et al. (2014) [29],
Balakrishnan and Kundu (2019) [4] and Leiva et al. (2019) [27].

Note that the random variables Y and Z with RBS and standard normal distributions,
respectively, are related by

Y =
δ µ

δ + 1

 Z√
2 δ

+

√(
Z√
2 δ

)2

+ 1

2

,(2.12)

Z =

√
δ

2

(√
(δ + 1)Y

µ δ
−

√
µ δ

(δ + 1)Y

)
.

Thus, from (2.12), the cumulative distribution function (CDF) and the quantile function
(QF) of Y ∼ RBS(µ, δ) are defined respectively as

F (y;µ, δ) = Φ

(√
δ

2

(√
(δ + 1) y
µ δ

−

√
µ δ

(δ + 1) y

))
, y > 0,(2.13)

y(q;µ, δ) = F−1(q) =
δ µ

δ + 1

 z(q)√
2 δ

+

√(
z(q)√

2 δ

)2

+ 1

2

, 0 < q < 1,

where Φ and z are the standard normal CDF and QF, respectively, whereas F−1 is the inverse
function of the RBS CDF. The mean and variance of Y ∼ RBS(µ, δ) are given by E[Y ] = µ

and Var[Y ] = ψ = µ2(2δ + 5)/(δ + 1)2, respectively. Note the similarity of the variances of
the RBS and gamma distributions, which allows the RBS distribution to model data analo-
gously as in generalized linear models (Leiva et al., 2014 [29]). Note also that, as mentioned,
the RBS distribution has the mean as one of its parameters, which is an advantage on the
gamma distribution. Note that, in small area estimation, one has available the sample mean
and variance of each area, which is a natural aspect under normality. However, in the case of
the RBS distribution, it is characterized by the mean (as in the normal case) but also by a
precision parameter δ, which is different from the variance of the normal case. Santos-Neto
et al. (2014) [44] proposed a moment estimator of δ through

(2.14) δ̂ =
Y − S2 +

√
Y

4 + 3Y 2
S2

S2
,
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where Y and S2 represent the mean and sample variance of the random variable Y , respec-
tively. Thus, (2.14) allows us to see the problem under the RBS perspective such as the
normal framework.

Rieck and Nedelman (1991) [41] defined that if Y ∼ BS(α, β), then Z = log(Y ) follows
a logarithmic BS distribution with shape parameter α and location parameter γ = log(β) ∈
R. In this regression model, the original response must be transformed to a logarithmic
scale. Thus, although in this scale the mean γ = log(β) is modeled, in the natural scale
β = exp(γ) is modeled, which in the BS case corresponds to the median. Leiva et al. (2014)
[29] introduced a new approach for BS modeling, generalizing the existing works on the topic.
In the estimation process, they considered Y1, ..., Ym as independent RBS(µi, δ) distributed
random variables, for i = 1, ...,m. Then, the authors defined a statistical model based on the
systematic component µi = g−1(x>i β), where g−1 is the inverse function of the link function
g, β is a vector of unknown parameters to be estimated, and xi represents the values of
the covariates. For the vector of parameters (β>, δ)>, simplifying the notation according to
`(β, δ; y) = `(β, δ), `i(µi, δ; yi) = `i(µi, δ), and by using this same simplified notation from
now on, the log-likelihood function of the model is given by `(β, δ) =

∑m
i=1 `i(µi, δ), where

`i(µi, δ) =
δ

2
− log(16π)

2
− 1

2
log
(

(δ + 1)y3
i µi

(δyi + yi + δµi)2

)
− yi(δ + 1)

4µi
− δ2µi

4(δ + 1)yi
.

The score functions with first derivatives of βl, for l = 0, 1..., p−1, and δ are respectively given
by ˙̀

βl
= ∂`(β, δ)/∂βl and ˙̀

δ = ∂`(β, δ)/∂δ. Thus, the score vector is ˙̀
β,δ = ( ˙̀>

β ,
˙̀
δ)>; see

details in Leiva et al. (2014) [29]. To estimate the model parameters by the ML method, the
equation ˙̀

β,δ = 0p×1 must be solved. However, no closed-form expressions for these estimates
are available. Then, an iterative approach is needed, such as the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm; see details in Nocedal and Wright (1999) [35]. This iterative
approach is used for solving unconstrained non-linear optimization problems, belonging to
the class of quasi-Newton methods.

