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son distribution. We use control charts, which is the main tool of Statistical Process Control, to
identify an out of control situation in the occurrence of air plane accidents. We propose the use of
Shewhart and Exponentially Weighted Moving Average control charts and we apply them in real
data from the Hellenic Air Force.
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1. INTRODUCTION

Air plane accidents are of major importance since they involve most of the times both
human and economic losses. The last decades great effort has been imposed in the safety
regulations in all the different aspects of commercial aviation. For example in a series of seven
years (2010–2016) there was not any human loss in a crash on a United States-certificated
scheduled airline operating anywhere according to official data.

In the case of military air forces things are a bit different. The continuous competitive-
ness of the air forces leads to the occurrence of air accidents. The accidents of air forces are not
in the numbers of the previous decades but still they are a fact. However, in both commercial
and military aviation few efforts have been made to monitor the air plane accidents.

Statistical Quality Control (SQC) is a well known collection of methods aiming to
continuously improve the quality of a product or a process. Rockwell ([7]) initiated the use of
statistical quality control techniques in the field of safety management. Specifically, Rockwell
([7]) dealt with the problem of safety performance measurement. The main tools of SQC
methods that are used to monitor critical parameters of a process are the control charts.

The main objective of this paper is to demonstrate how we can use control charts to
monitor the air plane accidents. To be more specific, in Section 2 we present the main points
of the theory of control charts. We outline the Shewhart and Exponentially Weighted Moving
Average (EWMA) Control Charts and the way they are used to monitor a process. In Section 3,
we apply the techniques presented in Section 2 in real accident data from the Hellenic Air
Force (HAF). Finally, in Section 4 we give some conclusions and guidelines for future research.

2. CONTROL CHARTS

One of the main objectives of a product or a process is to continuously improve its
quality. This goal, in statistical terms, may be expressed as variability reduction. SQC is
a popular collection of methods targeting at this purpose and control charts are known to
be the main tools to detect shifts in a process. The most popular control charts are the
Shewhart charts, the Cumulative Sum (CUSUM) charts and the Exponentially Weighted
Moving Average charts (EWMA). Shewhart charts are used to detect large shifts in a process
whereas CUSUM and EWMA charts have very good results for small to moderate shifts.
Since the CUSUM and EWMA control charts have similar performance, in this paper we
confine ourselves to the EWMA chart.

A control chart is a graphical representation of one or more characteristics of the process
under investigation. It is the main tool to identify special causes of variability in a process.
On the horizontal axis we plot the number of the sample drawn from the process or the time
that the sample was inspected. On the vertical axis we plot the value of the characteris-
tic or the characteristics measured for each sample or for the time of the horizontal axis.
A straight line connects the successive points indicating the level of the characteristic in time
or in successive samples. There are also three usually straight lines that stand for the upper
control limit (UCL), the center line (CL) and the lower control limit (LCL).
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We deduce that a process operates under control when the line connecting the sequence
of points does not cross UCL or LCL. When a point plots outside these limits we conclude
that the process is in an out-of-control state and corrective actions must be taken in order to
remove the assignable cause that led to this problem.

In the literature, two distinct phases of control charting practice have been discussed
(see, e.g. Woodall [12]). In Phase I, charts are used for retrospectively testing whether the
process was in-control when the first subgroups were being drawn. In this phase, the charts
are used as aids to the practitioner, in bringing a process into a state of statistical control.
Once this is accomplished, the control chart is used to define what is meant by statistical
control.

In Phase II, control charts are used to test if the process remains in-control when real
time subgroups are drawn. In this phase, the control charts are used to monitor the process
for a possible shift from the in-control state. The in-control characterization in this phase,
is most of the times determined from the values of the process parameters. These values are
usually estimated from historical data known to be under control. Usually these data are the
ones from Phase I.

The design of a control chart must take into account two contradicting aims. The
first one of them refers to the in-control state. In such a case, the control chart should
signal (false alarm) as slow as possible. On the other hand, when a process is out-of-control
the control chart must signal as soon as possible. The most popular measure to evaluate
the performance of a chart concerning the previous two objectives is the average run length
(ARL), which is based on the run length (RL) distribution. The number of observations
when we plot individual data, or the number of samples when we plot data in subgroups,
required for a control chart to signal is a run length (an observation of the RL distribution).
The mean of the RL distribution is the ARL, and it can be defined as the average number of
observations for a control chart to signal.

