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1. INTRODUCTION

Ordered random variables (rv’s) have attracted many researchers due to their applica-
bility in many practical areas, like order statistics (os’s) and record values. Both of os’s and
record values are used extensively in statistical models and inference, where they describe rv’s
arranged in order magnitude. The os’s occur as a natural choice when dealing with floods,
drought, earthquakes, etc. Also, record values arise naturally in many real life applications
involving data related to sport, weather, and life testing studies. Actually, there is strong
relation between the os and the record value models. For example, the record values provide
the information about the maximum (minimum) value among all previously recorded obser-
vations, for more detail, see Arnold et al. [5] (1998). The concept of concomitant os’s, also
called induced os’s, is related to the ordering bivariate rv’s. The concomitant os’s arise when
one sorts the members of a random sample according to corresponding values of an other
random sample. The term concomitant of os’s was first induced and applied extensively by
David [13] (1973). According to Hanif [22] (2007) in collecting any data for an observation,
several characteristics are often recorded, some of them are considered as primary and others
can be observed from the primary data automatically. The latter one is called concomitant,
for more detail see David and Nagaraja [14, 15] (1998, 2003). The most important use of
concomitants of record values arises in experiments, in which specified characteristic’s mea-
surements of an individual are made sequentially. Moreover, only values that exceed or fall
below the current extreme value are recorded, so that only observations are bivariate record
values, i.e., records and their concomitants. Some properties of concomitants of record val-
ues are discussed by Ahsanullah [1] (2009) and Ahsanullah and Shakil [2] (2013). Clearly,
both concomitants of os’s and record values are strongly relevant with a bivariate data that
has a common bivariate distribution function (df). One of the most useful and popular bi-
variate df is the so-called Farlie–Gumbel–Morgenstern (FGM). The FGM df is defined by
H(x, y) = FX(x)FY (y)[1 + αFX(x)FY (y)], where FX and FY are the marginals df’s, while
FX and FY are the survival function of FX and FY , respectively, and −1 ≤ α ≤ 1. The FGM
distribution is a flexible family useful in applications provided that the correlation between the
variables is not too large. It can be utilized for arbitrary continuous marginals. The FGM df
was originally introduced by Morgenstern [29] (1956) for Cauchy marginals. In 1960 Gumbel
[20] investigated the same structure for exponential marginals. Also, in 1960, Farlie [18],
in connection with his investigations of the correlation coefficient, suggested a generaliza-
tion of the bivariate form studied by Morgenstern and Gumbel. Huang and Kotz [25] (1984)
used successive iterations in the original FGM distribution to increase the correlation between
components. As a particular case, the bivariate FGM with a single iteration is defined by

(1.1) FX,Y (x, y) = FX(x)FY (y)
[
1 + λF̄X(x)F̄Y (y) + γFX(x)FY (y)F̄X(x)F̄Y (y)

]
,

denoted by FGM(λ, γ). The corresponding probability density functions (pdf) is given by:

fX,Y (x, y) =(1.2)

= fX(x)fY (y)
[
1 + λ

(
1− 2FX(x)

)(
1− 2FY (y)

)
+ γFX(x)FY (y)

(
2− 3FX(x)

)(
2− 3FY (y)

)]
,

where FX(x) and FY (y) are df’s, while fX(x) and fY (y) are the pdf’s of the rv’s X and Y ,
respectively. When the two marginals FX(x) and FY (y) are continuous, Huang and Kotz [25]
(1984) showed that the natural parameter space Ω (the admissible set of the parameters λ
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and γ that makes FX,Y (x, y) is a df) is convex, where Ω =
{
(λ, γ) : −1 ≤ λ ≤ 1; λ+ γ ≥ −1;

γ ≤ 3−λ+
√

9−6λ−3λ2

2

}
. Moreover, when the marginals are uniform then, the correlation co-

efficient is ρ = λ
3 + γ

12 (cf. Huang and Kotz [26], 1999). Finally, the maximal correlation
coefficient attained for this family is max ρ = 0.434 versus max ρ = 1

3 = 0.333 achieved for
λ = 1 in the original FGM version. This fact gives a satisfactory motivation to deal with
the model FGM(λ, γ) rather than the classical model FGM. The model FGM(λ, γ) provides
a very general expression of a bivariate distribution from which members can be derived by
substituting expressions of any desired set of marginal distributions. On the other hand, since
both the bivariate df’s and density are given in terms of marginals, it is easy to generate a
random sample from the model FGM(λ, γ). Thus members of this family can be used in
simulation studies. Moreover, a number of properties results from the simple analytic form
of the model FGM(λ, γ), for example, rv’s having a FGM(λ, γ) are exchangeable whenever
the marginal distributions are identical. Also, the model FGM(λ, γ) is closed with respect
to monotonic increasing functions of rv’s. Moreover, the system is closed with respect to
mixtures of bivariate FGM(λ, γ) df’s having the same marginal distributions. the bivariate
FGM(λ, γ) df’s are specially suited to data situations describing weak dependence between
the rv’s X and Y . Measures of dependence vary over a larger range than for the classical
FGM df’s.

In this paper, we study the family FGM(λ, γ), with generalized exponential (GE)
marginals. The generalized exponential distribution (GE), a most attractive generalization
of the exponential distribution, introduced by Gupta and Kundu [21] (1999), has widespread
interest and applications, e.g., it can be used quite effectively in analyzing many lifetime
data, particularly in place of two-parameter gamma and two-parameter Weibull distribu-
tions. Many authors studied various properties of the GE, see for example, Ahsanullah et al.