3. THE NEW STATISTICAL MODEL

In this section, we propose a methodology based on the FH model and the RBS re-
gression model. The methodology considers the formulation of the new RBS area model, the
estimation algorithm and inference for the population mean, as well as a residual analysis for
model diagnostics. The standard FH model defined in (2.1) assumes normality for random
effects and errors. In this case, the EB estimator and the EBLUP coincide. Note that the
distribution of the direct domain mean estimator comes from the survey design, which from
design-based theory is known to be approximately normal (for large enough samples). The
normal approximation is not necessarily good in small areas with very small sample sizes.
We consider the RBS distribution to model small area mean, whereas the random effect
distribution is also assumed RBS for computational and theoretical convenience. When non-
normality is assumed in the response or in the random effects, Rao (2003) [39] proposed to
use the EB estimator.
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3.1. Formulation

Such as in the standard model defined in (2.1), the proposed model consists of the two
following levels:

(3.1)
Level 1. Sampling model: Yi|θi

IND∼ RBS(θi, δi), for i = 1, ...,m,

Level 2. Linking model: θi
IND∼ RBS(g−1(x>i β), κ), for i = 1, ...,m,

where θi is the mean of the area i, g−1 is the inverse of the link function g, β and xi are as
defined in (2.1), whereas κ is the unknown precision parameter of the area random effect to
be estimated. Note that δi depends on known variances ψi of the area i which are related
according to the results proposed by Santos-Neto et al. (2014) [44], from where the empirical
relationship is given in (2.14). Therefore, from this relationship, we have

(3.2) δi =
θi − ψi +

√
θ4
i + 3θ2

i ψi

ψi
, i = 1, ...,m.

Thus, from (3.2), we put the model proposed in (3.1) in a small area framework.

The proposed BS area models have properties that are unavailable in the models of
this type existing in the literature. Specifically, the BS area models considered in this work
allow us to describe the mean of the data in their original scale, unlike the existing models,
which employ a logarithmic transformation of the data, provoking a possible reduction of
the power of the study and difficulties of interpretation. In addition, these BS area models
can be formulated in a similar form as the normal area models, permitting us to capture the
essence of the small area estimation problem based on sample means and variances obtained
from the areas.

3.2. EB estimation and quadrature methods

We consider the EB approach to estimate the small area mean. First, by considering
the PDF given in (2.11), we obtain the marginal PDF from the conditional (sampling model)
and prior (linking model) distributions. Second, we estimate the parameters β and κ based on
the corresponding marginal likelihood function. Third, we obtain the posterior distribution
by plugging it in the estimated value of λ = (β>, κ)>. Fourth, we find the EB estimator of
the conditional expectation of a small area mean given the observed data with respect to the
RBS area model. In order to calculate this expected value, we use the posterior distribution
presented in (3.13). The EB approach described above is detailed in Algorithm 1.
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Algorithm 1 – Empirical Bayes approach |
1: Establish the conditional PDF of Yi given θi, denoted by f(yi|θi), for i = 1, ...,m.

2: Indicate the prior distribution π(θi;λ), for i = 1, ...,m.

3: Obtain the marginal PDF

m(yi;λ) =
∫

Rθi

f(yi|θi)π(θi;λ) dθi, i = 1, ...,m,

recalling that Rθi
is the parameter space of θi.

4: Estimate the model parameter λ by maximizing the marginal likelihood function

L(λ) =
m∏

i=1

∫
Rθi

f(yi|θi)π(θi;λ) dθi.

5: Calculate the posterior distribution

π(θi|yi; λ̂) =
f(yi|θi)π(θi; λ̂)∫

Rθi
f(yi|θi)π(θi; λ̂) dθi

, i = 1, ...,m,

to make inferences about θi, where λ̂ is an estimator of λ.

6: Determine the EB estimator of θi using

θ̃EB
i = E(θi|yi; λ̂) =

∫
Rθi

θif(yi|θi)π(θi; λ̂) dθi∫
Rθi

f(yi|θi)π(θi; λ̂) dθi

, i = 1, ...,m.