Since we deal with a parametric case of control charts we need to assume a distribution
for the studied phenomenon. A detailed investigation is given in the following subsection.

2.1. Distribution of air plane accidents

A well known distribution used to model the occurrence of events in time is the Poisson
distribution (Kjelln and Albrechtsen [2]). Assume that accidents occur at random points in
time, let c be the average number of accidents per unit of time for example one year. Let
x be the number of accidents occurring during t time periods. Then, the probability that
x accidents will occur during t time periods is equal to

P
(
X= x

)
=

(ct)x

x!
e−ct, x = 0, 1, 2, ...

The control charts that will be presented in the following subsections assume that the
air plane accidents are well modelled using the Poisson distribution.
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2.2. The c chart

Assume that we want to monitor the number of accidents in a fixed time period and
let c > 0 denote the parameter of the Poisson distribution for simplicity. If the true value of
the parameter c is known, the Phase II three sigma control limits will be defined as:

UCL = c + 3
√

c,

CL = c,

LCL = c− 3
√

c.

If the computed value of LCL is less than zero, then we set LCL = 0.

When the true value of the parameter c is not known, then the average number of
accidents in a preliminary sample (c̄), is applied as an estimate of c. In this case, the Phase I
control limits are defined as follows:

UCL = c̄ + 3
√

c̄,

CL = c̄,

LCL = c̄− 3
√

c̄.

The Phase I control limits are considered as trial control limits and the preliminary
samples should be examined for lack of control. If there are observations that cross the
estimated control limits due to common causes, usually these observations are excluded from
the sample and the control limits are recalculated in the usual Phase I analysis (Montgomery
[4]).

For the c chart, the probability of type I error (α) is calculated as

α = P
(
X /∈ [LCL,UCL]

∣∣ X ∼ P (c)
)

= 1−
[
Fx(UCL)− Fx(LCL)

]
= 1 −

bUCLc∑
x=dLCLe

e−ccx

x!

and the in-control ARL (ARL0) is given by the formula

ARL0 =
1
α

.

The probability of type II error (β) is

β = P
(
LCL≤X ≤ UCL

∣∣ X ∼ P (c∗)
)

= Fx(UCL)− Fx(LCL)

=
bUCLc∑

x=dLCLe

e−c∗c∗
x

x!
,
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where c∗ is the average number of defects displayed in an inspection unit in an out of control
process, dLCLe denotes the smaller integer greater than or equal to LCL and bUCLc denotes
the largest integer less than or equal to UCL. The out-of-control ARL (ARL1) is given by
the formula

ARL1 =
1

1− β
.

We must note here that the same chart presented here can be used to monitor the number
of nonconformities or defects in an inspection unit from a repetitive production process.

2.3. The ARL-unbiased c chart

The c chart with 3−σ control limits has LCL > 0 if c > 9. In case c ≤ 9, then LCL < 0
and as we mentioned before, we set it equal to zero and a downward shift of the process mean
cannot be detected. Denoting as c0 the in-control mean of the process, Paulino et al. [5]
proved that for c0 > 9, the ARL of a c chart with 3− σ control limits takes its maximum
value at the point

δ∗(c0) =
[

UCL!
(LCL− 1)!

] 1
UCL−LCL+1

− c0.

This means that the maximum of the ARL appears at a point δ∗(c0) below the zero, i.e. some
ARL1 values that correspond to downward shifts are larger than the ARL0. In this case, we
say that the chart is ARL-biased.

Many authors, such as Wetherill and Brown [11] and Ryan [8] used quantile-based
control limits. In this case LCL and UCL are the largest and smallest non-negative integers,
that satisfy

P
(
X < LCL

∣∣ c = c0

)
≤ αLCL,

P
(
X > UCL

∣∣ c = c0

)
≤ αUCL,

where αLCL + αUCL = α. Using the quantile-based control limits, we have ARL0 = 1/α.