[3] (2013) and AL-Hussaini and Ahsanullah [4] (2015).

A continuous rv is said to be has the GE with scale parameter θ > 0 and shape param-
eter α > 0 (denoted by GE(θ;α)), if the df and the corresponding pdf are given, for x > 0,
respectively, by

FX(x) =
(
1− exp(−θx)

)α

and

(1.3) fX(x) = αθ
(
1− exp(−θx)

)α−1 exp(−θx).

Gupta and Kundu [21] (1999) showed that the k-th moment of GE(θ;α) is

µk =
αk!
θk

ℵ(α−1)∑
i=0

(−1)i

(i+ 1)k+1

(
α− 1
i

)
,

where ℵ(x) = ∞, if x is non-integer and ℵ(x) = x, if x is integer. Furthermore, the mean, vari-
ance and moment generating function of GE(θ;α) are given by µ1 = E(X) = B(α)

θ , Var(X) =
C(α)
θ2 and MX(t) = αβ(α, 1− t

θ ), respectively, where B(α) = Ψ(α+1)−Ψ(1), C(α) = Ψ′(1)−
Ψ′(α+ 1), β(a, b) = Γ(a)Γ(b)

Γ(a+b) and Ψ(·) is the digamma function, while Ψ′(·) is its derivation
(Ψ′(·) is known as the trigamma function). Tahmasebi and Jafari [38] (2015) studied some
properties of the classical FGM type bivariate GE df. Moreover, Tahmasebi and Jafari [38]
(2015) studied some distributional properties of concomitants of os’s as well as record values
of this df.
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In this paper, the result of Tahmasebi and Jafari [38] (2015) is extended to FGM(λ, γ)
family with two marginals FX and FY , where X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2) (denoted
by FGM(λ, γ : θ1, α1; θ2, α2)). Moreover, some new results, which were not obtained by Tah-
masebi and Jafari [38] (2015) for FGM family, are given such as recurrence relations for the
single, as well as the product, moments of bivariate concomitants of os’s, the concomitant
rank-os’s, and the asymptotic behavior of the concomitants of os’s. It is worth mention-
ing that, the same problem tackled by Barakat et al. [7, 6] (2019, 2018) for the Huang–
Kotz FGM and Bairamov–Kotz–Becki FGM with GE marginals, respectively. Moreover, the
FGM(λ, γ : θ1, α1; θ2, α2) is not a special case of any of the latter models. Nowadays, we can
find several recent relevant works on this subject. Among these works are Tahmasebi and
Behboodian [36] (2012), Tahmasebi and Jafari [37] (2014) and Tahmasebi et al. [39, 40] (2015,
2016).

2. THE FGM(λ, γ : θ1, α1; θ2, α2) FAMILY AND SOME OF ITS PROPERTIES

The joint df and pdf of (X,Y ) are defined by (1.1) and (1.2), respectively, where X ∼
GE(θ1;α1) and Y ∼ GE(θ2;α2). Thus, it is easy to show that the (n,m)-th joint moments
the of FGM(λ, γ : θ1, α1; θ2, α2) family is given by

E(XnY m) = E(Xn)E(Y m) + λ
(
E(Xn)− E(Un

1 )
)(

E(Y m)− E(V m
1 )

)
+ γ

(
E(Un

1 )− E(Un
2 )

)(
E(V m

1 )− E(V m
2 )

)
, n,m = 1, 2, ...,

(2.1)

where U1 ∼ GE(θ1; 2α1), U2 ∼ GE(θ1; 3α1), V1 ∼ GE(θ2; 2α2) and V2 ∼ GE(θ2; 3α2). Thus,
by combining (2.1) and (1.3), we get

E(XY ) =
B(α1)B(α2) + λD(2α1)D(2α2) + γD(3α1)D(3α2)

θ1θ2
,

where D((k + 1)α) = B((k + 1)α)−B(kα), k = 1, 2. Therefore, the coefficient of correlation
between X and Y is

ρX,Y =
λD(2α1)D(2α2) + γD(3α1)D(3α2)√

C(α1)C(α2)
= λg1(α1, α2) + γg2(α1, α2).

Clearly, the function g1(α1, α2) and g2(α1, α2, ) is increasing and positive function with respect
to each of αi, i = 1, 2. Therefore, if λ, γ > 0, then ρX,Y is increasing and positive function and
if λ, γ < 0, then ρX,Y is decreasing and negative function with respect to each of α1 and α2.

Moreover, we can show that limα1→∞
α2→∞

g1(α1, α2) = 6(log(2))2

π2 , limα1→∞
α2→∞

g2(α1, α2, ) = 6(log( 3
2
))2

π2 ,
limα1→0+

α2→0+

g1(α1, α2) = 0 and limα1→0+

α2→0+

g2(α1, α2) = 0. Therefore, max ρX,Y = 0.392 at corner

point (λ, γ) = (1, 1) and min ρX,Y = −0.292 at corner point (λ, γ) = (−1, 0).

The conditional df of Y given X = x is given by

FY |X(y|x) = FY (y)
[
1 + λ

(
1− FY (y)

)(
1− 2FX(x)

)
− γFX(x)FY (y)

(
1− FY (y)

)(
2− 3FX(x)

)]
.

(2.2)
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Therefore, the regression curve of Y given X = x for FGM(λ, γ : θ1, α1; θ2, α2) is

E(Y |X = x) = E(Y ) + λ
(
1− 2FX(x)

)(
E(Y )− E(V1)

)
+ γFX(x)

(
2− 3FX(x)

)(
E(V1)− E(V2)

)
=

1
θ2

[
B(α2) + λD(2α2)

(
2FX(x)− 1

)
+ γFX(x)D(3α2)

(
3FX(x)− 2

)]
,

(2.3)

where V1 ∼ GE(θ2; 2α2) and V2 ∼ GE(θ2; 3α2) and the conditional expectation is non-linear
with respect to x.

