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Abstract:

• In this paper, we study a semiparametric additive beta regression model using a parameterization
based on the mean and a dispersion parameter. This model is useful for situations where the
response variable is continuous and restricted to the unit interval, in addition to being related to
other variables through a semiparametric regression structure. First, we formulate the model and
then estimation of its parameters is discussed. A back-fitting algorithm is derived to attain the
maximum penalized likelihood estimates by using natural cubic smoothing splines. We provide
closed-form expressions for the score function, Fisher information matrix and its inverse. Local
influence methods are derived as diagnostic tools. Finally, a practical illustration based on real
data is presented and discussed.
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1. INTRODUCTION

Since the beta regression (BR) model was introduced by Ferrari and Cribari-Neto [13]
(2004), it has become an excellent tool for modeling continuous data in the unit interval.
This is mainly because of the flexibility of its probability density function (PDF), which can
cover a wide range of shapes (symmetric, asymmetric, unimodal and bimodal) depending on
different values of its parameters. In addition, the beta distribution can be parameterized in
terms of its mean; see more details in Cribari-Neto and Zeileis [5] (2010), Figueroa-Zuñiga
et al. [16] (2013), Zhao et al. [39] (2014), Queiroz da-Silva and Migon [30] (2016) and Huerta
et al. [21] (2018).

Inclusion of nonparametric functions enhances the modeling flexibility for accommo-
dating nonlinear effects of covariates. Semiparametric models have been successfully used
to describe nonlinear components. Semiparametric additive beta regression (SABR) models
emerge as a useful tool to describe situations where the response variable is continuous,
restricted to the unit interval and related to covariates through a semiparametric regression
structure (Zhu and Lee [11], 2003).

Note that parameter estimation in BR models, and consequently in SABR models,
can be influenced by outlying observations. For this reason, diagnostic is a fundamental
stage in the modeling of data. Diagnostic techniques used in a regression model can be
divided into global influence (elimination of cases) and local influence. The main idea of
the local influence technique, proposed by Cook [4] (1986), is to evaluate the sensitivity of
the parameter estimators when small perturbations are introduced in the assumptions of
the model or in the data (for example, in the response and covariates). This technique has
the advantage, with respect to elimination of cases, that does not needs to calculate the
parameters estimates for each case eliminated. The following works are related to the local
influence technique: Zhu and Lee [40] (2003) considered it in generalized linear mixed models;
Zhu et al. [41] (2003) and Ibacache-Pulgar and Paula [22] (2011) provided local influence
measures to evaluate the sensitivity of the maximum penalized likelihood (MPL) estimates in
normal and Student-t partially linear models, respectively; Osorio et al. [28] (2007) derived it
in elliptical linear models for longitudinal data; Cao and Lin [3] (2011) applied it to elliptical
linear mixed models with first-order autoregressive errors; Ibacache-Pulgar et al. [24, 23]
(2012, 2013) analyzed it in elliptical semiparametric mixed and symmetric semiparametric
additive models, respectively; Uribe-Opazo et al. [36] (2012) and Garcia-Papani et al. [17]
(2018) used it to evaluate sensitivity in spatial models; Zhang et al. [38] (2015) and Ibacache-
Pulgar and Reyes [25] (2018) developed it for normal and elliptical partially varying-coefficient
models, respectively; Emami [8] (2017) utilized it in Liu penalized least squares estimators;
Marchant et al. [27] (2016) considered it in multivariate regression models; Ferreira and Paula
[15] (2017) extended it for different perturbation schemes considering a skew-normal partially
linear model; Leao et al. [26] (2018) derived it in cure rate models with frailties; Cysneiros
et al. [6] (2019) implemented it in Cobb–Douglas type models; and Tapia et al. [33, 34]
(2019a, b) applied it to mixed effects logistic and longitudinal count regression models. In the
case of BR models, Espinheria et al. [9, 10] (2008a, b) derived the local influence technique
under different perturbation schemes; Ferrari [12] (2011) derived it in BR models with varying
dispersion; and Rocha and Simas [31] (2011) applied it to a general class of the BR models.
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Note that the SABR model is a particular case of the GAMLSSS models (Stasinopoulos and
Rigby [32], 2007). To the best of our knowledge, local influence diagnostics in SABR models
have been no analyzed to the date. Therefore, the aim of this paper is to study the parameters
estimation and to apply the approach of local influence in the SABR model.

This paper is organized as follows. In Section 2, the SABR model is presented and
a penalized log-likelihood function is considered for the parameters estimation. In this sec-
tion, we present a weighted back-fitting algorithm to obtain MPL estimates and parame-
ters smoothing selection. Section 3 discusses and derives the local influence curvatures and
Section 4 illustrates the proposed methodology with a real data set. Finally, in Section 5
some concluding remarks are mentioned.