Paulino et al. [5] proposed a c chart, named as ARL-unbiased c chart, with quantile-
based control limits, that triggers a signal with probability one if the sample number of defects
is below LCL or above UCL and probabilities γLCL and γUCL if the sample number of defects
is equal to LCL and UCL, respectively. The values of probabilities γLCL and γUCL can be
obtained by solving a system of linear equations. The solution of this system gives

γLCL =
de− bf

ad− bc
,(2.1)

γUCL =
af − ce

ad− bc
,(2.2)

where a = P
(
X= LCL | c = c0

)
, b = P

(
X= UCL | c = c0

)
, c = LCL · P

(
X= LCL | c = c0

)
,

d = UCL · P
(
X= UCL | c = c0

)
, e = α − 1 +

∑UCL
x=LCL P

(
X= x | c = c0

)
and f = α · c0 − c0

+
∑UCL

x=LCL x · P
(
X= x | c = c0

)
. A signal is triggered by the ARL-unbiased c chart with
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probability

ξ(c∗) =

[
1 −

UCL∑
x=LCL

P
(
X= x

∣∣ c = c∗
)]

+ γLCL · P
(
X= LCL

∣∣ c = c∗
)

+ γUCL · P
(
X= UCL

∣∣ c = c∗
)

and ARL1 = 1/ξ(c∗).

Note that for the c chart, the probability of triggering a signal is equal to ξ(c∗) =
1−

∑UCL
x=LCL P

(
X= x | c = c∗

)
.

2.4. The classical Poisson EWMA control chart (PEWMA)

The EWMA control chart was introduced by Roberts [6]. Borror et al. [1] modified this
chart to monitor Poisson data. Let X1, X2, ... be i.i.d. Poisson random variables with mean c.
When the process is in control, c = c0. The EWMA statistics can be written as follows:

(2.3) Zt = λXt + (1− λ)Zt−1, t = 1, 2, 3...

where λ is the smoothing factor, 0 < λ ≤ 1 and the starting value is the process target, that
is Z0 = c0. Values of λ in the interval 0.05 ≤ λ ≤ 0.25 work well in practice, with λ = 0.05,
λ = 0.10 and λ = 0.20 being popular choices (Montgomery [4]).

Using the abovementioned definition the mean value of Zt is

E(Zt) = c0

and the variance of Zt is

Var(Zt) =
λ

2− λ

[
1− (1− λ)2t

]
c0.

Therefore, the PEWMA control chart is constructed by plotting Zt versus the sample
number i or time t. The center line and control limits for the PEWMA control chart are as
follows:

UCL = c0 + L

√
λ

2− λ

[
1− (1− λ)2t

]
c0,(2.4)

CL = c0,

LCL = c0 − L

√
λ

2− λ

[
1− (1− λ)2t

]
c0,(2.5)

where L > 0 can be chosen to provide a specified ARL0. If the computed value of LCL is
less than zero, then we set LCL = 0. For large values of t, the control limits converge to the
following values:

UCL = c0 + L

√
λ

2− λ
c0,

CL = c0,

LCL = c0 − L

√
λ

2− λ
c0.
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It is recommended to use the exact control limits of Equations (2.4) and (2.5) for small
values of λ (Montgomery [4]).

The PEWMA control chart raises an out-of-control signal when Zt < LCL or Zt > UCL.
The ARL values of the PEWMA chart are usually smaller than the ARLs for the c chart and
the lower limit for the PEWMA is usually positive so that downward shifts in the process
mean can be detected (Borror et al. [1]).

2.5. The Poisson Double EWMA (PDEWMA) control chart

Shamma and Shamma [9] developed a double EWMA control chart in an effort to
increase the sensitivity of the EWMA control chart to detect small shifts and drifts in a
process. Zhang et al. [13] extended the idea of the PEWMA chart to create the PDEWMA.

Let X1, X2, ... be i.i.d. Poisson random variables with mean c. When the process is in
control, c = c0. The PDEWMA statistic can be written as follows:

Yt = λXt + (1− λ)Yt−1,

Zt = λYt + (1− λ)Zt−1,(2.6)

where λ is the smoothing factor, 0 < λ ≤ 1 and Y0 = Z0 = c0. It can be proved that the mean
value of Zt is

E(Zt) = c0

and the variance of Zt is

Var(Zt) = λ4 1 + (1− λ)2 − (t + 1)2(1− λ)2t + (2t2 + 2t− 1)(1− λ)2t+2 − t2(1− λ)2t+4[
1− (1− λ)2

]3 c0.