The conditional PDF (sampling model), for i = 1, ...,m, is given by

(3.3) f(yi|θi) =
exp (δi/2)

√
δi + 1

4
√
πθi y

3/2
i

(
yi +

δiθi

δi + 1

)
exp

(
−δi

4

(
yi(δi + 1)
δiθi

+
δiθi

yi(δi + 1)

))
,

whereas the prior distribution, for i = 1, ...,m, is defined as
(3.4)

π(θi;λ) =
exp (κ/2)

√
κ+ 1

4
√
π g−1(x>i β) θ3/2

i

(
θi +

κg−1(x>i β)
κ+ 1

)
exp

(
−κ

4

(
θi(κ+ 1)
κg−1(x>i β)

+
κg−1(x>i β)
θi(κ+ 1)

))
.

Based on (3.3) and (3.4), the marginal PDF is obtained as

(3.5) m(yi;λ) =
∫ ∞

0
f(yi|θi)π(θi;λ) dθi, i = 1, ...,m.

In order to calculate the integral given in (3.5), a Gaussian quadrature can be used. A
quadrature rule is an approximation of the definite integral of a function, usually stated
as a weighted sum of values at specified points within the domain of integration, which is
conventionally taken as [−1, 1]. Thus, this rule may be stated as

(3.6)
∫ 1

−1
f(u) du =

n∑
j=1

wjf(uj).
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Observe that the Gaussian quadrature given in (3.6) only produces good results if the func-
tion f is well approximated by a polynomial function within the range [−1, 1]. Then, the
integration problem presented in (3.5) can be expressed in a more general way by introducing
a positive weight function ω into the integrand, and allowing an interval other than [−1, 1].
In this way, the problem reduces to calculating

(3.7)
∫ b

a
ω(u) f(u) du,

for some choices of a, b and ω. Note that if a = −1, b = 1 and ω(u) = 1, the integral given
in (3.7) is the same as that given in (3.6). Some particular cases of the Gaussian quadrature
are presented in Table 1.

Table 1: Intervals and forms for ω(u) of some Gaussian quadratures
corresponding to the indicated orthogonal polynomial.

Interval ω(u) Orthogonal polynomial

[−1, 1] 1 Legendre

(−1, 1) (1− u)α(1 + u)β , α, β > −1 Jacobi

(−1, 1) 1/
√

1− u2 Chebyshev

[0,∞) exp(−u) Laguerre

(−∞,∞) exp(−u2) Hermite

Note that the Gauss–Laguerre (GL) quadrature is an extension of the Gaussian quadra-
ture method over the interval [0,∞) to approximate the integral obtained in (3.5) (Abramowitz
and Stegun, 1972 [1]). Therefore, we approximate the marginal PDF presented in (3.5) by
the GL quadrature by means of

(3.8) m(yi;β, κ) =
n∑

j=1

wjf(yi|θij)π(θij ;λ) exp(θij), i = 1, ...,m,

where n is the number of quadrature points, m is the number of areas, θij is the jth root of
the Laguerre polynomial in the area i given by

Ln(θij) =
n∑

r=0

(
n

r

)
(−1)r

r!
θr
ij ,

and the weight wj is given by

wj =
θij

(n+ 1)2(Ln+1(θij))2
, i = 1, ...,m, j = 1, ..., n.
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3.3. ML estimation and Fisher information

Once the marginal PDF presented in (3.5) is approximated by the GL quadrature,
we can approximate the corresponding likelihood function to estimate the parameters of the
model defined in (3.1) with the ML method. Recalling that λ = (β>, κ)>, the marginal
likelihood function is given by

L(λ) =
m∏

i=1

m(yi;λ).

Therefore, the corresponding log-likelihood function approximated by the GL quadrature is
given by

(3.9) `(λ) =
m∑

i=1

log

 n∑
j=1

wjf(yi|θij)π(θij ;λ) exp(θij)

 .

The respective score vector, obtained by differentiating (3.9) with respect to λ, is established
as

˙̀(λ) =
∂`(λ)
∂λ

= (˙̀β(λ)>, ˙̀
κ(λ))>.