2. THE SEMIPARAMETRIC ADDITIVE BETA REGRESSION MODEL

2.1. Formulation

Let Y1, ..., Yn be independent random variables following a beta distribution, where
each Yi has a PDF given by

fY (yi;µ, φ) =
Γ(φ)

Γ(µiφ) Γ
(
[1− µi]φ

) yµiφ−1
i [1− yi][1−µi]φ−1, i = 1, ..., n,(2.1)

with 0 < yi < 1, 0 < µi < 1 and φ > 0. Then, the mean of Yi can be written as

g(µi) = x>i β,(2.2)

where g(·) is a strictly monotonic and twice differentiable link function that maps (0, 1)
into real numbers set; β = (β1, ..., βp)> is a vector of unknown regression parameters; and
xi = (xi1, ..., xip)> is a vector of observed covariates (p < n).

The SABR models are often used in research related to longitudinal, clustered and
spatial sampling schemes. The mean of this model can be obtained from (2.2) as

g(µi) = x>i β + f1(t1i) + ···+ fs(tsi),(2.3)

or alternatively as g(µi) = x>i β + n>
1i

f1 + ··· + n>
si

fs, g(·), β = (β1, ..., βp)>, and xi =
(xi1, ..., xip)> are such as in (2.2), but now we add the nonparametric structure by fk’s,
which are unknown smooth arbitrary functions on covariates tk’s, for k = 1, ..., s; where n>

ki

denotes the i-th row of the incidence matrix Nk whose (i, l)-th element corresponds to the
indicator function I(tki

= t0kl
), with t0kl

, for l = 1, ..., rk, denoting the distinct and ordered val-
ues of the covariate tk and fk = (fk(tk1), ..., fk(tkrk

))>. There are several possible choices for
the link function g(·). For instance, one can use the logit specification g(µ) = log{µ/(1−µ)},
the probit function g(µ) = Φ−1(µ), where Φ(·) is the standard normal cumulative distribu-
tion function, the complementary log-log link g(µ) = log{− log(1− µ)}, and the log-log link
g(µ) = − log{− log(µ)}, among others. A particularly useful link function is the logit link, in
which case we write

µi =
exp
[
x>i β +

∑s
k=1 n>

ki
fk
]

1 + exp
[
x>i β +

∑s
k=1 n>

ki
fk
] .
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Since the functions fk’s belong to the infinite dimensional space and are considered parameters
with respect to the expected value of Yi, some restricted subspace should be defined for
the nonparametric functions to ensure identifiability of the parameters associated with the
model. Therefore, we assume that the function fk belongs to the Sobolev function space
(Adams and Fournier [1], 2003) defined as W(2)

2 = {fk : fk, f
(1)
k abs. cont., f (2)

k ∈L2[ak, bk]},
where f

(2)
k (tk) = ∂2/∂t2kfk(tk), with t0k ∈ [ak, bk]. Then, the log-likelihood function of the

model defined in (2.1) and (2.3) is given by

`(θ) =
n∑
i=1

`i(θ),(2.4)

where

`i(θ) = log
(
Γ(φ)

)
− log

(
Γ(µiφ)

)
− log

(
Γ([1−µi]φ)

)
+[µiφ−1] log(yi)+

{
[1−µi]φ−1

}
log[1−yi],

with µi defined in (2.2) and θ = (β>, f>1 , ..., f
>
s , φ)> ∈ Θ ⊆ Rp∗ , with p∗ = p+ r + 1 and r =∑s

k=1 rk. Incorporating a penalty function over each function fk, we have that the penalized
log-likelihood function can be expressed as

(2.5) `p(θ,α) = `(θ)−
s∑

k=1

αk
2

f>k Kk fk,

where α = (α1, ..., αs)> denotes an (s×1) vector of smoothing parameters and Kk is a (rk×rk)
nonnegative definite matrix that depends only on the knots t0kl

, for l = 1, ..., rk. Details
about the construction of this matrix can be found in Green and Silverman [18] (1994).
Note that direct maximization of the log-likelihood function, without imposing restrictions
on smooth functions, can generate problems of identifiability or over-fitting. To correct these
problems, it is suggested to incorporate a penalty term for each smooth function in the log-
likelihood function. Then, the MPL estimates are obtained by maximizing this function. As
the resulting estimation equations are non-linear, an iterative process is required to obtain
the parameter estimates. Therefore, in the analysis of local influence presented in Section 3,
the MPL estimate is replaced by an estimate obtained in the last iteration of the process,
after reaching convergence.