The PDEWMA control chart is constructed by plotting Zt against t. The center line
and control limits for the PDEWMA control chart are as follows:

UCL = c0 + L
√

Var(Zt),(2.7)

CL = c0,

LCL = c0 − L
√

Var(Zt),(2.8)

where L > 0 can be chosen to provide a specified ARL0 and when the computed value of LCL
is less than zero, then we set LCL = 0. For large values of t, the control limits become (see
the Appendix A for more details)

UCL = c0 + L

√
λ(2− 2λ + λ2)

(2− λ)3
c0,

CL = c0,

LCL = c0 − L

√
λ(2− 2λ + λ2)

(2− λ)3
c0.
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A process is considered to be out of control if a plotted point lies above the UCL or
below the LCL.

Zhang et al. [13] concluded that for a PDEWMA chart a smaller value of λ makes
the chart more sensitive (with smaller out-of-control ARLs). Furthermore, the PDEWMA
chart gives out-of-control signals earlier than the classical PEWMA chart and in particular,
the PDEWMA chart is more sensitive to small downward process mean changes than the
PEWMA chart, a fact that compensates the complexity of PDEWMA in relation to PEWMA.

2.6. The Poisson EWMA control chart with Head-Start (HS PEWMA)

Lucas and Saccucci [3] introduced the Fast Initial Response (FIR) feature to the EWMA
control charts. In this control chart an EWMA control scheme like the one presented in
Subsection 2.4 is obtained by simultaneously implementing two one-sided EWMAs, each with
a head start (HS). The upper-sided HS PEWMA chart aims at detecting faster increases at the
process mean whereas the lower-sided HS PEWMA chart aims at detecting faster decreases
at the process mean.

Both the upper and the lower-sided HS PEWMA charts use Equation (2.3) to compute
the HS PEWMA statistic. The difference with the PEWMA is the starting value. Specifi-
cally, the upper-sided HS PEWMA has a starting value larger than c0 and lower than UCL
(Equation (2.4)) whereas the lower-sided HS PEWMA has a starting value lower than c0 and
larger than LCL (Equation (2.5)).

The rationale of the HS PEWMA control chart is that if the process is initially
out-of-control, then the HS PEWMA will give an out of control signal faster than the
PEWMA chart. However, if the process is initially in control, HS PEWMA and PEWMA
will tend to converge. In this paper, the starting value used in the HS PEWMA chart is
the halfway between the mean of the process c0 and the control limit (UCL and LCL for the
upper and lower HS PEWMA control charts, respectively).

2.7. Fast Initial Response Poisson EWMA control chart (FIR PEWMA)

The FIR PEWMA control chart uses an exponentially decreasing adjustment method
introduced by Steiner [10] to narrow the distance between the control limits. The control
statistic of this chart is the same as in the classical PEWMA (Equation (2.3)) but its time-
varying control limits are adjusted as follows:

UCL = c0 + LFadj

√
λ

2− λ

[
1− (1− λ)2t

]
c0,(2.9)

CL = c0,

LCL = c0 − LFadj

√
λ

2− λ

[
1− (1− λ)2t

]
c0,(2.10)
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where Fadj denotes the FIR adjustment factor and is expressed as

Fadj = 1− (1− f)1+a(t−1),

a > 0 is the adjustment parameter and f is the distance from the starting value with 0 < f ≤ 1.
The value of a is chosen, so that the FIR adjustment has a small effect when t gets a suitable
(usually not large) value. Steiner [10] suggests to choose a so that the FIR has little effect after
about 20 observations. This fact after some calculations leads to a =

(
−2/ log(1−f)− 1

)
/19.

In this paper, we use f = 0.5 and a = 0.3.

3. APPLICATION OF CONTROL CHARTS AT THE HELLENIC
AIR FORCE (HAF) DATA

HAF is tasked with missions that, depending on the situation, conditions and envi-
ronment, may involve acceptance of a significant and sometimes high risk. Daily challenges
in the Aegean sea and many flight hours require continues alertness for these missions to
be performed safely. The cost of the accidents, both in the air and on the ground, and the
high cost of acquiring new aircraft requires that every effort be made to minimize loss or
damage in order to maintain the integrity of the aircraft and the flight ability of HAF. The
implementation of this effort is achieved through the detection of risks and the monitoring of
accidents.

