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Abstract:
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distribution via modified maximum likelihood (MML) methodology for both complete and censored
samples. The MML estimators for the location and scale parameters of the Maxwell distribution
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1. INTRODUCTION

The Maxwell distribution is widely used in many problems especially in Physics.
For example, the speed of molecules in thermal equilibrium is modelled by using the Maxwell
distribution (Maxwell [21]; Mathai and Princy [20]). Also note that there is a lot of literature
about the Maxwell distribution in Statistics. It was firstly used by Tyagi and Battacharya
[31, 32] for modeling the lifetime data. They used Bayes method to estimate the scale pa-
rameter of the distribution and obtain the minimum variance unbiased estimator for the
reliability function. Dey and Maiti [10] obtained the Bayes estimators of the scale param-
eter of the Maxwell distribution under various different loss functions. Kazmi et al. [16]
obtained the maximum likelihood (ML) estimators of the location and scale parameters of
the mixture of the Maxwell distribution under Type-I censoring. Al-Baldawi [3] compared
the efficiency of the ML estimator of the scale parameter of the Maxwell distribution with
the corresponding Bayes estimator. Hossain and Huerta [13] used the Maxwell distribution
in analysing the different data sets taken from the literature. Li [19] obtained the estimators
of the scale parameter of the Maxwell distribution using the Minimax, Bayesian and ML
methods. Fan [12] considered the Bayesian method to estimate the loss and risk function for
the scale parameter of the Maxwell distribution. Dey et al. [9] obtained estimators of the
location and scale parameters of the Maxwell distribution via different estimation methods.
See also Arslan et al. [5], where the modified maximum likelihood (MML) estimators for the
location and scale parameters of the Maxwell distribution are obtained.

The ML methodology is used to obtain the estimators of the parameters of the Maxwell
distribution in most of the studies. However, the ML estimators of the location and scale
parameters of the Maxwell distribution cannot be obtained explicitly. Therefore, iterative
methods should be used. It is known that using iterative methods causes various problems
such as (i) non-convergence of iterations, (ii) convergence to multiple roots, and (iii) con-
vergence to the wrong root; see e.g. Barnett [7], Puthenpura and Sinha [23], and Vaughan
[33].

The motivation of this study is to obtain the explicit estimators for the location and
scale parameters of the Maxwell distribution. For this purpose, Tiku’s [28, 29] MML method-
ology is used. The MML estimators are formulated for both complete and censored samples.
An extensive Monte-Carlo (MC) simulation study is carried out to compare performances
of the MML estimators with the well-known and widely-used ML, least squares (LS) and
method of moments (MoM) estimators.

The rest of the paper is organized as follows. Maxwell distribution is reviewed in Section 2.
Section 3 is reserved to the parameter estimation methodologies. The results of the MC
simulation study are presented in Section 4. The ML and MML estimators are given under
Type-II censoring scheme in Section 5. In Section 6, two real data sets are analyzed to show
the implementation of the proposed methodology. The paper ends with some concluding
remarks.
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2. MAXWELL DISTRIBUTION

Traditionally, the probability density function (pdf) of the Maxwell distribution is given
by

(2.1) f(v) = 4π

(
m

π2kT

)3/2

v2 exp

{
−

(
m

2kT
v2

)}
, v > 0,

where m is the molecular weight in kg/mol, T is the temperature in Kelvin, k is the constant
J/K and v denotes the speed of the molecule. If the reparametrization σ =

√
2kT/m is used

and a location parameter µ is added into the Equation (2.1), then the resulting distribution
is called as two-parameter Maxwell distribution.

The pdf and the corresponding cumulative distribution function (cdf) of the two-
parameter Maxwell distribution are given by

f(x;µ, σ) =
4

σΓ(1/2)

(
x− µ

σ

)2

exp

{
−

(
x− µ

σ

)2
}

, µ ≤ x ≤ ∞, σ ≥ 0,(2.2)

and

F (x;µ, σ) =
1

Γ(3/2)
Γ

[(
x− µ

σ

)2

, 3/2

]
,(2.3)

respectively. Here, µ is the location parameter and σ is the scale parameter. Also, Γ(·)
and Γ(·, ·) stand for the gamma and incomplete gamma functions, respectively. See Figure 1
where the plots of the Maxwell distribution are illustrated for certain values of σ.
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Figure 1: Plots of the Maxwell distribution for certain values of σ.