2.2. Estimation

In order to define the penalized score function, consider X being an (n×p) matrix whose
i-th row is x>i,Nk being an (n×rk) matrix which i-th row is n>

ki
, T = diag(1/g′(µ1), ...,1/g′(µn)),

y∗ = (y∗1, ..., y
∗
n)
>, µ∗ = (µ∗1, ..., µ

∗
n)
>, y∗i = log(yi/[1− yi]) and µ∗i = ψ(µiφ)− ψ[(1− µi)φ],

for i = 1, ..., n, with ψ(·) denoting the digamma function, this is, ψ(z) = d log Γ(z)/dz, for
z > 0. Then, assuming that (2.5) is regular with respect to β, f1, ..., fs and φ, the penalized
score function of θ is defined as

Up(θ) =
n∑
i=1

∂`pi
(θ,α)
∂θ

.
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After some algebraic manipulations we have in matrix form that

∂`p(θ,α)
∂β

= φX>T [y∗ − µ∗],

∂`p(θ,α)
∂ fk

= φN>
k T [y∗ − µ∗]− αkKk fk, k = 1, ..., s,

∂`p(θ,α)
∂φ

=
n∑
i=1

{
µi[y∗i − µ∗i ] + log(1− yi)− ψ

[
(1− µi)φ

]
+ ψ(φ)

}
.

2.3. Weighted back-fitting algorithm

To estimate θ by the MPL method, we have to solve the Up(θ) = 0. However, the
estimating equations are nonlinear and require an iterative method. For example, the deter-
mination of the MPL estimates θ̂ can be performed by using the Fisher scoring algorithm.
Let f0 = β and N0 = X, and consider for simplicity α and W fixed, with W defined in the
Appendix. Then, the Fisher scoring algorithm is given by (see Ibacache-Pulgar et al. [23],
2013) 

I S
(u)
0 N1 · · · S

(u)
0 Ns

S
(u)
1 N0 I · · · S

(u)
1 Ns

...
...

. . .
...

S
(u)
s N0 S

(u)
s N1 · · · I




f(u+1)
0

f(u+1)
1

...

f(u+1)
s

 =


S

(u)
0 z(u)

S
(u)
1 z(u)

...

S
(u)
s z(u)

 ,(2.6)

where z(u) = η + W−1T [y∗−µ∗]
∣∣
θ(u) with η = (g(µ1), ..., g(µn))> and g(·) as given in (2.3),

and S
(u)
k = Sk

∣∣
θ(u) , with

Sk =

 (N>
0 WN0)−1N>

0 W , k = 0,(
N>
k WNk + αkKk

)−1
N>
k W , k = 1, ..., s.

As it is known, the back-fitting algorithm is a simple iterative procedure used to fit a gen-
eralized additive model; see Hastie et al. [20] (2001). Then, in our case, the back-fitting
(Gauss–Seidel) iterations (Hastie and Tibshirani [19], 1990) that are used to solve the equa-
tions system (2.6) take the form

f(u+1)
k = S

(u)
k

[
z(u) −

s∑
l=0, l 6=k

Nl f
(u)
l

]
.(2.7)

Note that the system of equations given in (2.6) is consistent and the back-fitting algorithm
given in (2.7) converges to a solution for any starting values if the weight matrix involved
is symmetric and defined positive; see Berhane and Tibshirani [2] (1998). In addition, we
have that this solution is unique under no concurvity in the data. In particular, for a model
with smooth terms f1 and f2 but without the constant terms, β, we have the following
considerations:

(i) If ‖S1S2‖ < 1, the estimating equations are consistent and have a unique solution,
and the final iterations from the back-fitting algorithm are independent of the
starting values and starting order.
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(ii) If ‖S1S2‖ = 1, this gives an indication of concurvity in the data (strict collinear-
ity), and therefore the back-fitting algorithm converges to one of the solutions
of estimating equations system, and the starting functions determine the final
solutions.

(iii) If the Sk smoothers are not centered (S>
k 1 = 1), typically ‖S1S2‖ = 1, we can

consider a centered smoother such that S>
k 1 = 0, with 1 denoting a (rk×1) vector

of ones, which is defined as

Sk =
(

I(rk,rk) −
11>

rk

)(
N>
k WNk + αkKk

)−1
N>
k W .

The MPL estimate of the scale parameter, φ̂, can be obtained by solving the following iterative
process (see Ibacache-Pulgar and Reyes [25], 2018):

φ(u+1) = φ(u) −E

{
∂2`p(θ,α)
∂φ∂φ

}−1
∂`p(θ,α)

∂φ

∣∣∣∣
θ(u)

.

Note that Equation (2.7), which involves a diagonal matrix denoted by W , leads to an
iterative weighted back-fitting solution. The convergence of the iterative process is guaranteed
by the diagonal structure of W . Note also that this matrix must be updated in each iteration
of the back-fitting iterative process and in each stage of the Fisher scoring algorithm.

Observe that the joint iterative procedure proposed to estimate the parameters of the
model is based on the Fisher scoring and back-fitting algorithms. First, note that Equation
(2.6) corresponds to the matrix equation of the Fisher scoring algorithm. Then, after algebraic
manipulations, the solutions to this system correspond precisely to the back-fitting iterations.
In addition, note also that the scale parameter is estimated by a Fisher scoring algorithm.
In summary, the Fisher scoring algorithm allows us to estimate the parameter vector associ-
ated with our model and the back-fitting algorithm to update the estimates of the parameters
associated with the parametric and nonparametric components of the model for each stage
of the Fisher score algorithm.