The main aircraft included in the fleet of HAF is F-16. The annual F-16 accidents for
HAF are presented in Table 1.

Table 1: Number of F-16 accidents (1988–2017).

Year Accidents Year Accidents Year Accidents

1988 0 1998 0 2008 0
1989 0 1999 0 2009 1
1990 0 2000 1 2010 2
1991 0 2001 1 2011 0
1992 1 2002 0 2012 0
1993 1 2003 1 2013 0
1994 0 2004 2 2014 1
1995 3 2005 0 2015 2
1996 0 2006 1 2016 0
1997 1 2007 1 2017 0

The main objective of this application is to see if there is a shift in the F-16 accidents
the last twenty years. For this reason, we use the first ten years to estimate the in-control
mean of accidents. Since we have six total accidents the first ten years, we estimate c by

c̄ =
6
10

= 0.6.
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Therefore, the Phase I (trial) control limits are given by

UCL = c̄ + 3
√

c̄ = 0.6 + 3
√

0.6 = 2.92,

CL = c̄ = 0.6,

LCL = c̄− 3
√

c̄ = 0.6− 3
√

0.6 = −1.72 ⇒ LCL = 0.

The control chart for the number of accidents of the first ten years is given in Figure 1.

Figure 1: c chart for F-16 accidents (Phase I).

We may see in Figure 1 that there is one point that plots above the UCL (year 1995).
We exclude this point and revise the trial control limits. The estimate of c is now computed
as

c̄ =
3
9

= 0.3333.

Using the goodness of fit test (χ2 = 0.7693 with p value 0.6807), we conclude that
the number of accidents from 1988 to 1997 (except of course year 1995) fits the Poisson
distribution with parameter c = 0.3333. The revised control limits are

UCL = c̄ + 3
√

c̄ = 0.3333 + 3
√

0.3333 = 2.0653,

CL = c̄ = 0.3333,

LCL = c̄− 3
√

c̄ = 0.3333− 3
√

0.3333 = −1.73987 ⇒ LCL = 0.

Since all the points are between the control limits we assume that these are the final
Phase I control limits that are to be used for the monitoring of the following time periods
(years).
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For the Phase II charts that follow, we assume that the parameter c̄ = 0.3333 is the
true value of c. However, it is important to note that estimation error often exists in practice,
which would result in negative effects on control charts performance.

Let Xt, t = 1, 2, ..., 20, be the number of accidents from 1998 to 2017. Using the good-
ness of fit test (χ2 = 0.8783 with p value 0.8307), we observe that Xt fits the Poisson distri-
bution with parameter c∗ = 0.65. These points are plotted on the control chart (Phase II) in
Figure 2. The c chart will never be able to detect a downward shift in the mean number of
accidents since LCL = 0.

Figure 2: c chart for F-16 accidents (Phase II).

The in-control ARL for this c chart is

ARL0 =
1

P
(
Xt > 2

∣∣ c = 0.3333
) =

1
0.0048163

∼= 207.63.

Therefore, if the process is really in-control, we will experience a false out-of-control
signal about every 207–208 years. As the process shifts out of control to c∗ = 0.65, the value
of ARL1 is

ARL1 =
1

1− P
(
0≤Xt ≤ 2

∣∣ c∗ = 0.65
) =

1
1− 0.9716577

∼= 35.28

and it will take about 35 years to detect this shift with a point crossing the control limits.
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In order to calculate the ARL for the PEWMA, PDEWMA, HS PEWMA and
FIR PEWMA control charts, we perform Monte Carlo simulations using R. The simulation
algorithm is explained as follows:

1. A combination of design parameters (λ, L) is selected and we also set c0 = 0.3333.
Then, the control limits of each control chart are calculated using Equations (2.4)
and (2.5) for the PEWMA, (2.7) and (2.8) for the PDEWMA and (2.9) and (2.10)
for the FIR PEWMA. The control limits for the HS PEWMA are calculated using
the methodology described in Subsection 2.6.

2. 25,000 Poisson random numbers are generated with parameters from the previous
step.