The ML estimates of β and κ, β̂ and κ̂ namely, respectively, are the solution to the system of
equations given by ˙̀

β(λ) = 0p×1 and ˙̀
κ(λ) = 0. Since the corresponding ML estimates cannot

be expressed in a closed form, we compute them by maximizing the log-likelihood function
defined in (3.9) numerically with the BFGS algorithm. As starting values, the estimates
obtained under an RBS regression model can be considered.

The second derivatives of `(λ) defined in (3.9), with respect to β and κ, are expressed
as

∂2`(λ)
∂βl∂βk

,
∂2`(λ)
∂βl∂κ

,
∂2`(λ)
∂κ2

, l = 0, 1, ..., p− 1.

Consequently, the corresponding Hessian matrix is given by

῭(λ) =


∂2`(λ)
∂β∂β>

∂2`(λ)
∂β∂κ

∂2`(λ)
∂κ∂β>

∂2`(λ)
∂κ2

 .

In addition, the expected Fisher information matrix is obtained as

(3.10) K(λ) = −E[῭(λ)].
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3.4. Inference

Regularity conditions (see Cox and Hinkley, 1974 [11]) must be fulfilled for an RBS
area model if its parameters are within the parameter space. Then, the ML estimator λ̂
is consistent and follows an asymptotic joint distribution, which is normal with asymptotic
mean λ, and an asymptotic variance-covariance matrix Σ(λ). Thus, as m→∞ and recalling
that λ = (β>, κ)>, we have

(3.11)
√
n (λ̂− λ) D→ Np+1(0(p+1)×1,Σ(λ)),

where D→ denotes convergence in distribution. Note that if J(λ) = limn→∞(1/n)K(λ) exists
and is non-singular, with K(λ) being the expected Fisher information matrix given in (3.10),
then Σ(λ) = J(λ)−1. The diagonal elements of K(λ)−1, k−1

ll (λ) namely, may be used for
approximating the corresponding asymptotic standard errors (SEs), that is, by using

(3.12) SE[λ̂l] =
√
k−1

ll (λ), l = 1, ..., p+ 1.

Note that K̂(λ)−1 = K(λ̂)−1 is a consistent estimator of Σ(λ) and then the associated asymp-
totic SEs given in (3.12) may be estimated as ŜE[λ̂l] = (k−1

ll (λ̂))1/2, for l = 1, ..., p+1. Asymp-
totic inference on parameters can be conducted using (3.11) and (3.12).

3.5. Estimating the small area mean and bootstrapping

To estimate a small area mean, we use the posterior PDF evaluated at the ML estimates
given by

(3.13) π(θi|yi; β̂, κ̂) =
f(yi|θi)π(θi; β̂, κ̂)

m(yi; β̂, κ̂)
, i = 1, ...,m,

where m(yi; β̂, κ̂) is presented in (3.8), and β̂, κ̂ are the corresponding ML estimates. There-
fore, the EB estimator for the mean of an RBS area model, based on the GL quadrature, is
given by

(3.14) θ̃EB
i = E(θi|yi; β̂, κ̂) =

∑n
j=1wjθijf(yi|θij)π(θij ; β̂, κ̂) exp(θij)∑n

j=1wjf(yi|θij)π(θij ; β̂, κ̂) exp(θij)
, i = 1, ...,m.

Suppose that we have a random sample from an unknown distribution function F , and we
want to make statistical inference about a parameter θi, for i = 1, ...,m. Bootstrapping is
a non-parametric approach which relies upon the assumption that the current sample is
representative of the population, and therefore, the empirical CDF F̂ is a non-parametric
estimate of the population CDF F . From the sample, the statistic of interest, θ̃EB

i namely,
can be calculated as an empirical estimate of the true parameter. To measure the accuracy
of the estimator, a bootstrapped SE, defined as

SE(θ̃EB
i ) =

√
Var(θ̃EB

i ), i = 1, ...,m,

can be calculated; see Algorithm 2.
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Algorithm 2 – Bootstrap standard error |
1: Collect a random sample of size m with replacement (bootstrap sample) from a matrix of

data with m rows corresponding to the areas and three columns related to the response
Yi = θ̂i, which is based on the sampling design used to estimate the true small area mean
θi, the variance of the sampling error ψi, and the covariates xi, for i = 1, ...,m.