3. CONCOMITANTS OF OS’S BASED ON FGM(λ, γ : θ1, α1; θ2, α2)

Suppose (Xi, Yi), i = 1, 2, ..., n, is a random sample from a bivariate df FX,Y (x, y).
If we order the sample by the X-variate, and obtain the os’s, X1:n ≤ X1:n ≤ ··· ≤ Xn:n, for
the X sample, then the Y -variate associated with the r-th order statistic Xr:n is called the
concomitant of the r-th order statistic, and is denoted by Y[r:n].

Let X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2). Since the conditional pdf of Y[r:n] given
X[r:n] = x is fY[r:n]|Xr:n

(y|x) = fY |X(y|x) (cf. Galambos [19], 1987, see also Tahmasebi and
Jafari [38], 2015), then the pdf of Y[r:n] is given by

f[r:n](y) = fY (y) +
[
λ
(
fY (y)− fV1(y)

)
+ γ

(
fV2(y)− fV1(y)

)]
∆(1)

r,n

+
[
γ
(
fV1(y)− fV2(y)

)]
∆(2)

r,n,
(3.1)

where

∆(i)
r,n =

β(r, n− r + 1)− (i+ 1)β(r + i, n− r + 1)
β(r, n− r + 1)

, i = 1, 2.

Therefore, the moment generating function of Y[r:n] is given by

M[r:n](t) = α2

[
β

(
α2, 1−

t

θ2

)
+ λ∆(1)

r,n

(
β

(
α2, 1−

t

θ2

)
− β

(
2α2, 1−

t

θ2

))

+ γ∆(2)
r,n

(
β

(
2α2, 1−

t

θ2

)
− β

(
3α2, 1−

t

θ2

))]
.

Consequently, the k-th moment of Y[r:n] is given by

µ
(k)
[r:n] = E[Y k

[r:n]] = E[Y k] + ∆(1)
r,n

(
γ
(
E[V k

2 ]− E[V k
1 ]

)
− λ

(
E[V k

1 ]− E[Y k]
))

− γ∆(2)
r,n

(
E[V k

2 ]− E[V k
1 ]

)
.

Moreover, the mean of Y[r:n]:

(3.2) µ[r:n] = µ
(1)
[r:n] =

1
θ2

[
B(α2) + ∆(1)

r,n

(
γD(3α2)− λD(2α2)

)
− γ∆(2)

r,nD(3α2)
]
.
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Theorem 3.1. For any 1 ≤ r ≤ n− 3, we get[
(n+ 2)A(λ,γ)− 3(r + 1)γD(3α2)

]
µ[r+2:n] =

=
[
2(n+ 2)A(λ,γ)− 3(2r + 3)γD(3α2)

]
µ[r+1:n] −

[
(n+ 2)A(λ,γ)− 3(r − 2)γD(3α2)

]
µ[r:n].

Moreover, for all n > 2, we get[
A(λ, γ)

(
2− n(n+ 1)

)
− 3(r + 1)(n− 1)γD(3α2)

]
µ[r:n] =

= (n+ 2)
[
A(λ, γ)(n+ 1) + 3(r + 1) + 3(r + 1)γD(3α2)

]
µ[r:n−2]

−
[
2A(λ, γ)(n+ 2) + 3(r + 1)(2n+ 1)γD(3α2)

]
µ[r:n−1],

where A(λ, γ) = γD(3α2)− λD(2α2).

Proof: It is easy, after some algebra, to show that the mean µ[r:n], defined by (3.2),
satisfies the following relation:

(3.3)
µ[r+2:n] − µ[r:n]

µ[r+1:n] − µ[r:n]
=
A(λ, γ)

(
∆(1)

r+2,n −∆(1)
r,n

)
+ γD(3α2)

(
∆(2)

r+2,n −∆(2)
r,n

)
A(λ, γ)

(
∆(1)

r+1,n −∆(1)
r,n

)
+ γD(3α2)

(
∆(2)

r+1,n −∆(2)
r,n

) .
On the other hand, we can check that ∆(1)

r+2,n −∆(1)
r,n = −4

n+1 , ∆(1)
r+1,n −∆(1)

r,n = −2
n+1 , ∆(2)

r+2,n −
∆(2)

r,n = −12r−18
(n+1)(n+2) and ∆(2)

r+1,n −∆(2)
r,n = −6r−6

(n+1)(n+2) . Thus, by combining the last four relations
with (3.3), we get first recurrence relation in Theorem 3.1. Also, we can easily check that
∆(1)

r,n −∆(1)
r,n−2 = 4r

(n−1)(n+1) , ∆(1)
r,n−1 −∆(1)

r,n−2 = 2r
n(n−1) , ∆(2)

r,n −∆(2)
r,n−2 = 6r(r+1)(2n+1)

n(n−1)(n+1)(n+2) and

∆(2)
r,n−1 −∆(1)

r,n−2 = 6r(r+1)
n(n−1)(n+1) . The last four relation and the relation (3.2) imply the second

recurrence relation of the theorem. This completes the proof.

Remark 3.1. By putting γ = 0 in the two recurrence relations defined in Theorem 3.1
(note that A(λ, 0) = 0), we get the two corresponding recurrence relations defined in Theorem
3.1 of Barakat et al. [7] (2019), at p = 1.