3. The statistics Zt, t = 1, ..., 25,000 are calculated for each control chart.

4. If Zt > LCLt or Zt < UCLt, the process is considered to be in-control, but if Zt ≤
LCLt or Zt ≥ UCLt, a signal is given and the process is considered to be out-of-
control. When this event occurs, the simulations stop and the run-length (RL) is
recorded.

5. Steps (2)–(4) are repeated 10,000 times. An approximation of the ARL is given by

ARL =
∑N

t=1 RLt

N

where N is the number of simulations runs, i.e. in this article N = 10, 000.

Table 2 shows the performance of various control charts for some combinations of (λ, L).
These combinations have been selected so that the ARL0 of the control charts be close to
207.63. Moreover, the asymptotic control limits are presented in this table. The probabilities
γLCL and γUCL of the ARL-unbiased c chart are calculated using Equations (2.1) and (2.2),
respectively, and they are equal to 0.006171 and 6.523 · 10−8. “—” is used to indicate that a
downward shift cannot be detected, as in some control charts the asymptotic lower control
limit is equal to zero. The same results are presented in Appendix B for the case that ARL0

is close to 370.37. From Table 2, we conclude to the following:

1. PDEWMA control charts, as well as PEWMA, HS PEWMA and FIR PEWMA
control charts with λ = 0.05 can detect a downward shift as they have LCL > 0.
Moreover, the ARL-unbiased c chart can detect downward shifts although its LCL
is equal to zero. However, these control charts, except from the ARL-unbiased c

chart and PDEWMA chart with λ = 0.05, are ARL-biased, as some ARL1 values are
larger than the ARL0 values. PDEWMA control chart with λ = 0.05 is suggested
to be used in order to detect a downward shift as its ARL1 values are smaller than
the corresponding values of ARL-unbiased c chart.

2. For λ = 0.05, 0.10 and 0.15, the PEWMA chart is more efficient than the PDEWMA
chart in detecting upward shifts and vice versa for λ = 0.20. However, Zhang et al.

[13] showed that PDEWMA chart performs similarly or slightly better than the
PEWMA chart in detecting upward shifts considering the in-control mean equal
to 4, 8, 12 or 20. We observe different performance of PEWMA and PDEWMA
charts for processes where the in-control mean is small.
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3. For a specified value of λ, HS PEWMA and FIR PEWMA control charts are more
efficient than c chart, ARL-unbiased c chart, PEWMA and PDEWMA control
charts in detecting upward shifts. Furthermore, when λ = 0.05, the HS PEWMA
performs similarly with the FIR PEWMA control chart, but when λ = 0.10, 0.15
or 0.20, the FIR PEWMA is more efficient than the HS PEWMA. For example,
when c∗ = 0.65, the ARL1 for a HS PEWMA chart with λ = 0.05 and L = 2.331
is 10.83, while the ARL1 for a FIR PEWMA chart with λ = 0.05 and L = 2.315
is 10.89, the ARL1 for a PEWMA chart with λ = 0.05 and L = 2.261 is 13.39 and
the ARL1 for a PDEWMA chart with λ = 0.05 and L = 1.680 is 14.95.

Table 2: ARL1 values for various control charts with ARL0
∼= 207.63.

c chart PEWMA PDEWMA

λ = 1 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
shift L = 3 2.261 2.527 2.780 2.940 1.680 1.967 2.140 2.233

UCL = 2.065 0.542 0.668 0.790 0.899 0.443 0.518 0.583 0.639
LCL = 0 0.124 0 0 0 0.223 0.149 0.084 0.028

0.15 — 50.64 — — — 30.10 39.24 53.83 92.34
0.20 — 90.33 — — — 49.85 68.51 99.05 190.76
0.25 — 179.92 — — — 94.36 129.61 184.10 336.27
0.30 — 263.86 — — — 183.58 211.59 246.79 302.22

0.3333 207.63 207.49 207.56 207.70 207.69 207.44 207.38 207.67 207.48
0.40 126.16 86.94 83.64 89.31 96.31 99.88 102.20 99.29 91.70
0.45 91.92 49.43 49.78 54.28 60.95 55.49 58.30 58.05 54.63
0.50 69.50 31.72 32.96 36.52 41.38 35.69 37.57 37.62 36.20
0.55 54.16 22.23 23.35 26.05 30.02 24.97 26.28 26.36 25.62
0.60 43.26 16.79 17.69 19.65 22.97 18.78 19.60 19.65 19.14
0.65 35.28 13.39 14.14 15.44 17.98 14.95 15.60 15.66 15.26