2: Fit an RBS area model with the bootstrap sample of Step 1 and compute the statistic of
interest θ̃EB

i , for i = 1, ...,m.

3: Repeat Steps 1–2 a large number of times (for example, B = 10, 000) and compute B
bootstrap values of θ̃EB

i , which forms its empirical sampling distribution.

4: Calculate the sample standard deviation (SD) of the B bootstrap values of θ̃EB
i , which

allows us to obtain the bootstrap SE of θ̃EB
i , for i = 1, ...,m.

3.6. Model selection

Models are often compared using selection measures as the log-likelihood function or
Akaike information (AIC) and Bayesian information (BIC) criteria. Note that AIC and BIC
are defined as

(3.15) AIC = −2`(λ̂) + 2(p+ 1), BIC = −2`(λ̂) + (p+ 1) log(m),

where ` is the corresponding log-likelihood function given in (3.9), p+ 1 is the number of
parameters and m the number of areas. AIC and BIC correspond to the log-likelihood
function plus a component penalizing such a function, as the model has more parameters
making it more complex. A model with a smaller AIC or BIC is better than another competing
model (Ferreira et al., 2012 [20]).

3.7. Diagnostic analysis

Residuals are frequently used to validate the assumptions of statistical models and
may also be employed as tools for model selection. Based on Nobre and da Motta-Singer
(2007) [34], we define a conditional residual which follows a standard normal distribution
and accommodates the extra source of variability present in linear mixed models as r(C)

i =
yi − θ̃EB

i , where θ̃EB
i is given in (3.14) and yi is an observed value of Yi. We consider the

randomized quantile (RQ) residual proposed by Dunn and Smyth (1996) [16], which is useful
for asymmetric distributions. We use an index plot of the conditional RQ residual to verify
homoscedasticity, whereas the distributional assumption is analyzed by simulated envelopes
(Atkinson, 1985 [2]). For the RBS area model proposed in this work, the conditional RQ
residual is defined as

(3.16) r
RQ(C)
i = φ−1(F (yi; θ̃EB

i , κ̂)) i = 1, ...,m,

where F is the RBS CDF defined in (2.13). As F is continuous, then F (Yi) is uniformly
distributed on the unit interval. In order to verify the normality of the conditional RQ residual
based on the RBS area model, we utilize a theoretical quantile versus empirical quantiles
(QQ) plot with simulated envelopes proposed by Atkinson (1985) [2]; see Algorithm 3.
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Algorithm 3 – Goodness of fit to any distribution based on QQ plots with simulated envelopes.|
1: Collect data y1, ..., ym.

2: Obtain the empirical quantiles yi:m as observed order statistics for i = 1, ...,m from
y1, ..., ym.

3: Estimate the parameters of the model by λ̂ with y1, ..., ym.

4: Compute wi:m = (i− 0.5)/m, for i = 1, ...,m.

5: Calculate the theoretical quantiles ti:m = F−1(wi:m), where F−1 is the inverse function
of the CDF F .

6: Draw the QQ plot with points yi:m versus ti:m, for i = 1, ...,m.

7: Specify an α level for the simulated envelopes.

8: Generate s samples of size m from a distribution with CDF F and estimated parameters
λ̂.

9: Construct envelopes with limits given by li = yi:m(α/2) and ui = y1:m(1− α/2) for i =
1, ...,m.

10: Establish that the assumed distribution is adequate if all the points are inside of the
envelope, otherwise it is not adequate.

4. SURVEY DATA ANALYSYS

In this section, we provide an illustrative example with a Chilean survey data set
for analysis of service quality. Also, we compare the results obtained with the proposed
methodology to a standard methodology based on the normal distribution.
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Figure 1: structure of Chilean industries and sectors used to calculate the
CBCI in 2017.