In the rest of the paper, we use the term Maxwell distribution instead of two-parameter
Maxwell distribution for the sake of simplicity.
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3. PARAMETER ESTIMATION UNDER COMPLETE SAMPLES

In this section, brief descriptions of the ML, MML, MoM and LS methodologies are
provided.

3.1. The ML method

Let X1, X2, ..., Xn be a random sample from the Maxwell distribution. Then, the log-
likelihood (lnL) function can be written as follows:

(3.1) lnL = n lnC − n lnσ + 2
n∑

i=1

ln zi −
n∑

i=1

z2
i ,

where C = 4
/
Γ(1/2) and zi = (xi−µ)

/
σ (i = 1, 2, ..., n). The ML estimates of the parameters

µ and σ are obtained as solutions of the following likelihood equations:

∂ lnL

∂µ
= − 2

σ

n∑
i=1

g(zi) +
2
σ

n∑
i=1

zi = 0(3.2)

and

∂ lnL

∂σ
= −n

σ
− 2

σ

n∑
i=1

zi g(zi) +
2
σ

n∑
i=1

z2
i = 0,(3.3)

where g(z) = z−1. Equations (3.2) and (3.3) cannot be solved explicitly since they contain
the nonlinear g(z) = z−1 function. In this study a Newton–Raphson (NR) method is utilized
to obtain the solutions of Equations (3.2) and (3.3) simultaneously. The Hessian matrix,

H =


∂2 lnL

∂µ2

∂2 lnL

∂µ∂σ

∂2 lnL

∂σ∂µ

∂2 lnL

∂σ2

 ,(3.4)

is used in the NR method. The elements of the Hessian matrix and Fisher Information matrix
(I) are provided in the Appendix for the Maxwell distribution.

The following equations are used in the NR method to solve the likelihood equations
in (3.2) and (3.3):

∂2 lnL

∂µ2
(µk, σk)

∂2 lnL

∂µ∂σ
(µk, σk)

∂2 lnL

∂σ∂µ
(µk, σk)

∂2 lnL

∂σ2
(µk, σk)


[
Ξµk

Ξσk

]
=


∂ lnL

∂µ
(µk, σk)

∂ lnL

∂σ
(µk, σk)

 ,(3.5)

where k denotes the iteration number and Ξ stands for the incremental values. See also
Arslan and Senoglu [6], where a similar algorithm scheme has already been used for the
one-way ANOVA model under Jones and Faddy’s skew t distribution.
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3.2. The MML method

As mentioned in the Subsection 3.1, the ML estimators of the location and scale param-
eters cannot be obtained in closed forms because of the nonlinear function g(·) in Equations
(3.2) and (3.3). We here propose to use non-iterative MML methodology developed by Tiku
[28, 29] to avoid the computational difficulties and/or problems mentioned in Section 1.
The MML methodology also allows us to obtain closed forms of the estimators. There are
three steps to obtain the MML estimators of the location parameter µ and scale parameter σ.
They are given step by step as follows:

Step 1. Standardized observations zi = (xi − µ)/σ (i = 1, 2, ..., n) are ordered in as-
cending way, i.e. z(1) ≤ z(2) ≤ ··· ≤ z(n).

Step 2. The ordered observations are incorporated into likelihood equations, since

complete sums are invariant to ordering, i.e.
n∑

i=1

h(zi) =
n∑

i=1

h(z(i)), where

h(·) is any function.

Step 3. g(z(i)) is linearized around the expected values of the standardized ordered
observations, i.e. t(i) = E(z(i)), by using the first two terms of Taylor series
expansion:

(3.6) g
(
z(i)

) ∼= αi − βiz(i), i = 1, ..., n.

