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Abstract:

• In this paper we introduce a new family of noncentral elliptical distributions. This family is
generated as the quotient of two independent random variables, one with noncentral standard
elliptical distribution and the other the power of a U(0, 1) random variable. For this family of
distributions, we derive general properties, including the moments and discuss some special cases
based on the family of scale mixtures of normal distributions, where the main advantage is easy
simulation and nice hierarchical representation facilitating the implementation of an EM algorithm
for maximum likelihood estimation. This new family of distributions provides a robust alternative
for parameter estimation in asymmetric distributions. The results and methods are applied to
three real datasets, showing that this new distribution fits better than other models reported in
the recent statistical literature.
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1. INTRODUCTION

Many univariate or multivariate distributions have been generalized to noncentral ver-
sions. These include numerous continuous univariate (Student-t, chi-squared, gamma, beta)
distributions. The noncentral Student-t (NCt) distribution is a skewed distribution that has
received attention in the statistical inference context. When the mean of a normal distribu-
tion is tested, the noncentral distribution describes how a test statistic t is distributed when
the null hypothesis is false. That is

tν(λ) =
Z + λ√

U/ν
,

where Z ∼ N(0, 1) and U∼ χ2
ν are independent random variables. Lahiri and Teigland ([18]),

and Dasgupta and Lahiri ([7]) found the NCt distribution is useful in analyzing survey data
and forecasting record data. Tsionas ([29]) used the NCt distribution in linear regression
models and applied it to stock market data. Applications of the NCt distribution have been
limited by the fact that the probability density function is not expressible in closed form,
making the maximum likelihood (ML) estimation difficult. On the other hand, the symmetric
Student-t (t) distribution has a long history in statistics to model data with outliers as does
as the elliptical (EL) distribution; see for example, Lange et al. ([19]), Fang et al. ([10]), and
Cambanis et al. ([6]). A random variable X is said to have an EL distribution with location µ

and scale parameter σ, denoted as X∼ EL(µ, σ2; g) if its probability density function (pdf)
is given by

fX(x) =
1
σ

g

((
x− µ

σ

)2)
,(1.1)

for some nonnegative function g(u), u ≥ 0, referred to as the density generator which satisfies∫∞
0 u−

1
2 g(u) du = 1. Based on this family of EL distributions, Gómez et al. ([13]) and Gómez

and Venegas ([15]) introduced the slash-elliptical (SEL) family of distributions. These distri-
butions originate from the ratio between two independent random variables, one the standard
EL distribution and the other a uniform (0, 1) distribution,

Y =
Z

U
1
q

,(1.2)

where Z ∼ EL(0, 1; g) and U ∼ U(0, 1) are independent random variables with q > 0.
The resulting distribution is denoted by Y ∼ SEL(0, 1, q), and has heavier tails than the
standard normal distribution. On the other hand,when q tends to ∞, the resulting distribu-
tion is the standard EL distribution. For example, if Z ∼ N(0, 1) and q = 1, one obtains the
canonic slash distribution,

f(y) =


φ(0)− φ(y)

y
, if y 6= 0,

φ(0)
2

, if y = 0,

(1.3)

where φ(·) is the pdf of the standard normal distribution. This distribution has heavier tails
than the normal distribution, that is, it has higher kurtosis. Properties of this family are
discussed in Rogers and Tukey ([28]), Mosteller and Tukey ([24]) and Johnson et al. ([16]).



Statistical Inference for a General Class of Noncentral Elliptical Distributions 163

ML estimators for location and scale parameters are discussed in Kafadar ([17]). Wang
and Genton ([31]) described multivariate symmetrical and skew-multivariate extensions of
the slash (S) distribution. Arslan and Genc ([3]) discussed a symmetric extension of the
multivariate slash distribution and Genc ([12]) discussed a symmetric generalization of the
slash distribution.

The aim of this paper is to provide an extension of the family of SEL distributions to a
family of noncentral (NC) distributions. We derive its properties and method of estimating
the model parameters. Also, we present a multivariate extension.