2.4. Approximate covariance matrix

The covariance matrix of θ̂ is obtained from the inverse of the expected information
matrix Ip defined in the Appendix. Therefore, the approximate covariance matrix of θ̂ is
given as Ĉov(θ̂) ≈ I−1

p

∣∣
θ̂
, where

I−1
p =

(
J −1

1 −I−1
11 I12J −1

2

−I22I21J −1
1 J −1

2

)
,

with J 1 = I11 − I12I−1
22 I21 and J 2 = I22 − I21I−1

11 I12. An approximate pointwise stan-
dard error band (SEBapprox) for fk(·), that allows us to assess how accurate the estimator
f̂k(·), can be defined as

SEBapprox

(
fk(t0l )

)
= f̂k(t0l )± 2

√
V̂ar
(
f̂k(t0l )

)
, l = 1, ..., r,

where Var(f̂k(tl)) is the l-th principal diagonal element of the corresponding block-diagonal
matrix from I−1

p .
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2.5. Smoothing parameters and degrees of freedom

The determination of the parameter vector α is a crucial aspect in the estimation
process. Different choice methods are available in the literature for this purpose. For example,
an alternative to select smoothing parameters under the SABR model is to consider the Akaike
information criterion — AIC — (see details in Ferreira et al. [14], 2012; Ventura et al. [37],
2019) defined by

AIC(α) = −2`p(θ̂,α) + 2
[
p+ 1 + df(α)

]
,

where `p(θ̂,α) denotes the penalized log-likelihood function available at θ̂ for a fixed α and
df(α) =

∑s
k=1 df(αk) denotes approximately the number of effective parameters involved in

modeling of the nonparametric effects. The idea is to minimize the function AIC(α) with
respect to α. Following Hastie and Tibshirani [19] (1990) and Eilers and Marx [7] (1996),
the degrees of freedom (DF) associated with the k-th smooth function are given by

df(αk) = tr
{
S̃k
}

=
rk∑
j=1

1
1 + αkφLj

, j = 1, ..., rk,

which measures the individual effect contribution of the k-th component, with S̃k = NkSk
and Sk defined previously, and Lj are the eigenvalues of the matrix Q

−1/2
Nk

Qαk
Q
−1/2
Nk

, with
QNk

= N>
k WNk and Qαk

= αkKk. Note that the AIC is based on information theory and is
useful for selecting an appropriate model and smoothing parameters given data with adequate
sample size; see Ferreira et al. [14] (2012) and Ventura et al. [37] (2019).

3. LOCAL INFLUENCE DERIVATION

3.1. General context

In general, local influence analysis can be developed jointly for the entire parameter
vector. However, it is important to know the influence that the observations exert separately
on the estimates of the parametric components, nonparametric components and the disper-
sion parameter. Some works related to the application of the method of local influence in
semiparametric models have revealed empirical evidence that the observations that exert an
influence on the estimates of the parametric component are not necessarily influential on the
estimates of the non parametric component and viceversa.

To assess the influence of perturbations on the MPL estimates θ̂, we can consider the
likelihood displacement defined by LD(ω) = 2[`p(θ̂,α)− `p(θ̂ω,α)] ≥ 0, where θ̂ω is the MPL
estimates of θ for a perturbed model, whose perturbed penalized log-likelihood function is
denoted by `p(θ,α|ω), and ω = (ω1, ..., ωn)> is an n-dimensional vector of perturbations
restricted to some open subset Ω ∈ Rn. It is assumed that exists ω0 ∈ Ω, a vector of no
perturbation, such that `p(θ,α|ω0) = `p(θ,α). Cook [4] (1986) suggested to study the local
behavior of LD(ω) around ω0. The normal curvature at the arbitrary direction l, with
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‖l‖ = 1 is given by Cl(θ̂) = −2{l>∆>
p
῭−1
p ∆pl}, which is the objective function of the normal

curvature, where ῭
p is the penalized Hessian matrix of `p(θ,α) evaluated at θ̂, and ∆p is a

penalized perturbation matrix, with elements

∆p =
∂2`p(θ,αω)
∂θl∂ωj

∣∣∣∣
θ=bθ,ω=ω0

, l = 1, ..., p∗, j = 1, ..., n,

and `p(θ,α) being the penalized log-likelihood function corresponding to the model per-
turbed by ω. For the SABR model, the elements of ῭

p are given in the Appendix. We
consider the direction l = ei, called total local influence of the i-th individual, where ei is
an n-dimensional vector with a one at the i-th position and zeros at the remaining posi-
tions. In this case, the normal curvature takes the form Cei(θ) = 2| cii |, where cii is the i-th
principal diagonal element of the matrix C = ∆>