After incorporating Equation (3.6) into the likelihood equations, we obtain the following
modified likelihood equations:

∂ lnL∗

∂µ
= − 2

σ

n∑
i=1

(
αi − βiz(i)

)
+

2
σ

n∑
i=1

z(i) = 0(3.7)

and

∂ lnL∗

∂σ
= −n

σ
− 2

σ

n∑
i=1

z(i)

(
αi − βiz(i)

)
+

2
σ

n∑
i=1

z2
(i) = 0.(3.8)

The solutions of these equations are the following MML estimators:

(3.9) µ̂MML = x̄w −
∆
m

σ̂MML and σ̂MML =
−B +

√
B2 + 4nC

2
√

n(n− 1)
,

where

x̄w =
n∑

i=1

δix(i)

/
m, m =

n∑
i=1

δi, δi = βi + 1, βi = t−2
(i) , ∆ =

n∑
i=1

αi,

αi = 2t−1
(i) , B = 2

n∑
i=1

αi

(
x(i) − x̄w

)
and C = 2

n∑
i=1

δi

(
x(i) − x̄w

)2
.

Here, x(i) represents the i-th ordered observation. It should be noted that t(i) = E(z(i)) can
be obtained approximately using the following equality:

t(i) = F−1

(
i

n + 1

)
, i = 1, 2, ..., n,
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where F−1(·) is the quantile function of the standard Maxwell distribution. The use of these
approximate values does not affect the efficiency of the MML estimators adversely. It should
also be noticed that the denominator of σ̂MML is 2n, however it is replaced by 2

√
n (n− 1)

for bias correction.

The MML estimators are derived in closed form since they are expressed as functions
of the sample observations. Furthermore, they are asymptotically equivalent to the ML
estimators. The MML estimators are also almost fully efficient, i.e. they have minimum
variance bounds (MVBs). They also have very small bias or no bias even for small sample
sizes. It should also be mentioned that the MML methodology gives small weight(s) to the
outlying observation(s) in the direction of the longer tail(s). Therefore, the MML estimators
are robust to the outlier(s), see e.g. Acitas et al. [1] and references given therein for further
information. See also Figure 2 where plots of the weights for the Maxwell distribution, i.e.
δi = t−2

(i) + 1, are illustrated.
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Figure 2: Plot of the weights for the Maxwell distribution, n = 100.

The asymptotic distributions of the µ̂MML and σ̂MML are provided in Lemma 3.1 and
Lemma 3.2.

Lemma 3.1. µ̂MML is normally distributed with mean µ and variance σ2/m for n→∞.

Proof: The proof is done based on the following fact: The likelihood equation given
in (3.2) and modified likelihood equation given in (3.7) are asymptotically equivalent.
Furthermore, ∂ lnL∗/∂µ can be written as

(3.10)
∂ lnL∗

∂µ
=

m

σ2

[(
x̄w −

∆
m

σ̂MML

)
− µ

]
=

m

σ2

(
µ̂MML − µ

)
;

see Kendall and Stuart [17]. µ̂MML is normally distributed since E(∂r lnL∗/∂µr) = 0 for all
r ≥ 3; see Bartlett [8].
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Lemma 3.2. Conditional on µ known, nσ̂2
MML/σ2 is asymptotically chi-square dis-

tributed with n degrees of freedom.

Proof: This follows from the fact that B0/
√

nC0
∼= 0 and thus,

(3.11)
∂ lnL∗

∂σ
=

n

σ3

(
C0

n
− σ2

)
,

where B0 and C0 are the same as B and C, respectively. See for example Tiku [30] and
Senoglu [25] for further information.

3.3. The MoM method

MoM estimators of the location and scale parameters of the Maxwell distribution are
obtained by equating the first two theoretical moments to the first two sample moments.
Therefore, MoM estimators of µ and σ are given by

(3.12) µ̂MoM = x̄− 2√
π

σ̂MoM and σ̂MoM = s

√
2π

3π − 8
,

respectively. Here,

x̄ =
1
n

n∑
i=1

xi and s =

√√√√ 1
n

n∑
i=1

(xi − x̄)2.

It is clear that MoM estimators are functions of the sample observations as in MML estima-
tors.

3.4. The LS method

LS estimators of µ and σ are obtained by minimizing the following function

(3.13)
n∑

i=1

(
F

(
x(i)

)
− i

n + 1

)2

, i = 1, 2, ..., n,

with respect to the parameters of interest (Swain et al. [27]). Here, F (·) is the cdf of the
Maxwell distribution. It is clear that explicit forms of the LS estimators are not available.
Therefore, we use the “fminunc” function which exists in the optimization toolbox of MAT-
LAB2017a to obtain the LS estimates of µ and σ.