By multiplying the both sides of (3.1) by (y − µ[r:n])2 and integrating, we obtain the
variance of Y[r:n] as

σ2
[r:n] =

1
θ2
2

[
(1 + π1)

(
C(α2)− π1B

2(2α2)
)

+ (π2 − π1)
(
C(2α2) +B2(2α2)

)
−B2(2α2)(π1 + π2)2 + π2

(
C(3α2)−B2(3α2)(1 + π2)

)
− 2B(α2)B(2α2)π3

− 2B(α2)B(3α2)π2(1 + π1)− 2B(2α2)B(3α2)π2(π1 + π2)
]
,

(3.4)

where π1 = λ∆(1)
r,n, π2 = γ∆(2)

r,n and π3 = π1(1 + π1) + π2(1 + π1).
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3.1. Joint df of concomitants of os’s based on FGM(λ, γ : θ1, α1; θ2, α2)

The joint pdf of concomitants Y[r:n] and Y[s:n], r < s, is (cf. Tahmasebi and Jafari [38],
2015)

f[r,s:n](y1, y2) =
∫ ∞

0

∫ x2

0
fY |X(y1|x1)fY |X(y2|x2)fr,s:n(x1, x2) dx1dx2,

where β(a, b, c) = Γ(a)Γ(b)Γ(c)
Γ(a+b+c) and

fr,s:n(x1, x2) =
1

β(r, s− r, n− s+ 1)
F r−1

X (x1)

×
(
FX(x2)− FX(x1)

)s−r−1(1− FX(x2)
)n−s

fX(x1)fX(x2), x1 < x2.

Therefore,

f[r,s:n](y1, y2) =
∫ ∞

0

∫ x2

0
fY (y1)

[
1 + λ

(
1− 2FX(x1)

)(
1− 2FY (y1)

)
+ γFX(x1)FY (y1)

(
2− 3FX(x1)

)(
2− 3FY (y1)

)][
fY (y2)

[
1 + λ

(
1− 2FX(x2)

)
×

(
1− 2FY (y2)

)
+ γFX(x2)FY (y2)

(
2− 3FX(x2)

)(
2− 3FY (y2)

)]]
×

[
F r−1

X (x1)
(
FX(x2)−FX(x1)

)s−r−1(1−FX(x2)
)n−s

β(r, s− r, n− s+ 1)
fX(x1)fX(x2)

]
dx1dx2.

(3.5)

On the other hand, after some algebra we can write the joint pdf f[r,s:n](y1, y2), defined by
(3.5), in the following compact form:

f[r,s:n](y1, y2) = fY (y1)fY (y2)
[
1 + λ

(
1− 2FY (y1)

)
I1 + λ

(
1− 2FY (y2)

)
I2

+ λ2
(
1− 2FY (y1)

)(
1− 2FY (y2)

)
I3 + γFY (y1)

(
2− 3FY (y1)

)
I4

+ γFY (y2)
(
2− 3FY (y2)

)
I5 + γ2FY (y1)FY (y2)

(
2− 3FY (y1)

)(
2− 3FY (y2)

)
I6

+ λγFY (y2)
(
1− 2FY (y1)

)(
2− 3FY (y2)

)
I7

+ λγFY (y1)
(
1− 2FY (y2)

)(
2− 3FY (y1)

)
I8

]
,

where I1= ∆(1)
r,s,n, I2= ∆(2)

r,s,n, I3= ∆(1)
r,s,n+∆(2)

r,s,n−∆(3)
r,s,n, I4= ∆(4)

r,s,n−∆(1)
r,s,n, I5= ∆(5)

r,s,n−∆(2)
r,s,n,

I6 =
(
∆(6)

r,s,n +∆(7)
r,s,n

)
−

(
∆(3)

r,s,n−∆(8)
r,s,n

)
, I7 = ∆(5)

r,s,n−∆(2)
r,s,n +∆(3)

r,s,n−∆(7)
r,s,n and I8 = ∆(4)

r,s,n−
∆(1)

r,s,n + ∆(3)
r,s,n −∆(6)

r,s,n. Moreover,

∆(i)
r,s,n =

β(r, s− r, n− s+ 1)− (pi + 1)β(r + pi, s− r, n− s+ 1)
β(r, s− r, n− s+ 1)

, i = 1, 4,

∆(i)
r,s,n =

β(r, s− r, n− s+ 1)− (pi + 1)β(s+ pi, n− s+ 1)β(r, s− r)
β(r, s− r, n− s+ 1)

, i = 2, 5,

∆(i)
r,s,n =

β(r, s−r, n−s+ 1)−(pi + 1)2β(s+ 2pi, n− s+ 1)β(r + pi, s−r)
β(r, s−r, n−s+ 1)

, i = 3, 8,

∆(i)
r,s,n =

β(r, s− r, n− s+ 1)− 6β(s+ 3, n− s+ 1)β(r + pi, s− r)
β(r, s− r, n− s+ 1)

, i = 6, 7,
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where p1 = p2 = p3 = p7 = 1 and p4 = p5 = p6 = p8 = 2. Therefore, the product moment
E

[
Y[r:n]Y[s:n]

]
is obtained directly as

µ[r,s:n] =
1
θ2
2

[
B2(α2)ξ1(λ, r, s, n)−B(α2)B(2α2)ξ2(γ, λ, r, s, n)

+B2(2α2)ξ3(γ, λ, r, s, n)−B(α2)B(2α2)ξ4(γ, λ, r, s, n) + γ2B2(3α2)I6
]
,

(3.6)

where

ξ1(λ, r, s, n) = 1 + λ(I1 + I2 + I3),

ξ2(γ, λ, r, s, n) = λ(I1 + I2 + 2λI3)− γ(I4 + I5)− λγ(I7 + I8),

ξ3(γ, λ, r, s, n) = λ2I3 + γ2I6 − λγ(I7 + I8)
and

ξ4(γ, λ, r, s, n) = γ(I4 + I5) + λγ(I7 + I8).