The paper is organized as follows: In Section 2, we present the pdf of the noncentral
slash-elliptical (NCSEL) distribution, and some of its properties. Also, moments of order
r are obtained, including the asymmetry and kurtosis coefficients. In Section 3, we discuss
derivation of moment method and maximum likelihood estimation and report results of using
the proposed model in three real applications. Section 4 reports examples using both simu-
lated and real data to illustrate the performance of the proposed method. Section 5 presents
a discussion of the multivariate case. Finally, some concluding remarks are given in Section 6.

2. NONCENTRAL SLASH-ELLIPTICAL DISTRIBUTIONS

In this section, we introduce a family of NCSEL distributions, which is defined through
the following stochastic representation. A random variable Y represented as

Y =
W + λ

U
1
q

, λ ∈ R, q > 0,(2.1)

where W ∼ EL(0, 1; g) and U∼ U(0, 1) are independent random variables, is said to have a
NCSEL distribution, with λ being the non-centrality parameter and q the kurtosis param-
eter. This distribution will be denoted by Y ∼ NCSEL(1, q, λ; g). Before presenting some
of its important properties, we present two special cases. If W ∼ N(0, 1), then Y follows
a noncentral slash (NCS) distribution, denoted by Y ∼ NCS(1, q, λ), while if W follows a
t distribution, t(0, 1; ν), then the resulting distribution is a noncentral slash-Student-t (NCSt)
distribution, denoted by Y ∼ NCSt(1, q, λ; ν). For the special case of q = 1, this distribution
is called the canonical NCSEL distribution.

2.1. Density function

The stochastic representation in (2.1) is useful to obtain the pdf of Y , as shown in the
following result.

Proposition 2.1. Let Y ∼ NCSEL(1, q, λ; g). Then, the pdf of Y is given by

fY (y; 1, q, λ) =


q

yq+1

∫ y−λ

−λ
(u + λ)q g(u2) du, if y 6= 0,

q

q + 1
g(λ2), if y = 0.
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Proof: From (2.1), using the fact that U and W are independent and standard calcu-
lations (based on the Jacobian of the appropriate transformation), we obtain

fY,U (y, u) = u
1
q g
((

yu
1
q − λ

)2)
, y ∈ R, 0 < u < 1.

Hence, the marginal pdf of Y is given by

fY (y; 1, q, λ) =
∫ 1

0
u

1
q g
((

yu
1
q − λ

)2)
du.

Now, by substituting u for u = yt
1
q − λ, we have the required results for y 6= 0. For y = 0,

the result is immediate.

Corollary 2.1. For the special case q = 1, the pdf reduces to the form

fY (y; 1, 1, λ) =


1
y2

∫ y−λ

−λ
(u + λ) g(u2) du, if y 6= 0,

1
2

g(λ2), if y = 0.

Corollary 2.2. If W ∼ N(0, 1), then

i) The pdf of Y is

fY (y; 1, q, λ) =
1√
2π

∫ 1

0
u

1
q e−

1
2

(
y u

1
q −λ
)2

du;

ii) For q = 1, the pdf of Y can be expressed as

f(y; 1, 1, λ) =


1
2

{
φ(λ)− φ(y − λ) + λ

(
Φ(y − λ) + Φ(λ)− 1

)}
, if y 6= 0,

φ(λ)
2

, if y = 0,

where φ(·) and Φ(·) are the pdf and the cumulative distribution function (cdf) of

the standard normal distribution, respectively.

Proof: Both parts are direct consequences of Proposition 2.1. In Part i) consider
g(u) = (1/

√
2π) exp(−u/2), and in Part ii), for y 6= 0, we have

fY (y;λ) =
∫ 1

0

u√
2π

e−
1
2
(y u−λ)2du.

Letting w = yu− λ, fY (y;λ) can be expressed as

fY (y;λ) =
1√

2πy2

∫ 1

0
(w + λ) e−

w2

2 dw

=
1
y2

[
1√
2π

(
e−

λ2

2 + e−
(y−λ)2

2

)
+
∫ y−λ

−λ
φ(w) dw

]
=

1
y2

{
φ(λ)− φ(y − λ) + λ

(
Φ(y − λ) + Φ(λ)− 1

)}
.