4. SIMULATION STUDY

In this section, the results of the simulation study in which the performances of the
MML estimators are compared with the ML, MoM and LS estimators are presented.
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In the simulation setup, we use the sample sizes n = 10 (small), n = 20, n = 50 (mod-
erate) and n = 120 (large). Without loss of generality, the location parameter µ and scale
parameter σ are taken to be 0 and 1, respectively. All the simulations are carried out for
b100,000/nc MC runs where b·c denotes the floor function (also known as the greatest integer
function) that takes integer part of the number. We use the MATLAB2017a software for all
computations. In the ML estimation procedure, the initial values for µ̂ and σ̂ are taken as
µ0 = µ̂MML and σ0 = σ̂MML, respectively.

It should be noted that estimates of µ may sometimes be greater than the smallest order
statistics x(1) due to the computational problems. These estimators are referred as imper-
missible estimators (Dubey [11]). The problem is extinguished by reducing the impermissible
estimators as x(1) − 10−4, see for example Kantar and Senoglu [15].

The performances of the ML, MML, MoM and LS estimators are compared by using
bias, variance, mean square error (MSE) and deficiency (Def) criteria. Def is a natural
measure of the joint efficiency of the estimators µ̂ and σ̂ and is defined by

(4.1) Def(µ̂, σ̂) = MSE(µ̂) + MSE(σ̂);

see for example Akgul et al. [2]. The results of the simulation study are tabulated in Table 1.
Following conclusions are drawn from Table 1.

Table 1: Simulated bias, variance, MSE and Def values of the ML,
MML, MoM and LS estimators (µ = 0 and σ = 1).

Sample µ̂ σ̂

size
Estimators

Bias Variance MSE Bias Variance MSE
Def

n = 10

ML −0.108 0.050 0.062 0.094 0.042 0.051 0.113
MML −0.095 0.052 0.061 0.060 0.046 0.050 0.111
MoM −0.030 0.066 0.067 0.028 0.054 0.055 0.122
LS 0.254 0.127 0.191 −0.338 0.131 0.245 0.436

n = 20

ML −0.061 0.025 0.028 0.051 0.022 0.025 0.053
MML −0.061 0.026 0.029 0.038 0.023 0.025 0.054
MoM −0.018 0.033 0.034 0.016 0.028 0.028 0.061
LS 0.193 0.058 0.096 −0.278 0.059 0.137 0.232

n = 50

ML −0.030 0.009 0.010 0.022 0.009 0.009 0.019
MML −0.035 0.009 0.011 0.019 0.009 0.009 0.020
MoM −0.010 0.013 0.013 0.005 0.011 0.011 0.023
LS 0.153 0.021 0.044 −0.241 0.020 0.078 0.122

n = 120

ML −0.011 0.003 0.004 0.009 0.003 0.003 0.007
MML −0.015 0.004 0.004 0.009 0.003 0.003 0.007
MoM 0.000 0.005 0.005 0.000 0.004 0.004 0.009
LS 0.148 0.008 0.030 −0.232 0.008 0.062 0.092

Concerning the bias values, and for all sample sizes, the MoM estimator and LS esti-
mator of µ have the smallest and the largest bias value, respectively. It can also be deduced
from Table 1 that the bias values of the ML and MML estimators are very similar to each
other as expected. The ML, MML and MoM estimators overestimate the location parameter
µ while the LS estimator underestimates.
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It is clear from Table 1 that the MoM estimator of σ has superiority over the ML,
MML and LS estimators in terms of the bias criterion. For the small sample size, it is seen
the MML estimator performs better than the ML estimator. However, the ML and MML
estimators have more or less the same bias values for moderate and large sample sizes.
The LS estimator of the σ has the biggest bias value among the all estimators.

Overall, all the estimators have negligible bias values except the LS estimators in what
concerns the bias values of µ̂ and σ̂.

Concerning the MSE values, the ML and MML estimator of µ have almost same the
MSE values for all sample sizes. The LS estimator of the location parameter µ has the worst
performance in terms of MSE among all other estimators.