Therefore, by using (3.2) and (3.6) we can after some algebra calculate the covariance between
Y[r:n] and Y[s:n] as

σ[r,s:n] =
1
θ2
2

[
B2(α2)δ(1)r,s,n −B(α2)B(2α2)δ(2)r,s,n

+B2(2α2)δ(3)r,s,n −B(α2)B(3α2)δ(4)
r,s,n +B2(3α2)δ(5)r,s,n

]
.

(3.7)

where

δ(1)
r,s,n = 1 + λ

(
I1 + I2 + λI3 −∆(1)

r,n −∆(1)
s,n

)
,

δ(2)
r,s,n = λ

(
I1 + I2 + 2λI3 −∆(1)

r,n −∆(1)
s,n

)
− γ

(
I4 + I5 −∆(2)

r,n −∆(2)
s,n

)
− λγ(I7 + I8),

δ(3)
r,s,n = λ2

(
I3 + ∆(1)

r,n∆(1)
s,n

)
+ γ2

(
I6 + ∆(2)

r,n∆(2)
s,n

)
− λγ(I7 + I8),

δ(4)
r,s,n = γ

(
I4 + I5 −∆(2)

r,n∆(2)
s,n

)
+ λγ(I7 + I8)

and
δ(5)
r,s,n = γ2

(
I6 + ∆(2)

r,n∆(2)
s,n

)
.

We can now use (3.7) and (3.4) to obtain the coefficient of correlation between Y[r:n] and
Y[s:n] as ρ[r,s:n] = σ[r,s:n]

σ[r:n]σ[s:n]
. By putting γ = 0 in (3.4) and (3.7), we can easily check that the

ρ[r,s:n] is exactly the coefficient of correlation between Y[r:n] and Y[s:n] calculated by Barakat
et al. [7] (2019), at p = 1.

Theorem 3.2. For any 1 ≤ r ≤ n− 3, we get

(3.8) µ[r+2,s:n] = 2µ[r+1,s:n] − µ[r,s:n] − τn(s;λ, γ;α2),

where

τn(s;λ, γ;α2) =
6A1(n+ 3)(n+ 4) + 12A2(s+ 2)(n+ 4) + 18A3(s+ 2)(s+ 3)

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.

Moreover, for any 1 ≤ s ≤ n− 3, we get

(3.9) µ[r,s+2:n] = 2µ[r,s+1:n] − µ[r,s:n] − ωn(r;λ, γ;α2),

where

ωn(r;λ, γ;α2) =
6A4(n+ 3)(n+ 4) + 12rA5(n+ 4) + 18A3r(r + 1)

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.
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Finally, for all n > 2, we get

(3.10) (n+ 1)µ[r,s:n] = 2nµ[r,s:n−1] − (n− 1)µ[r,s:n−2] + ζn(r, s;λ, γ;α2),

where

ζn(r, s;λ, γ;α2) =
3A4s(s+ 1)(n+ 3)(n+ 4) + 36rA2r(r + 1)(s+ 2)(n+ 4)

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

+
36A5(s+ 1)(s+ 2)(n+ 4) + 108A3(s+ 2)(s+ 3)r(r + 1)

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

+
8A6r(s+ 1)(n+ 3)(n+ 4) + 6A1r(r + 1)(n+ 3)(n+ 4)

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
,

A1 =
1
θ2
2

[
λγ

(
B2(2α2) +B(α2)B(2α2)−B(α2)B(3α2)

)
− γB(α2)B(2α2)

]
,

A2 =
1
θ2
2

[
γ2

(
B2(2α2) +B2(3α2)

)
+ λγ

(
B(α2)B(3α2)−B(α2)B(2α2)

)]
,

A3 =
−γ2

θ2
2

(
B2(2α2) +B2(3α2)

)
,

A4 =
1
θ2
2

[
γ
(
B(α2)B(2α2)−B(α2)B(3α2)

)
+ λγ

(
B(α2)B(2α2) +B(α2)B(3α2)−B2(α2)

)]
,

A5 =
1
θ2
2

[
γ2

(
B2(2α2) +B2(3α2)

)
+ λγ

(
B(α2)B(3α2)−B(α2)B(2α2) +B2(α2)

)]
and

A6 =
1
θ2
2

[
λ2

(
B(2α2)−B(α2)

)2 + 2λγB(α2)
(
B(2α2)−B(3α2)

)
− γ2B2(3α2)

]
.

Proof: It is easy to check that

∆(i)
r+2,s,n −∆(i)

r,s,n = 2
(
∆(i)

r+1,s,n −∆(i)
r,s,n

)
, i = 1, 3, 6,(3.11)

∆(i)
r+2,s,n −∆(i)

r,s,n =
(
∆(i)

r+1,s,n −∆(i)
r,s,n

) 2r + 3
r + 1

, i = 4, 7, 8,(3.12)

and

(3.13) ∆(2)
r,s,n = ∆(2)

r+1,s,n = ∆(2)
r+2,s,n, ∆(5)

r,s,n = ∆(5)
r+1,s,n = ∆(5)

r+2,s,n.