p
῭−1
p ∆p. The index plot of l may reveal

those observations that under small perturbations exert a notable influence on θ̂. In order
to have a curvature invariant under uniform change of scale, we consider the conformal nor-
mal curvature proposed by Poon and Poon [29] (1999). This normal curvature is defined as
B`(θ) = −[l>∆>

p
῭−1
p ∆pl]/[(tr(∆>

p
῭−1
p ∆p)2)1/2], and is characterized to allow for any unitary

direction l, with 0 ≤ B`(θ) ≤ 1. A suggestion is to consider, for example, the direction l = ei
and observing the index plot of Bei(θ). If our interest lies in studying the local influence on a
subvector of θ, denoted by θ1, the normal curvature for θ1 at the unitary direction l is given
by C`(θ̂1) = −2[l>∆>

p (῭−1
p −G22)∆pl], where

G22 =
(

0 0
0 ῭−1

p22

)
,

with ῭
p22

obtained from the partition of ῭
p according to the partition of θ. In this case, the

index plot of the eigenvector l = lmax, which corresponds to the largest absolute eigenvalue
of the matrix G = ∆>

p (L̈−1
p −G22)∆p, may indicate the points with large influence on θ̂1.

3.2. Cases-weight perturbation

Let ω = (ω1, ..., ωn)> be a weight vector. In this case, perturbed penalized log-likelihood
function is given by

`p(θ,α|ω) = `(θ|ω)−
s∑

k=1

αk
2

f>k Kk fk,

where `(θ|ω) =
∑n

i=1 ωi`i(θ), with 0 ≤ ωi ≤ 1 and ω0 = (1, ..., 1)>. Hence, the elements of
the penalized perturbation matrix are expressed as

∂2`p(θ,α|ω)
∂β∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂X>T̂ Ê,

∂2`p(θ,α|ω)
∂ fk ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂N>
k T̂ Ê, k = 1, ..., s,

∂2`p(θ,α|ω)
∂φ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= û>,

where Ê = diag(y∗i − µ̂∗i ), for i = 1, ..., n, and û = (û1, ..., ûn)>, with ui = µi[y∗i − µ∗i ] +
ln(1− yi)− ψ[(1− µi)φ] + ψ(φ).
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3.3. Response perturbation

Consider now an additive perturbation on the i-th response by making yiω = yi + ωi,
where ω = (ω1, ..., ωn)> is the vector of perturbations. Then, under the scheme of response
perturbation, the perturbed penalized log-likelihood function is constructed from (2.5) with
yi replaced by yiω and ω0 = (0, ..., 0)>. Hence, the elements of the penalized perturbation
matrix take the form

∂2`p(θ,α|ω)
∂β∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂X>T̂M ,

∂2`p(θ,α|ω)
∂ fk ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂N>
k T̂M , k = 1, ..., s,

∂2`p(θ,α|ω)
∂φ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= â>,

where M = diag1≤i≤n
(
mi

)
and a = (a1, ..., an)>, withmi = 1/[yi(1−yi)] and ai = −[yi−µi]/

[yi(1− yi)].

Note that the perturbation ω must be generated in the support [−y, 1− y] in order
to guarantee that the perturbed response variable retains the original distribution support.
It is important to mention that the space of ω depends on the type of perturbation that is
introduced in the response variable. In our case, we consider a perturbation of additive type,
but eventually we could consider a perturbation of the multiplicative type.

3.4. Continuous covariate perturbation

Consider now an additive perturbation on a continuous covariate, namely xidω, by
making xidω = xid + ωi, with ωi ∈ R. Then, under the scheme of covariate perturbation, the
perturbed penalized log-likelihood function is constructed from (2.5) with xid replaced by xidω,
µiω = g−1(ηiω) in the place of µi, for ηiω = x>iωβ + n>

1i
f1 + ···+ n>

si
fs, and ω0 = (0, ..., 0)>.

Hence, the elements of the penalized perturbation matrix assumes the form

∂2`p(θ,α|ω)
∂β∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= −φ̂β̂dX>Q̂ + φ̂P T̂ Ê,

∂2`p(θ,α|ω)
∂ fk ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= −φ̂β̂dN>Q̂ + φ̂P T̂ Ê, k = 1, ..., s,

∂2`p(θ,α|ω)
∂φ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= −β̂dĥ>T̂ ,

where P is a (p×n) matrix of zeros except for the p-th line, which contains ones, and
h = (h1, ..., hn)>, with hi = ci − (y∗i − µ∗i ) and ci as defined in the Appendix.
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3.5. Scale perturbation

Under scale parameter perturbation scheme, it is assumed that φiω= ω−1
i φ, with ωi > 0.