Similar results are also obtained for the scale parameter σ. For example, the LS esti-
mator does not perform well. The ML and MML estimators outperform the MoM estimator
in most of the cases, however the MoM estimator has a considerably good performance.
Table 1 also reveals that the ML and MML estimators are the most efficient.

To sum up, the ML and MML estimators are preferable among the other estimators
according to the MSE criterion. The MSE values for µ̂ and σ̂ decrease when the sample size n

increases, as the theory says.

Concerning the Def values, the ML estimator has the smallest Def values among the
other estimators for all cases. The Def values of the MML estimator are very close to those
of the ML estimator except n = 10. The LS estimator shows the worst performance since it
has the biggest Def values.

Finally, the ML and MML estimators are seen to be more efficient than the MoM and
LS estimators. It is also clear that the performance of the ML and MML estimators are more
or less the same as expected. As it is indicated previously, obtaining the ML estimates of
the parameters requires iterative methods and this may cause some problems. On the other
hand, the MML estimators are easily obtained from the sample observations without any
iterative computations. As a result, the MML estimators may be preferable if our focus is to
avoid the computational complexities besides having efficient estimators.

Robustness of the estimators

In this part of the simulation study, robustness properties of the ML, MML, MoM and
LS estimators are investigated when there are plausible deviations from an assumed model.
For this purpose, we assume that the underlying true model is Maxwell(µ=0, σ=1) and
consider the following alternative models:

Outlier Model: (n− r) Maxwell(0, 1) + r Maxwell(0, 2); r = b0.5 + 0.1nc.

Mixture Model: 0.80 Maxwell(0, 1) + 0.20 Maxwell(0, 2).

Contamination Model: 0.90 Maxwell(0, 1) + 0.10 Weibull(1, 0.8046).
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Here, Weibull(1, 0.8046) denotes the Weibull distribution with scale parameter σ = 1 and
shape parameter p = 0.8046. Simulated mean, variance, MSE and Def values for the ML,
MML, MoM and LS estimators of µ and σ under the alternative models are given in Table 2.

Table 2: Simulated mean, variance, MSE and Def values of the ML,
MML, MoM and LS estimators under the alternative models.

Sample µ̂ σ̂

size
Estimators

Mean Variance MSE Mean Variance MSE
Def

Model I: Outlier Model

n = 10

ML −0.032 0.090 0.091 1.142 0.108 0.128 0.220
MML −0.065 0.102 0.107 1.197 0.126 0.165 0.271
MoM −0.215 0.185 0.231 1.289 0.188 0.271 0.502
LS −0.215 0.178 0.326 1.535 0.198 0.484 0.810

n = 20

ML −0.083 0.045 0.052 1.191 0.055 0.092 0.144
MML −0.097 0.049 0.059 1.219 0.061 0.109 0.168
MoM −0.242 0.099 0.158 1.315 0.099 0.198 0.356
LS −0.242 0.077 0.173 1.459 0.084 0.295 0.468

n = 50

ML −0.113 0.019 0.032 1.219 0.023 0.071 0.103
MML −0.116 0.019 0.033 1.231 0.025 0.078 0.111
MoM −0.264 0.045 0.115 1.334 0.044 0.156 0.271
LS −0.264 0.029 0.094 1.402 0.030 0.191 0.285

Model II: Mixture Model

n = 10

ML −0.101 0.114 0.124 1.307 0.179 0.274 0.398
MML −0.142 0.129 0.150 1.372 0.206 0.344 0.494
MoM −0.321 0.231 0.334 1.483 0.288 0.521 0.856
LS −0.321 0.354 0.705 1.841 0.483 1.191 1.896

n = 20

ML −0.175 0.058 0.089 1.380 0.094 0.239 0.328
MML −0.194 0.062 0.100 1.415 0.102 0.274 0.374
MoM −0.383 0.126 0.272 1.541 0.154 0.446 0.719
LS −0.383 0.143 0.370 1.715 0.198 0.710 1.081

n = 50

ML −0.208 0.023 0.066 1.408 0.037 0.204 0.270
MML −0.211 0.023 0.068 1.422 0.038 0.216 0.284
MoM −0.410 0.050 0.218 1.561 0.060 0.375 0.593
LS −0.410 0.048 0.212 1.632 0.066 0.465 0.677