4.2. Exploratory data analysis

Table 3 provides a descriptive summary of the CBCI in the different municipalities of
the Chilean Metropolitan region, which includes y, median (MD), SD, coefficients of variation
(CV) of skewness (CS) and of kurtosis (CK), as well as the minimum (y(1)) and maximum
(y(m)) values. Figure 2 presents the histogram, adjusted box-plot and standard box-plot of the
CBCI, as well as the scatter-plot between CBCI and UQLI. Figure 3 displays the map of the
municipalities (with their abbreviations detailed in Table 3) located in the Chilean Metropolitan
region with their corresponding CBCI colored in gray according to an intensity related to the
value of this index.

Based on Figure 2 and Table 3, we conduct an exploratory data analysis (EDA). First, from
Figure 2 (left and center), note that the CBCI follows a positive skew (asymmetric) distribution
(CS > 0). We use an adjusted boxplot for asymmetric data (see Rousseeuw et al., 2016), from
which we conclude that there are no atypical data. In addition, Figure 2 (right) presents a linear
or logarithmic relationship between CBCI and UQLI. Furthermore, a non-constant variance is
detected by this scatter-plot. Supported by this EDA, the RBS area model proposed in this work
seems to be a good candidate to describe the data set under study.

4.3. Modeling, estimation and inference

Based on the EDA above performed, we use the RBS area model defined in (3.1), with i =
1, . . . , 34. In addition, δi can be obtained from (3.2) as δi = (yi − ψi + (y4

i + 3y2
iψi)

1/2)/ψi,
for i = 1, . . . , 34, where ψi is the known variance of the municipality i. RBS area models with

Figure 1: Structure of Chilean industries and sectors used to calculate the CBCI in 2017.
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4.1. The data set

The data set under analysis was collected between January-2017 and November-2017
in 34 of 52 municipalities located at the Metropolitan region of Chile. In this data set,
the response is the Chilean business confidence index (CBCI). This index is built from a
sample survey which measures the confidence of customers towards the service provided by
diverse companies. The CBCI is calculated by the Center of Experiences and Services (CES)
of the Adolfo Ibáñez University (UAI), CES-UAI in short; see http://www.ces-uai.cl and
more details of the CBCI in Leiva et al. (2018) [28]. Figure 1 shows the industrial sectors
that allow us to estimate the CBCI. In this study, we consider as covariate the urban life
quality index (ULQI) which allows us to model the CBCI. This covariate is obtained from
the Institute of Urban and Territorial Studies of the Pontifical Catholic University of Chile
(http://fadeu.uc.cl). The data set used in this illustration is presented in Table 2.

Table 2: CBCI (with variance and size sample) and UQLI values for the
indicated municipality.

Municipality ID Yi|θi ψi ni xi

1. Pedro Aguirre Cerda (PC) 30.11 83.93 382 26.45
2. Conchaĺı (CO) 30.32 81.32 508 30.74
3. Quinta Normal (QN) 31.17 82.77 401 30.18
4. Lo Espejo (LE) 31.49 82.69 416 24.11
5. Cerro Navia (CN) 31.80 82.34 522 26.98
6. La Granja (LG) 32.23 78.28 453 33.98
7. Renca (RN) 32.63 83.67 472 36.42
8. Independencia (IN) 34.41 80.64 529 30.05
9. Estación Central (EC) 34.81 81.91 497 33.41
10. Lo Prado (LP) 34.81 83.05 451 30.09
11. San Ramón (SR) 35.63 84.88 394 35.53
12. Quilicura (QU) 37.13 83.31 505 39.70
13. El Bosque (EB) 37.25 80.58 502 28.10
14. Pudahuel (PU) 37.28 80.74 566 36.27
15. Puente Alto (PA) 37.87 79.54 676 36.92
16. Huechuraba (HU) 38.46 78.78 559 37.26
17. La Pintana (LA) 38.99 79.32 477 24.29
18. San Joaqúın (SJ) 39.18 79.05 462 38.29
19. La Cisterna (LC) 39.23 80.12 418 32.89
20. Recoleta (RE) 40.00 79.11 520 32.36
21. Cerrillos (CE) 42.25 79.10 426 32.65
22. San Miguel (SM) 42.66 78.59 511 43.42
23. Maipú (MP) 43.50 78.39 1016 46.43
24. San Bernardo (SB) 43.91 76.56 608 28.93
25. Santiago (SA) 44.00 78.14 759 40.55
26. Peñalolen (PE) 48.54 75.99 789 38.83
27. La Florida (LF) 49.22 74.69 963 38.95
28. Macul (MA) 49.50 79.59 605 47.87
29. La Reina (LR) 51.82 74.49 716 52.45