Then, the perturbed penalized log-likelihood function is constructed from (2.5) with φ re-
placed by φiω and ω0 = (1, ..., 1)>. Hence, the elements of the penalized perturbation matrix
take the form

∂2`pi
(θ,α|ω)

∂β∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂X>T̂ F̂ ,

∂2`pi
(θ,α|ω)

∂ fk ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂N>
k T̂ F̂ , k = 1, ..., s,

∂2`pi
(θ,α|ω)

∂φ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂d̂> − û>,

where F = diag1≤i≤n(Fi), d = (d1, ..., dn)>, u = (u1, ..., un)>, with ui = µi[y∗i −µ∗i ]+log(1−yi)
− ψ[(1− µi)φ] + ψ(φ), Fi = [ci − (y∗i − µ∗i )] and ci as defined in the Appendix.

4. EMPIRICAL ILLUSTRATION

4.1. Data and exploratory analysis

To illustrate our methodology, we consider the Australian athletes data set that has
been reported by Telford and Cunningham [35] (1991). The purpose of this study is to
investigate the relationships of hematological measures with various covariates, such as height
and mass, among others, for a sample of 202 elite Australian athletes who trained at the
Australian Institute of Sport. The objective of the present data analysis is to model the
percent body fat through the SABR model. We consider as covariates: (i) sum of skin folds
(SSF), (ii) hemaglobin concentration (HG), and (iii) lean body mass (LBM), whereas the
percent body fat (BFAT) is the response variable. Figure 1 contains the scatter plots between
the response and each covariate. From Figure 1 (a), we observe that a linear relationship
between BFAT and SSF, while that Figures 1 (b)–(c) show no evidence of linear relationships
between BFAT and the covariates HG and LBM.
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Figure 1: Scatter plots of BFAT versus SSF (a), HG (b) and LBM (c) with Australian athletes data.
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4.2. Model fitting

First, we consider a BR model given by

g(µi) = β0 + β1SSFi + β2HGi + β3LBMi, i = 1, ..., 202,

with logit link function. The maximum likelihood estimates and the corresponding ap-
proximate estimated standard error (in parenthesis) are reported in Table 1, with AIC =
−1031.317. Note that under this model, we are assuming that the relationship of each co-
variate with the response is linear. However, as previously commented, we observe in Figures
1(b) and 1(c) that the relationships between BFAT and the covariates HG and LBM seem to
be nonlinear, which suggests a SABR model with link function

g(µi) = β0 + β1SSFi + f1(HGi) + f2(LBMi).

The MPL estimates and the corresponding approximate estimated standard error associated
with the parametric component and scale parameter are also reported in Table 1.

Table 1: Maximum likelihood and MPL estimates and the standard error (in parenthesis)
for indicated model with Australian athletes data.

Parameters
Model

β0 β1 β2 β3 φ

BR −2.020 (0.1591) 0.012 (0.0003) −0.027 (0.0122) −0.005 (0.0012) 307.180 (30.5601)
SABR −2.788 (0.0420) 0.012 (0.0004) — — 361.768 (35.9955)

Comparing the results reported in Table 1, we note a similarity between the estimates
for β̂0 and β̂1 under both models, but the estimated standard error of β̂0 is smaller under
the SABR model. However, the estimate φ̂ under the SABR model is larger (including
its estimated standard error) than that obtained for the BR model. The estimates of the
smoothing parameters α1 and α2, as well as the corresponding DFs, are reported in Table 2.

Table 2: Smoothing components fitted under the SABR model
to Australian athletes data.

Smoothing function

f1(HG) f2(LBM)

DF(αk) 4.662 4.988
αk 0.0014 0.9012

Figures 2 (a)–(b) show the estimated smooth functions under the SABR model and the
corresponding approximate SEB (dashed curves). The estimated smooth functions are com-
puted using the smoothing parameters obtained by the AIC as described in Subsection 2.5.
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The graphical plots suggest nonlinear tendencies for HG and LBM. Then, we find a value of
AIC(α1, α2) = −1055.466, which is less than that obtained under the BR model, indicating
a superiority of the model that includes a nonparametric additive component.
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Figure 2: Plots estimated smooth functions f1 (a) and f2 (b) for the Australian athletes data
and their approximate pointwise SEB denoted by the dashed lines.

4.3. Diagnostics

In this illustration, we consider residual proposed by Ferrari and Cribari-Neto [13]
(2004) given by

ri =
yi − µ̂i√
V̂ar(yi)

, i = 1, ..., 202,

where V̂ar(yi) = µ̂i[1− µ̂i]/[1+ φ̂] and µ̂i = g−1(x>i β̂ +n>
1i

f̂1 +n>
2i

f̂2), with β̂, f̂k, for k = 1, 2,
and φ̂ denoting the MPL estimates.