Model III: Contamination Model

n = 10

ML −0.096 0.167 0.177 1.095 0.217 0.226 0.402
MML −0.114 0.184 0.197 1.138 0.250 0.269 0.466
MoM −0.221 0.351 0.400 1.197 0.377 0.416 0.816
LS −0.221 0.194 0.363 1.478 0.199 0.428 0.791

n = 20

ML −0.167 0.103 0.131 1.157 0.135 0.160 0.291
MML −0.167 0.109 0.137 1.177 0.151 0.182 0.319
MoM −0.266 0.255 0.326 1.236 0.261 0.317 0.643
LS −0.266 0.078 0.193 1.400 0.076 0.236 0.429

n = 50

ML −0.215 0.049 0.096 1.207 0.069 0.111 0.207
MML −0.209 0.051 0.094 1.214 0.075 0.121 0.215
MoM −0.313 0.162 0.259 1.282 0.158 0.237 0.496
LS −0.313 0.029 0.113 1.354 0.028 0.154 0.266

It can be seen from the Table 2 that the ML and MML estimators outperform the MoM
and LS estimators according to the MSE and Def criteria. This result implies that the ML and
MML estimators of parameters µ and σ are more robust to the data anomalies given above.
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5. PARAMETER ESTIMATION UNDER THE TYPE-II CENSORING

Analysis of censored samples are usually encountered in different fields of science such
as agriculture, social sciences, medicine, and so on (Senoglu and Tiku [26]). Therefore, we
consider a Type-II censoring scheme. Type-II censoring arises if a predetermined number of
lower and upper observations are censored (Senoglu and Tiku [26]; Arslan and Senoglu [6]).

According to the simulation results related with the robustness issue in Section 4,
we concentrated on the ML and MML estimators of µ and σ under censoring. Let

z(r1) ≤ z(r1+1) ≤ ··· ≤ z(n−r2−1) ≤ z(n−r2)

be a Type-II censored samples where r1 and r2, with r1, r2 ≥ 0 and 0 < r1 + r2 < n, stand
for the number of censored observations from the below and above, respectively. Then, the
likelihood (L) function of the Maxwell distribution under the Type-II censored sample can
be written as

(5.1) L =
[
1− F

(
z(r1+1)

)]r1
n−r2∏

i=r1+1

f
(
z(i)

)[
F

(
z(n−r2)

)]r2

,

where f(·) and F (·) are the pdf and cdf of the Maxwell distribution given in Equations (2.2)
and (2.3), respectively.

5.1. The ML method

The ML estimates of the parameters µ and σ under the Type-II censored samples are
obtained by solving the following likelihood equations:

∂ lnL

∂µ
= − r1

σ
g1(zr1+1) −

2
σ

n−r2∑
i=r1+1

g2(zi) +
2
σ

n−r2∑
i=r1+1

zi +
r2

σ
g3(zn−r2) = 0(5.2)

and
∂ lnL

∂σ
= − n− r1 − r2

σ
− r1

σ
zr1+1 g1(zr1+1) −

2
σ

n−r2∑
i=r1+1

zig2(zi) +
2
σ

n−r2∑
i=r1+1

z2
i

+
r2

σ
zn−r2 g3(zn−r2) = 0,

(5.3)

where g1(zr1+1) =
f(zr1+1)
F (zr1+1)

, g2(zi) = z−1
i and g3(zn−r2) =

f(zn−r2)
1− F (zn−r2)

.

Similar to the complete sample case, the likelihood equations in (5.2) and (5.3) are
nonlinear functions of the unknown parameters. Therefore, they cannot be obtained explicitly.
The NR algorithm is also used here to solve the likelihood equations simultaneously.
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5.2. The MML method

The MML estimators for the location µ and scale σ parameters of the Maxwell distri-
bution are obtained under the Type-II censored samples by using an algorithm similar to the
one given in Subsection 3.2.