30. Ñuñoa (NU) 52.14 73.89 980 54.27
31. Lo Barnechea (LB) 56.08 73.62 658 57.67
32. Vitacura (VI) 65.60 72.21 643 57.93
33. Providencia (PR) 71.10 68.81 928 59.96
34. Las Condes (LN) 73.60 72.58 1099 63.61

http://www.ces-uai.cl
http://fadeu.uc.cl
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4.2. Exploratory data analysis

Table 3 provides a descriptive summary of the CBCI in the different municipalities of
the Chilean Metropolitan region, which includes y, median (MD), SD, coefficients of variation
(CV) of skewness (CS) and of kurtosis (CK), as well as the minimum (y(1)) and maximum
(y(m)) values. Figure 2 presents the histogram, adjusted box-plot and standard box-plot of
the CBCI, as well as the scatter-plot between CBCI and UQLI. Figure 3 displays the map
of the municipalities (with their abbreviations detailed in Table 3) located in the Chilean
Metropolitan region with their corresponding CBCI colored in gray according to an intensity
related to the value of this index.

Table 3: Descriptive statistics for the CBCI in municipalities of the
Chilean Metropolitan region.

y(1) MD y y(m) SD CV CS CK

30.11 39.09 42.32 73.6 11.12 26.27 1.36 4.33

Based on Figure 2 and Table 3, we conduct an exploratory data analysis (EDA). First,
from Figure 2 (left and center), note that the CBCI follows a positive skew (asymmetric)
distribution (CS > 0). We use an adjusted boxplot for asymmetric data (see Rousseeuw et

al., 2016 [42]), from which we conclude that there are no atypical data. In addition, Figure 2
(right) presents a linear or logarithmic relationship between CBCI and UQLI. Furthermore,
a non-constant variance is detected by this scatter-plot. Supported by this EDA, the RBS
area model proposed in this work seems to be a good candidate to describe the data set under
study.
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Figure 2: Histogram (left) and box-plot (center) of CBCI,
and scatterplot between CBCI and UQLI (right).
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Figure 3: Map with CBCI of the indicated municipalities
located at the Chilean Metropolitan region.

4.3. Modeling, estimation and inference

Based on the EDA above performed, we use the RBS area model defined in (3.1), with
i = 1, ..., 34. In addition, δi can be obtained from (3.2) as δi = (yi − ψi + (y4

i + 3y2
i ψi)1/2)/ψi,

for i = 1, ..., 34, where ψi is the known variance of the municipality i. RBS area models with
identity and logarithmic link functions, in short log-RBS, defined in (3.1) are compared to
FH models with these same link functions. We use naive model selection tools such as
AIC and BIC given in (3.15). Based on the values of AIC and BIC reported in Table 4,
note that the RBS area model with logarithmic link function is the best one among the
competing models to fit Chilean survey data. Once the RBS area model with logarithmic
link function is selected, we estimate its parameters and the SE of the EB estimator using
bootstrapping, denoted by ŜE(θ̃EB

i ) = (V̂ar(θ̃EB
i ))1/2; see Algorithm 2. Table 5 presents the

values for the response variables (Yi|θi), EB estimates (θ̃EB
i ), estimated SE (ŜE(θ̃EB

i )) and
lower limit (LL) and upper limit (UP) of the 95% bootstrap confidence interval for θ̃EB

i .

Table 4: AIC and BIC values for the listed model and link
by municipality ID with CBCI-UQLI data.

Criteria RBS-log RBS-identity Normal-log Normal-identity

`(bλ) −119.807 −129.750 −130.250 −129.750
AIC 247.614 253.601 264.501 267.501
BIC 250.194 256.188 265.079 270.081



416 M. Rodŕıguez, V. Leiva, M. Huerta, C. Lillo, A. Tapia and F. Ruggeri

The ML estimates of the parameters β0, β1 and κ of the model given in (3.1) using a
logarithmic link function, with the estimated SEs in parenthesis, are: β̂0 = 4.027(0.237),
β̂1 = 0.063(0.006) and κ̂ = 163.505(6.401). From this information, note that all coefficients
are significant at 5% based on the normal approximation of the distribution of the ML esti-
mators.