Figure 3 displays the graphical plot of the standardized ordinary residuals against the
indices of the observations. We note that the residual are randomly scattered around zero
and that observations #51, #53 and #56 are indicated as atypical cases. Note that a residual
analysis permits us to detect deviations from the model assumptions, but also atypical cases.
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Figure 3: Plot standardized ordinary residuals versus the index of the observation.
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An atypical case can be potentially influential or not, but from a scope of global influence.
However, potentially influential cases detected by the displacement of likelihood functions
are evaluated from a scope of local influence. In any case, this potential influence (global
or local) must be studied by means of relative changes (RC) when the potentially influential
case is removed from the full data set. This allows us to know whether inferential changes
are generated or not.

Now, in order to identify potentially influential observations under the fitted model
to Australian athletes data, we present index plots of Bi = Bei(λ), for λ = β, fk, φ, with
k = 1, 2. Figure 4 shows the index plot of Bi for the case-weight perturbation scheme under
the fitted model. Looking at Figure 4, note that observations #51, #53 and #56 are more
influential on the MPL estimate λ̂.
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Figure 4: Index plots of Bi for assessing local influence on β̂ (a), f̂1 (b), f̂2 (c) and φ̂ (d)
considering case-weight perturbation under model fitted to Australian athletes data.

Figure 5 presents the index plots of Bi, considering the response perturbation scheme
under the fitted model. In Figure 5, observe that observations #160, #166, and #181 are
more influential on MPL estimate λ̂ = f̂1, whereas none observation is pointed out on the
estimates remaining. The index plots of Bi for the scale parameter and covariate perturbation
are omitted because the results are similar to those obtained under case-weight perturbation
scheme. Note that observations #51, #53 and #56 are also detected as atypical according
to the residual analysis.
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Figure 5: Index plots of Bi for assessing local influence on β̂ (a), f̂1 (b), f̂2 (c) and φ̂ (d)
considering response perturbation under the fitted model to Australian athletes data.

We now investigate the impact on the model inference when the observations detected
as potentially influential in the diagnostic analysis are removed. Table 3 presents the RCs
in % of the MPL estimates of βj , for j = 1, 2, and φ after removing from the data set
the pointed out observations in the local influence graphical plots under the SABR model.

Table 3: RC (in %) on the MPL estimate of βj and φ under the SABR model
fitted to Australian athletes data after removing the indicated cases.

Parameters Relative changes
Removed case

β0 β1 φ RCβ0 RCβ1 RCφ

51 −2.8004 0.0126 374.3139 0.45 5.00 3.46
53 −2.8216 0.0129 393.3938 1.21 7.50 8.74
56 −2.8230 0.0130 395.2551 1.25 8.31 9.29

51–53 −2.8007 0.0126 372.6768 0.45 5.01 3.02
51–56 −2.8031 0.0127 374.6170 0.54 5.83 3.55
53–56 −2.8245 0.0130 394.0092 1.31 8.32 8.91

51–53–56 −2.8013 0.0126 371.6199 0.47 5.02 2.72
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The RCs of each estimated parameter are defined as RCψ = |(ψ̂− ψ̂(I))/ψ̂|× 100%, where ψ̂(I)

denotes the MPL estimate of ψ, with ψ = βj , φ, after the corresponding observation(s) are
removed according to the set I. Note that, although some RC are large, inferential changes
are not detected. It is interesting to notice from Table 3 the coherence with the diagnostic
graphical plots shown previously. For instance, elimination of the observations #51, #53
and #56, detected as potentially influential observations by local influence technique, leads
to significant changes in the MPL estimate, mainly in β̂1 and φ̂. This indicates the need of a
diagnostic examination.

5. CONCLUDING REMARKS

In this paper, we have proposed a methodology of inference and diagnostics for the
semiparametric additive beta regression model. Specifically, we have derived a weighted back-
fitting iterative process to estimate the parameters of the additive component of the model,
that is, of regression coefficients and smooth functions. We have estimated the approximate
variance-covariance matrix of maximum penalized likelihood estimates based on the Fisher
information matrix obtained from the penalized log-likelihood function. Moreover, we have
derived diagnostics for this model using the local influence technique to evaluate the sensitivity
of the maximum penalized likelihood estimates by using several perturbation schemes in the
model and data. Finally, we have performed a statistical modeling with real data set. The
study has provided evidences on the advantage of incorporating a semiparametric additive
term in those situations where there are covariates that contribute nonlinearly to the model.
Thus, we recommend semiparametric additive beta regression models as an option to fit
continuous data sets in the unit interval when covariates are present and that contribute
nonlinearly to the model. The computational codes used in the illustration are available
under request from the authors.
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A. APPENDIX

Hessian matrix

Let ῭
p (p∗×p∗) be the Hessian matrix with the (j∗, `∗)-element given by ∂2`p(θ,α)/∂θj∗ θ̀ ∗ ,

for j∗, `∗ = 1, ..., p∗. After some algebraic manipulations, we find

∂2`p(θ,α)
∂β∂β> = −φX>QX,

∂2`p(θ,α)
∂ fk ∂ f>k′

=

−φN>
k QNk − αkKk, k = k′,

−φN>
k QNk′ , k 6= k′,

∂2`p(θ,α)
∂β∂ f>k

= −φX>QNk, k = 1, ..., s,

where Q = diag1≤i≤n
(
qi
)
, with

qi =

[
φ
{
ψ′(µiφ) + ψ′

[
(1− µi)φ

]}
+ [y∗i − µ∗i ]

g′′(µi)
g′(µi)

]
1

[g′(µi)]2
.