Nonlinear functions are linearized around the expected values of the standardized or-
dered observations , i.e. t(i) = E(z(i)), by using the first two terms of a Taylor series expansion:

g1

(
z(r1+1)

) ∼= α1r1+1 − β1r1+1z(r1+1), g2

(
z(i)

) ∼= α2i − β2iz(i),

g3

(
z(n−r2)

) ∼= α3n−r2 − β3n−r2 z(n−r2), i = r1 + 1, ..., n− r2.
(5.4)

After replacing nonlinear functions with their linearized versions in the likelihood equa-
tions, the following MML estimators are obtained:

(5.5) µ̂MML = x̄w −
∆
m

σ̂MML and σ̂MML =
−B +

√
B2 + 4AC

2
√

A(A− 1)
,

where

m = r1β1r1+1 + 2
n−r2∑

i=r1+1

(β2i + 1) − r2β3n−r2 , A = n− r1 − r2,

x̄w =

r1β1r1+1x(r1+1) + 2
n−r2∑

i=r1+1

(β2i + 1) x(i) − r2β3n−r2 xn−r2

m
,

∆ = r1α1r1+1 + 2
n−r2∑

i=r1+1

(α2i) − r2α3n−r2 ,

B = r1β1r1+1

(
x(r1+1) − x̄w

)2 + 2
n−r2∑

i=r1+1

(β2i + 1)
(
x(i) − x̄w

)2 − r2β3n−r2(xn−r2 − x̄w)2,

C = r1α1r1+1

(
x(r1+1) − x̄w

)2 + 2
n−r2∑

i=r1+1

(α2i + 1)
(
x(i) − x̄w

)2 − r2α3n−r2(xn−r2 − x̄w)2,

α1r1+1 = g1

(
t(r1+1)

)
+ β1r1+1 t(r1+1), β1r1+1 =

f ′(t(r1+1)

)
F

(
t(r1+1)

) − [
f
(
t(r1+1)

)
F

(
t(r1+1)

)]2

,

α2i = 2t−1
(i) , β2i = t−2

(i) ,

α3n−r2 = g3

(
t(n−r2)

)
+ β3n−r2 t(n−r2), β3n−r2 =

f ′(t(n−r2)

)
1− F

(
t(n−r2)

) − [
f
(
t(n−r2)

)
1− F

(
t(n−r2)

)]2

.

It should be noticed that the denominator 2A is replaced by 2
√

A (A− 1) in σ̂MML as
a bias correction.

We conducted a MC simulation study for this case and obtained similar results with
those obtained in the complete sample case. Therefore, we would not give the results here
for the sake of brevity. However, they can be provided upon request from the authors.



Parameter Estimation for the Two-Parameter Maxwell Distribution... 249

6. APPLICATIONS

In this section, two real data sets are modelled by using the Maxwell distribution.
The unknown parameters are estimated via the ML and MML methods since the MoM and
LS methods fail to exhibit a good performance (see Section 4).

6.1. Example 1: Breaking stress of carbon fibres data

In this subsection, observations on the breaking stress of carbon fibres (in Gba) are used
to show the implementation of the proposed methodology. The data set is given in Table 3.
Further information about the data set can be found in Nicolas and Padgett [22]. See also
Qian [24] and Al-Sobhi and Soliman [4], where the breaking stress of carbon fibres data
are modelled using the exponentiated exponential (EE) and exponentiated Weibull (EW)
distributions.

Table 3: Observations on breaking stress of carbon fibres, n = 100.

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25 1.36 1.41 1.47 1.57
1.57 1.59 1.59 1.61 1.61 1.69 1.69 1.71 1.73 1.8 1.84 1.84 1.87 1.89
1.92 2.00 2.03 2.03 2.05 2.12 2.17 2.17 2.17 2.35 2.38 2.41 2.43 2.48
2.48 2.5 2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.76 2.77 2.79 2.81
2.81 2.82 2.83 2.85 2.87 2.88 2.93 2.95 2.96 2.97 2.97 3.09 3.11 3.11
3.15 3.15 3.19 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39 3.51
3.56 3.6 3.65 3.68 3.68 3.68 3.70 3.75 4.2 4.38 4.42 4.7 4.9 4.91
5.08 5.56

In this study, Maxwell distribution is considered for modelling purposes. The mod-
elling performance of the Maxwell distribution is compared with the performances of EE and
EW distributions using well-known criteria such as Akaike Information Criterion (AIC) and
corrected AIC (AICc). The smaller value of the AIC and AICc imply better fitting.

The parameter estimates along with lnL, AIC and AICc values are given in Table 4.
The results show that the Maxwell distribution performs a better modeling performance than
its rivals in terms of considered criteria.