Table 5: Estimates, SEs and 95% confidence intervals for the area small mean
based on the RBS area model with logarithm link function using
CBCI and UQLI data.

ID eθEB
i

cSE(eθEB
i ) LL UL ID eθEB

i
cSE(eθEB

i ) LL UL

PC 30.59 1.26 28.11 33.06 SJ 39.16 1.19 36.81 41.50
CO 31.38 2.39 26.68 36.08 LC 38.94 0.99 36.99 40.88
QN 32.05 1.90 28.32 35.77 RE 39.46 1.42 36.66 42.25
LE 31.68 0.86 29.99 33.36 CE 41.50 2.18 37.22 45.77
CN 32.17 0.89 30.41 33.92 SM 43.03 1.49 40.09 45.96
LG 33.17 2.64 27.98 38.35 MP 43.32 2.20 39.00 47.63
RN 33.77 3.28 27.32 40.21 SB 43.34 3.85 35.78 50.89
IN 34.74 0.74 33.27 36.20 SA 43.85 0.58 42.70 44.99
EC 35.44 1.40 32.68 38.19 PE 48.68 2.62 43.54 53.81
LP 35.09 0.64 33.83 36.34 LF 48.68 2.77 43.24 54.11
SR 36.21 1.71 32.85 39.56 MA 48.68 0.77 47.15 50.20
QU 37.13 2.48 32.26 41.99 LR 52.50 1.25 50.04 54.95
EB 36.42 1.62 33.24 39.59 NU 52.49 1.71 49.13 55.84
PU 37.00 1.27 34.49 39.50 LB 56.37 1.63 53.16 59.57
PA 37.28 1.26 34.80 39.75 VI 65.71 2.16 61.45 69.96
HU 37.80 1.13 35.57 40.02 PR 71.44 3.17 65.22 77.65
LA 37.59 3.25 31.22 43.96 LN 73.87 2.85 68.27 79.47

4.4. Diagnostics and model checking

Based on Figure 4, we evaluate the assumptions of the RBS area model with logarithm
link function by an analysis of the conditional QR residual defined in (3.16) based on Chilean
service quality data. This figure shows on the left an index plot of the conditional RQ residual
by municipality, whereas on the right, a QQ plot with simulated envelopes for this residual is
sketched. Note that outliers are not detected in these figures. In addition, since in the RBS
model the variance is a function of its mean, the RBS area model manages well the problem
of non-constant variance detected in the EDA. Also, note that the simulated envelopes for
the conditional RQ residual verify the distributional assumption for the RBS area model and
the absence of outlying observations. Therefore, based on this residual analysis and such as
conjectured in our EDA, the RBS area model with logarithm link function is an excellent
formulation for describing the Chilean service quality data analyzed in this study.
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Figure 4: Index plot (left) of the conditional RQ residual and QQ plot
with simulated envelopes (right) with CBCI-UQLI data.

5. CONCLUSIONS

The Birnbaum–Saunders area models proposed in this article have properties that are
unavailable in the models of this type existing in the literature. Some of these properties
are quite needed for describing small areas problems. Specifically, the Birnbaum–Saunders
area models considered in this work allow us to describe the mean of the data in their origi-
nal scale, unlike the existing models, which employ a logarithmic transformation of the data
with the consequent problems. In addition, these Birnbaum–Saunders area models can be
formulated in a similar form as the normal area models, permitting capturing the essence of
the small area estimation problem based on sample means and variances obtained from the
areas. Furthermore, the Birnbaum–Saunders area models considered in this study assume
a link function, which enables for different structures present in the data. The proposed
methodology allowed us to find the estimator of the small area mean based on the empirical
Bayes estimator using Gaussian quadrature methods. We also considered a residual to eval-
uate the model assumptions and atypical data. Finally, we performed a statistical modeling
for small area estimation with unpublished Chilean survey data by using the new approach
proposed in the article, which have shown the applicability and scope of our proposal.
The methodology introduced in this article has been implemented in the R software.
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