The recurrence relation (3.8) is now followed by combining (3.11) and (3.12) with (3.13).
Now, we turn to prove (3.9). First, we notice that

(3.14) ∆(1)
r,s,n = ∆(1)

r,s+1,n = ∆(1)
r,s+2,n

and

(3.15) ∆(4)
r,s,n = ∆(4)

r,s+1,n = ∆(4)
r,s+2,n.

Moreover, it is easy to check that

(3.16) ∆(i)
r,s+2,n −∆(i)

r,s,n = 2
(
∆(i)

r,s+1,n −∆(i)
r,s,n

)
, i = 2, 3, 6,

and

(3.17) ∆(i)
r,s+2,n −∆(i)

r,s,n =
(
∆(i)

r,s+1,n −∆(i)
r,s,n

) 2s+ 2pi + 1
s+ pi

,
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where i = 5, 7, 8 and p5 = 1, p7 = 2, p8 = 3. Therefore, the recurrence relation (3.9) is followed
by combining (3.14), (3.15), (3.16) and (3.17). In order to prove the recurrence relation (3.10),
we first notice that

(3.18) ∆(i)
r,s,n−2:p −∆(i)

r,s,n:pi
=

(
∆(i)

r,s,n−1:pi
−∆(i)

r,s,n:pi

) 2n+ pi − 1
n− 1

,

where i = 1, 2, ..., 8 and p1 = p2 = 1, p3 = p4 = p5 = 2, p6 = p7 = 3, p8 = 4. The recurrence
relation (3.10) is now followed by using (3.18). The proof is completed.

Remark 3.2. By putting γ = 0 in (3.8), (3.9) and (3.10), we get (3.24), (3.25) and
(3.26) in Theorem 3.3 of Barakat et al. [7] (2019), at p = 1.

4. CONCOMITANTS OF RECORD VALUES BASED ON FGM(λ,γ : θ1,α1; θ2,α2)

Let (Xi, Yi), i = 1, 2, ..., be a random sample from FGM(λ, γ; θ1, α1; θ2, α2). When the
experimenter interests in studying just the sequence of records of the first component Xi’s,
the second component associated with the record value of the first one is termed as the
concomitant of that record value. The concomitants of record values arise in a wide variety
of practical experiments, e.g., see Bdair and Raqab [8] (2014) and Arnold et al. [5] (1998).
Let {Rn, n ≥ 1} be the sequence of record values in the sequence of X’s, while R[n] be the
corresponding concomitant. Houchens [24] (1984) has obtained the pdf of concomitant of
n-th record value for n ≥ 1, as h[n](y) =

∫∞
0 fY (y|x)gn(x)dx, where gn(x) = 1

Γ(n)

(
− log(1−

FX(x))
)n−1

fX(x) is the pdf of Rn. Therefore, after some algebra, we get

(4.1) h[n](y) = (1 + λΥn:1)fY (y) + (γΥn:2 − λΥn:1)fV1(y)− γΥn:2fV2(y),

where V1 ∼ GE(θ2; 2α2), V2 ∼ GE(θ2; 3α2) and

Υn:p =

1− (1 + p)
ℵ(p)∑
i=0

(−1)i
(

p

i

)
(i+ 1)n


(clearly, Υn:1 = (2−(n−1) − 1)). The representation (4.1) enables us to derive the mean and
the variance of R[n] as

µ[Rn] =
1
θ2

[
B(α2)− λΥn:1D(2α2)− γΥn:2D(3α2)

]
and

σ2
[Rn] =

1
θ2
2

[
C(α2) + λΥn:1

(
C(α2)− C(2α2)

)
+ γΥn:2

(
C(2α2)− C(3α2)

)
− (1 + λΥn:1)λΥn:1D

2(2α2)− (1 + γΥn:2)γΥn:2D
2(3α2)

− λγΥn:1Υn:2D(2α2)D(3α2)
]
.

(4.2)

Again, by putting γ = 0, we get the mean and the variance of R[n] for the Huang–Kotz FGM
family based on the GE marginals at p = 1 (cf. Barakat et al. [7], 2019).
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The joint pdf of the concomitants R[n] and R[m], n < m, is given by

h[n,m](y1, y2) =
∫ ∞

0

∫ ∞

x1

fY |X(y1|x1)fY |X(y2|x2)gm,n(x1, x2) dx2dx1,

where

gm,n(x) =
1

Γ(n)Γ(m− n)

(
− log

(
1− FX(x1)

))n−1
(
− log

1− FX(x2)
1− FX(x1)

)m−n−1 fX(x1)fX(x1)
1− FX(x1)

is the joint pdf of Rn and Rm. Therefore, after some algebra, we get

h[n,m](y1, y2) = fY (y1)fY (y2)
[
1 + λ

(
1− 2FY (y1)

)
J1 + λ

(
1− 2FY (y2)

)
J2

+ λ2
(
1− 2FY (y1)

)(
1− 2FY (y2)

)
J3 + γFY (y1)

(
2− 3FY (y1)

)
J4

+ γFY (y2)
(
2− 3FY (y2)

)
J5 + γ2FY (y1)FY (y2)

(
2− 3FY (y1)

)(
2− 3FY (y2)

)
J6

+ λγFY (y2)
(
1− 2FY (y1)

)(
2− 3FY (y2)

)
J7

+ λγFY (y1)
(
1− 2FY (y2)

)(
2− 3FY (y1)