Table 4: Parameter estimates for breaking stress of carbon fibres data.

µ̂ σ̂ ln L AIC AICc

Maxwell Distribution
ML 0.1402 2.1869 −141.6621 287.3242 287.4479
MML 0.1816 2.1636 −141.7226 287.4452 287.5689

α̂ML β̂ML σ̂ML ln L AIC AICc

Exponentiated Weibull 1.3169 2.4091 2.6824 −141.3320 288.6640 288.9140
Exponentiated Exponential 7.7883 — 0.9870 −146.1823 296.3646 296.4883
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It is also clear from the lnL values given in Table 4 that the ML estimates are prefer-
able over the MML estimates. However, the ML estimates are obtained via the iterative
method. On the other hand, the MML estimates are obtained easily since they are formu-
lated explicitly. Furthermore, ln L values based on the ML and MML estimates do not differ
so much. Therefore, the MML estimates can also be preferable for this data. It should be
also noted that the Maxwell distribution provides better modelling performance than the
EW distribution in spite of the fact that it has a lower number of parameters.

6.2. Example 2: Windmill data

The windmill data, in Table 5, was first considered by Joglekar et al. [14]. See also
Kotb and Raqab [18], where the modified Weibull distribution is used for modelling this data
set.

Table 5: Observations on windmill data, n = 25.

0.123 0.5 0.558 0.653 1.057 1.137 1.144 1.194 1.501 1.562
1.582 1.737 1.800 1.822 1.866 1.930 2.088 2.112 2.166 2.179
2.236 2.294 2.303 2.310 2.386

In this study, the Maxwell distribution is used to model the windmill data. Its mod-
elling performance is also compared with the modelling performance of the modified Weibull
distribution. The results are given in Table 6.

Table 6: Parameter estimates for windmill data.

µ̂ σ̂ ln L AIC AICc

Maxwell Distribution
ML −0.1640 1.5393 −25.9676 55.9351 56.4806
MML −0.0905 1.5103 −26.0949 56.1898 56.7353

α̂ML β̂ML θ̂ML ln L AIC AICc

Modified Weibull 0.2249 6.4644 0.0080 −25.7511 57.5022 58.6451

It can be concluded from Table 6 that the Maxwell distribution is preferable over the
modified Weibull distribution according to the AIC and AICc criteria. The MML estimates
can also be used as an alternative to the ML estimates here since the results are similar.
Furthermore, the MML estimators have closed forms unlike the ML estimators.
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7. CONCLUSION

In this study, estimation of the location and scale parameters of the Maxwell dis-
tribution is considered. Since the ML estimators cannot be obtained explicitly, the MML
estimators having closed forms are derived. The MML estimators are asymptotically equiv-
alent to the ML estimators. They are also fully efficient. We conducted a MC simulation
study to compare the performance of the MML estimators with the ML, MoM and LS esti-
mators. Simulation results show that the performance of the ML estimators is better than
the other estimators. Furthermore, the MML and ML estimators have more or less the same
performance. However, the ML estimators are obtained based on iterative methods. It is well
known that using iterative methods causes some problems as mentioned in the text. On the
other hand, the MML estimators are easily obtained from the sample observations without
any iterative computations. It is concluded that the MML estimators may be preferable as
an alternative to the ML estimators, if our focus is to avoid the computational complexities
whilst high efficiency.

A. APPENDIX

Elements of the Hessian matrix

∂2 lnL

∂µ2
= −2n

σ2
− 2

σ2

n∑
i=1

(
xi − µ

σ

)−2

,

∂2 lnL

∂µ∂σ
= − 4

σ2

n∑
i=1

(
xi − µ

σ

)
,

∂2 lnL

∂σ2
=

3n

σ2
− 6

σ2

n∑
i=1

(
xi − µ

σ

)2

.

Fisher Information (I) matrix of the Maxwell distribution

I =


−E

(
∂2 lnL

∂µ2

)
−E

(
∂2 lnL

∂µ∂σ

)
−E

(
∂2 lnL

∂σ∂µ

)
−E

(
∂2 lnL

∂σ2

)
 =

n

σ2


6

8√
π

8√
π

6

 .
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