ARL-unbiased HS PEWMA FIR PEWMA

λ = 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
shift L = 2.331 2.549 2.784 2.955 2.315 2.607 2.844 3.013

UCL = 3 0.549 0.671 0.791 0.902 0.547 0.679 0.801 0.913
LCL = 0 0.118 0 0 0 0.119 0 0 0

0.15 187.61 49.11 — — — 52.35 — — —
0.20 195.73 91.92 — — — 94.68 — — —
0.25 202.46 190.56 — — — 188.82 — — —
0.30 206.73 280.12 — — — 272.15 — — —

0.3333 207.63 207.40 207.42 207.52 207.45 207.74 207.45 207.63 207.58
0.40 203.55 77.28 80.78 88.65 94.30 78.58 77.05 85.40 89.28
0.45 194.93 42.60 46.97 53.26 58.94 43.42 44.04 49.95 54.30
0.50 182.00 26.54 30.66 35.26 39.50 27.13 28.09 32.27 35.25
0.55 165.94 18.35 21.73 24.94 28.26 18.70 19.45 22.40 24.53
0.60 148.26 13.66 16.37 18.92 21.43 13.88 14.39 16.67 18.21
0.65 130.39 10.83 13.03 14.91 16.68 10.89 11.31 12.88 14.03
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The PEWMA control charts for λ = 0.05 and λ = 0.10 are shown in Figures 3 and 4,
respectively. These two control charts have the same performance since thirteen observations
are needed to issue an out of control signal. Theoretically, the average number of observations
needed to detect the shift is thirteen and fourteen, respectively (see Table 2).

Figure 3: PEWMA (λ = 0.05).

Figure 4: PEWMA (λ = 0.10).
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The PDEWMA control charts for λ = 0.05 and λ = 0.10 are shown in Figures 5 and 6,
respectively. These control charts have the same performance with the corresponding
PEWMA charts as they also need thirteen observations to detect the shift. This value is
close to the theoretically ARL1 given in Table 2.

Figure 5: PDEWMA (λ = 0.05).

Figure 6: PDEWMA (λ = 0.10).
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In Figure 7, we present the HS PEWMA control chart for λ = 0.05 when the starting
value is halfway between the mean of the process c0 and the control limit. We notice that
the HS PEWMA control chart with λ = 0.05 detects the shift after ten observations and
apparently its performance is much better than all the control charts already presented.
Moreover, the theoretical ARL1 value for this chart is 10.83 which is smaller than all the
other competing charts. The HS PEWMA control chart with λ = 0.10 (Figure 8) detects the
shift after thirteen observations, having similar performance to the corresponding PEWMA
charts. Note also that as the value of λ increases, the two plotted statistics converge faster.

Figure 7: HS PEWMA (λ = 0.05).

Figure 8: HS PEWMA (λ = 0.10).
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In Figures 9 and 10 we present the FIR PEWMA for λ = 0.05 and λ = 0.10, respectively.
We deduce that the FIR PEWMA chart with λ = 0.05 detects the shift after ten observations
and therefore its performance is the same as HS PEWMA chart. On the other hand, FIR
PEWMA control chart with λ = 0.10 detects the shift after thirteen observations and its
performance is the same as the other three corresponding charts. In both Figures 9 and 10,
the ARL1 value is close to theoretical values given in Table 2.

Figure 9: FIR PEWMA (λ = 0.05).

Figure 10: FIR PEWMA (λ = 0.10).
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To sum up, the results show that PEWMA charts with HS or FIR feature and λ = 0.05
detect the shift more quickly than the other charts. Since, according to the HS PEWMA and
FIR PEWMA with λ = 0.05 control charts, there is a shift in observation ten, management
should search for an assignable cause at year 2007.

4. CONCLUSIONS

In this paper we model air plane accidents using the Poisson distribution and we monitor
these accidents using Shewhart and EWMA control charts. We present several different
control charts and we discuss their implementation both theoretically and practically.
We apply these charts to the HAF Data and we draw useful conclusions.