)
J8

]
,

(4.3)

where J1 = Υn:1, J2 = Υm:1, J3 = 4Υn:1+Υm:1−Υn,m:1,1, J4 = Υn:2−Υn:1, J5 = Υm:2−Υm:1,
J6 = Υn,m:2,1+Υn,m:1,2−Υn,m:1,1−Υn,m:2,2, J7 = Υm:2+Υn,m:1,1−Υm:1−Υn,m:1,2, J8 = Υn:2+
Υn,m:1,1−Υn:1−Υn,m:2,1 and

Υn,m:p,q =

1− (1 + p)(1 + q)
ℵ(p)∑
i=0

ℵ(q)∑
j=0

(−1)i+j
(

p

i

) (
q

j

)
(i+ j + 1)n(j + 1)m−n

 .
The representation (4.3) enables us to derive the product moment and the covariance of R[n]

and R[m], respectively, as

µ[Rn,Rm]:p =
1
θ2
2

[
B2(α2)ξ1(λ, n,m)−B(α2)B(2α2)ξ2(γ, λ, n,m)

+ B2(2α2)ξ3(γ, λ, n,m)−B(α2)B(2α2)ξ4(γ, λ, n,m) +B2(3α2)γ2J6

]
,

where ξ1(λ,n,m) = 1+λ(J1+J2+J3), ξ2(γ,λ,n,m) = λ(J1+J2+2λJ3)−γ(J4+J5)−λγ(J7+J8),
ξ3(γ,λ,n,m) = λ2J3 + γ2J6 − λγ(J7 + J8) and ξ4(γ,λ,n,m) = γ(J4 + J5) + λγ(J7 + J8) and

σ[Rn,Rm] =
1
θ2
2

[
B2(α2)η(1)

n,m −B(α2)B(2α2)η(2)
n,m

+B2(2α2)η(3)
n,m −B(α2)B(3α2)η(4)

n,m +B2(3α2)η(5)
n,m

]
,

(4.4)

where

η(1)
n,m = 1 + λ(J1 + J2 + λJ3 −Υn:1 −Υm:1),

η(2)
n,m = λ(J1+J2+2λJ3−Υn:1−Υm:1)−γ(J4 + J5 −Υn:2−Υm:2)−λγ(J7 + J8),

η(3)
n,m = λ2(J3 + Υn:1Υm:1) + γ2(J6 + Υn:2Υm:2)− λγ(J7 + J8),

η(4)
n,m = γ(J4 + J5 −Υn:2Υm:2) + λγ(J7 + J8)

and
η(5)

n,m = γ2(J6 + Υn:2Υm:2).
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Finally, by combining (4.2) and (4.4), we get the correlation coefficient of the concomitants
R[n] and R[m] as

ρ[Rn,Rm] =
σ[Rn,Rm]√
σ2

[Rn]σ
2
[Rm]

.

Clearly, by putting γ = 0 in (4.2) and (4.4), we can easily check that the ρ[Rn,Rm] is exactly
the coefficient of correlation between Rn and Rm calculated by Barakat et al. [7] (2019), at
p = 1.

5. APPLICATIONS

Concomitants of os’s and record values have received a continued remarkable attention
in recent years due to their applicability in many problems. The most striking application
of concomitants of os’s arises in biological selection problems. For example, in choosing
the top k out of n rams as judged by their genetic make up is selected for breeding, then
Y[n−k+1:n], ..., Y[n:n], might represent the quality of the wool of one of their female offspring.
In such type of experiments a geneticist is more likely to choose the best set of offsprings
with less number of trials than one in which all trials are undertaken which is much expensive
and time consuming. Examples of such application can be found in Scaria and Thomas [34]
(2014).

Estimation of the parameters associated with the df of the rv Y of primary interest
using concomitants of os’s or record values on the auxiliary rv X is an another important
application, where extensive works are seen carried out. For example see, Begum and Khan
[9] (2000), Scaria [33] (2003), Philip and Thomas [31] (2015), Veena and Thomas [42] (2015)
and Domma and Giordano [16] (2016).

Another important application of concomitants of os’s and record values is a method
of sampling known as ranked set sampling. Namely, when we have an auxiliary rv X, which
is easily measurable while the measurement of the rv Y of primary interest is hard and
expensive. In order to achieve observational economy, we choose n2 units randomly from the
population and arrange them in n groups of n units each for measurement of the observed
rv X. Therefore, based on the observations on X, units in each group are ranked among
themselves and from the j-th group the unit ranked j is chosen for measurement of the
variable Y of primary interest for j = 1, 2, ..., n. Clearly the observations finally measured on
Y are concomitants of os’s. For some references in this area one may refer, Chen et al. [12]
(2004), Chacko and Thomas [10, 11] (2008, 2009), Lesitha and Thomas [28] (2013), Paul and
Thomas [30] (2017) and Philip and Thomas [32] (2017).

Moreover, some results on characterization of bivariate distributions by properties of
concomitants of os’s are available in Thomas and Veena [41] (2011). Besides the preceding
applications, there are important other recent applications, For example, Jung et al. [27]
(2008) presented an application of generalized FGM copula function in exchange markets
using directional dependence concept. Hlubinka and Kotz [23] (2010) used the generalized
FGM distribution and related copulas as bivariate models for the distribution of spheroidal
characteristics. Sheikhi and Tata [35] (2013) modeled the joint distribution of a linear combi-
nation of concomitants of os’s and linear combinations of their os’s as a unified skew-normal
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family assuming a multivariate normal distribution. Eryilmaz [17] (2016) has shown that the
concomitants are potentially useful in reliability modeling.

Eryilmaz [17] (2016) has analysed the FGM with exponential marginals from a relia-
bility point of view. We extend some of these results to the FGM(λ, γ : θ1, α1; θ2, α2).