In addition, we have that the second derivative de `p(θ,α) with respect to φ, and β and fk,
respectively, can be written by

∂2`p(θ,α)
∂β∂φ

=
2
φ2

X>b,

∂2`p(θ,α)
∂ fk ∂φ

=
2
φ2

N>
k b, k = 1, ..., s,

where b = (b1, ..., bn)>, with

bi =
{

[y∗i − µ∗i ]− φ
∂µ∗i
∂φ

}
1

[g′(µi)]
.

Furthermore, the second derivative de `p(θ,α) with respect to φ is given by

∂2`p(θ,α)
∂φ2

= trace(D),

where D = diag1≤i≤n
(
di
)
, with

di = −
[
ψ′[µiφ]µ2

i + ψ′
[
(1− µi)φ

]
[1− µi]2 − ψ′(φ)

]
.

Expected information matrix

In general, by calculating the expectation of the matrix −῭
p, we obtain the (p∗×p∗)

penalized expected information matrix denoted by

Ip = −E

(
∂2`p(θ,α)
∂θ∂θ>

)
.
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Let W = blockdiag1≤i≤n
(
wi
)

and c = (c1, ..., cn)>, with

wi = φ
[
ψ′[µiφ] + ψ′[1− µi]φ

] 1
[g′(µi)]2

, ci = φ
[
ψ′[µiφ]µi − ψ′

[
(1− µi)φ

]
[1− µi]

]
.

After some algebraic manipulations, we find

Ip =
(

I11 I12

I21 I22

)
,

where

I11 =


φX>WX φX>WN1 · · · φX>WNs

φN>
1 WX φN>

1 WN1 + λ1K1 · · · φN>
1 WNs

...
...

. . .
...

φN>
s WX φN>

s WN1 · · · φN>
s WNs + λsKs

 ,

I12 =


X>Tc
N>

1 Tc
...

N>
1 Tc

 = I>
21,

and I22 = trace(D). Note that the parameters β, fk, with k = 1, ..., n, and φ are not orthog-
onal, in contrast to what is verified in the class of generalized linear regression models.

Iterative process

The solution of the estimating equation system given in (2.6) to obtain the MPL es-
timate of θ may be attained by iterating between a weighted back-fitting algorithm with
weight matrix W and a Fisher score algorithm to obtain maximum likelihood estimation of
the parameter φ, which is equivalent to the following iterative process:

(i) Initialize:

(a) By fitting a beta regression model considering f(0)
0 = β(0) and N0 = X.

(b) By getting a starting value for φ by using the fitted values from (a).

(c) From the current value θ(0) =
(
f>0 , f

(0)>

1 , ..., f(0)
>

s , φ(0)
)> by obtaining the

weight matrix W (0) and T (0), with w(0)
i = wi

∣∣
θ(0) , and then by getting

z(0) = η(0) + W (0)−1
T (0)

(
y∗ − µ∗(0)),

S
(0)
0 =

(
N>

0 W (0)N0

)−1
N>

0 W (0),

S
(0)
k =

(
N>
k W (0)Nk + αkKk

)−1
N>
k W (0), k = 1, ..., s.
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(ii) Iterate repeatedly by cycling between the equations

f(u+1)
0 = S

(u)
0

(
z(u) −

s∑
l=1

Nl f
(u)
l

)
,

f(u+1)
1 = S

(u)
1

(
z(u) −N0 f(u+1)

0 −
s∑
l=2

Nl f
(u)
l

)
,

...

f(u+1)
s = S(u)

s

(
z(u) −

s−1∑
l=0

Nl f
(u+1)
l

)
,

for u = 0, 1, ... . Repeat step (ii) replacing f(u)j by f(u+1)
j until convergence crite-

rion ∆u

(
f(u+1)
j , f(u)j

)
=
∑s

j=0

∥∥f(u+1)
j − f(u)j

∥∥/∑s
j=0

∥∥f(u)j

∥∥ is reached for a thresh-
old value; see Hastie and Tibshirani [19] (1990).

(iii) For current values f(u+1)
j , with j = 0, 1, ..., s, obtain φ(u+1) by using

φ(u+1) = φ(u) −E

{
∂2`p(θ,α)
∂φ∂φ

}−1
∂`p(θ,α)

∂φ

∣∣∣∣
θ(u)

.

(iv) Iterate between steps (ii) and (iii) by replacing f(0)
j , with j = 0, 1, ..., s, and φ(0)

by f(u+1)
j and φ(u+1), respectively, until reaching convergence.
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