Process monitoring with control charts is an important component within an overall
process evaluation and improvement in air force industry. Future research will focus on more
sophisticated control charts that can be applied in similar data taking into account the fact
that less accidents occur as the air force industry incorporates new technologies.

A. APPENDIX

We have

Var(Zt) = λ4 1 + (1− λ)2 − (t + 1)2(1− λ)2t + (2t2 + 2t− 1)(1− λ)2t+2 − t2(1− λ)2t+4[
1− (1− λ)2

]3 c0

and we will prove that lim
t→∞

Var(Zt) =
λ(2− 2λ + λ2)

(2− λ)3
c0.

First of all, for λ = 1, the PDEWMA, as well as the PEWMA, reduces to a c chart and
Var(Zt) = c0.

For λ < 1 and applying L’Hospital’s rule, we have

lim
t→∞

(t + 1)2(1− λ)2t = lim
t→∞

(t + 1)2(
1

1−λ

)2t = lim
t→∞

2t + 2

2
(

1
1−λ

)2t ln
(

1
1−λ

)
= lim

t→∞

1

2
(

1
1−λ

)2t
(
ln

(
1

1−λ

))2 = 0.

In the same way, we have lim
t→∞

(2t2 + 2t− 1)(1− λ)2t = lim
t→∞

t2(1− λ)2t+4 = 0.

So, lim
t→∞

Var(Zt) = λ4 1 + (1− λ)2[
1− (1− λ)2

]3 c0 = λ4 2− 2λ + λ2[
λ(2− λ)

]3 c0 = λ
2− 2λ + λ2

(2− λ)3
c0.
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B. APPENDIX

Table 3: ARL1 values for various control charts with ARL0
∼= 370.37.

c chart PEWMA PDEWMA

λ = 1 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
shift L = 3 2.520 2.886 3.112 3.288 1.931 2.224 2.397 2.530

UCL = 2.065 0.566 0.716 0.845 0.966 0.460 0.542 0.613 0.680
LCL = 0 0.100 0 0 0 0.207 0.125 0.054 0

0.15 — 75.31 — — — 39.57 55.48 93.30 —
0.20 — 158.08 — — — 68.18 105.69 207.60 —
0.25 — 392.14 — — — 141.56 233.07 457.80 —
0.30 — 585.13 — — — 322.63 423.92 552.79 —

0.3333 207.63 370.19 368.34 370.13 370.51 370.63 370.29 370.81 370.30
0.40 126.16 118.72 127.89 143.78 155.09 141.42 143.20 137.25 135.75
0.45 91.92 63.54 72.45 84.66 94.21 72.47 75.79 76.56 76.38
0.50 69.50 39.62 45.90 55.06 62.10 44.59 46.96 47.70 48.98
0.55 54.16 27.21 31.42 38.29 43.41 30.49 31.81 32.38 33.54
0.60 43.26 19.99 22.87 28.16 31.87 22.31 23.13 23.49 24.21
0.65 35.28 15.72 17.61 21.58 24.48 17.52 18.07 18.19 18.71

ARL-unbiased HS PEWMA FIR PEWMA

λ = 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
shift L = 2.551 2.895 3.131 3.303 2.582 2.935 3.170 3.336

UCL = 4 0.569 0.717 0.848 0.969 0.572 0.722 0.854 0.975
LCL = 0 0.097 0 0 0 0.095 0 0 0

0.15 334.31 74.50 — — — 80.75 — — —
0.20 348.86 163.55 — — — 175.61 — — —
0.25 360.99 421.06 — — — 452.65 — — —
0.30 368.72 614.36 — — — 639.74 — — —

0.3333 370.37 370.87 370.71 370.65 370.80 370.43 370.60 370.37 370.12
0.40 362.87 113.36 127.20 139.00 151.09 109.94 121.22 135.30 145.38
0.45 346.93 58.86 70.27 80.53 90.26 56.24 65.95 76.19 84.75
0.50 322.95 35.78 43.58 50.99 58.22 33.96 40.61 47.42 53.40
0.55 293.14 24.27 29.73 34.93 39.97 22.72 27.12 31.68 35.96
0.60 260.38 17.80 21.65 25.23 28.91 16.37 19.43 22.68 25.53
0.65 227.39 13.86 16.69 19.18 21.91 12.70 14.75 17.05 19.11
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