Let Xi ∼ GE(θ1;α1) and Yi ∼ GE(θ2;α2) denote respectively the lifetime of the i-th
component, and the utility of the i-th component during its lifetime, i = 1, ..., n. Total utility
of n components is defined by the rv

∑n
i=1 Yi. Moreover, the residual performance after the

first failure in the system is given by
∑n

i=1 Yi−Y[1:n]. Although the components are identical,
they may have different contribution/utility to the performance of the whole system since the
components may be located in different positions or they may be used by different operators.
The utility of the component is positively correlated with its lifetime. Such a dependence can
be modeled by FGM(λ, γ : θ1, α1; θ2, α2).

The residual performance after time t is defined by the process (cf. Eryilmaz [17], 2016)

S(t) =
n∑

i=N(t)+1

Y[i:n], t > 0,

where the process N(t) denotes the number of failures up to time t, i.e., P (N(t) = r) =(
n

r

)
F r

X(t) (1−FX(t))n−r, r = 0, 1, ..., n, with P (N(t) = 0) = 1. Clearly, knowing the mean
value of S(t) may help to an engineer at various stages such as design, and preventive main-
tenance. By using Proposition 1 of Eryilmaz [17] (2016) and after some algebra, we can show
that

E
(
S(t)

)
=

n

θ2

[
B(α2)

(
1−FX(t)

)
+ λD(2α2)

(
FX(t)−FU1(t)

)
+ γD(3α2)

(
FU1(t)−FU2(t)

)]
,

where U1 ∼ GE(θ1; 2α1) and U2 ∼ GE(θ1; 3α1).

On the other hand, it is useful to know about the mean residual performance of the
system when at a specific time there are exactly m working components. For this purpose, we
consider the conditional mean residual performance defined by ψm(t) = E(S(t) = j|M(t) =
n−N(t) = m), where M(t) is the number of working components at time t. Now, using
Theorem 1 of Eryilmaz [17] (2016), we get after some algebra

ψm(t) =
m

n

E
(
S(t)

)
1− FX(t)

=
m

θ2

[
B(α2) + λD(2α2)

FX(t)− FU1(t)
1− FX(t)

+ γD(3α2)
FU1(t)− FU2(t)

1− FX(t)

]
.

By using applying L’Hospital’s rule, we get

lim
t→∞

ψm(t) =
m

θ2

[
B(α2) + λD(2α2) + γD(3α2)

]
= lim

t→∞
E(Y |X = t)

(E(Y |X = t) is given by (2.3)).

Furthermore, we can consider the random time until the total output of the system
first falls below the critical level k. Clearly, the waiting time until the total output first
falls below k is of special importance in the analysis. The corresponding time is defined
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by the rv T (k) = inf{t : S(t) < k}. Since this waiting time corresponds to one of the failure
time of the components, the two events {T (k) = Xr:n} and {S(Xr−1:n) ≥ k and S(Xr:n) < k}
are equivalent, where the rv S(Xr:n) =

∑n
i=r+1 Y[i:n] defines the residual performance after

the r-th failure in the system (cf. Eryilmaz [17], 2016). For a system consisting of n = 3
components, using Proposition 3 of Eryilmaz [17], 2016), we get

P
(
T (k) =X2:3

)
=

∫ ∞

0
P

(
Y ?

1 +Y ?
2 ≥ k

)
dFX1:3(x) −

∫ ∞

0
P

(
Y ?

1 ≥ k
)
dFX2:3(x),

P
(
T (k) =X3:3

)
=

∫ ∞

0
P

(
Y ?

1 ≥ k
)
dFX2:3(x),

and P (T (k) =X1:3) = 1− P (T (k) =X2:3)− P (T (k) =X3:3), where P (Y ? < y) = FY |X(y|x)
is defined by (2.2). Thus,

P
(
Y ?

1 +Y ?
2 > k

)
=

∫ ∞

0
P

(
Y ?

1 +Y ?
2 > k |Y ?

1 = y
)
dy

=
∫ k

0
P

(
Y ?

1 +Y ?
2 > k |Y ?

1 = y
)
dy +

∫ ∞

k
P

(
Y ?

1 +Y ?
2 > k |Y ?

1 = y
)
dy

=
∫ k

0

(
1− P

(
Y ?

2 ≤ k−y
))
fY ?

1
(y) dy + 1

− FY (k)
[
1− λFX(x)F̄Y (k)− γF 2

X(x)FY (k)F̄Y (k)
]
.

By using the binomial theorem, the above integration can be easily explicitly evaluated.
However, Eryilmaz [17] (2016) presented a simple Monte-Carlo simulation algorithm to com-
pute the probability P (T (k) =Xr:n) for general bivariate df FX,Y .

6. CONCLUDING REMARKS

While introducing the iterated FGM distribution by Huang and Kotz [25] (1984), and
thereby showed that the maximum correlation is higher than was previously known. More-
over, Huang and Kotz [25] (1984) showed that just one single iteration can result in tripling
the covariance for certain marginals. Other than this a systematic study (by Huang and Kotz
[25], 1984) of the properties of this promising distribution and its application does not appear
to have been discussed in literature. The present paper is an attempt in this direction. Some
new distributional properties of concomitants of os’s of the iterated FGM based on the GE df
were presented in Section 2. Moreover, several new useful recurrence relations between single
and product moments of concomitants were established. Finally, by relying of the results
of Section 2, we gave an application of this model in reliability theory. Besides this appli-
cation we reviewed some various applications for concomitants and the FGM distribution.
Most probably, the utilization of the iterated FGM distribution instead FGM distribution for
studying these applications will give more accurate results.
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