Finally, for y = 0, the result is direct.
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Figure 1 illustrates some possible shapes of the pdf of Y for some parameter values of λ.
It can be seen that the parameter λ controls the skewness of the distribution. It is also possible
to observe that, as |λ| increases, the density becomes more skewed. Figure 2 displays some
possible shapes of the pdf of Y for some parameter values of q and σ = 1. From this figure,
we note that the parameter q controls the kurtosis of the distribution. Moreover, for smaller
values of q we have a heavy-tailed distribution.
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Figure 1: NCS pdf plots for q = 1 and different values of λ.
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Figure 2: NCS pdf plots for λ = 2 (left panel) and λ = −2 (right panel)
and different values of q.

A slight extension of the NCSEL distribution is obtained by introducing a scale param-
eter through the representation

Y =
σW + λ

U
1
q

= σ
W + δ

U
1
q

,(2.2)

where δ = λ/σ, W ∼ EL(0, 1; g) and U∼ U(0, 1) are independent, and σ is a scale parameter.
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This distribution is denoted by NCSEL(σ, q, λ; g), and its pdf is given by

fY (y;σ, q, λ) =
1
σ

∫ 1

0
u

1
q g

((
y u

1
q − λ

σ

)2)
du.

An important class of symmetric distributions is the family of normal/independent (NI)
(or scale mixture of normal) distributions, which contains many important unimodal distri-
butions such as the contaminated normal (CN), S, t and Laplace (L) distributions, among
others, all possessing heavier tails than the normal. For more information on this family of
distributions, see for example, Andrews and Mallows ([2]) and Lange and Sinsheimer ([20]).
A random variable W is said to have a standard NI distribution, if it can be related to the
normal distribution through the stochastic representation W = V −1/2Z0, where Z0 ∼ N(0, 1)
is independent of the positive random variable V . The pdf of W can be expressed as

(2.3) φNI(w) =
∫ ∞

0

v1/2

√
2π

exp
{
−v

2
w2

}
dHV (v;ν),

where HV ( · ;ν) is the cdf of V , indexed by a scalar or vector of parameters ν. The distribution
of W is denoted by W ∼ NI(0, 1;HV ). In the EL distribution context, the generator function
g( ·) for an NI distribution is

(2.4) g(u) =
∫ ∞

0

v1/2

√
2π

exp
{
−v

2
u

}
dHV (v), v > 0.

Some special cases of the family of NI distributions are for example:

1) The CN distribution: Here V has pdf given by hV (v) = ν I{γ}(v) + (1− ν) I{1}(v),
0 < ν < 1, 0 < γ < 1, where IA(·) denotes the indicator function of the set A and
ν = (ν, γ)>. Then, the pdf of W is

φNI(w) =
[
ν
√

γ φ
(√

γ w
)

+ (1− ν) φ
(
w
)]

, y ∈ R.

2) The S distribution: Here V ∼ Beta(ν, 1) and the pdf of W is

φNI(w) = ν

∫ 1

0
vν−1φ(w; 0, v−1) dv, w ∈ R.

3) The t distribution: Here V ∼ Gamma(ν/2, ν/2), so the t distribution has as special
cases the Cauchy model for ν = 1 and the normal model as ν →∞, and the pdf
of W is

φNI(w) = k(ν) νν/2
(
ν + w2

)−( ν+1
2 ), w ∈ R,

where k(ν) = Γ
(

ν+1
2

)/[√
π Γ
(

ν
2

)]
.

Remark 2.1. The special case Y ∼ NCS(σ, 1, λ), i.e. q = 1, will be called as the canon-
ical NCS and its pdf is

f(y, σ, λ) =


σ2

y2

[
φ

(
λ

σ

)
− φ

(
y − λ

σ

)
+

λ

σ

(
Φ
(

y − λ

σ

)
+ Φ

(
λ

σ

)
− 1

)]
, if y 6= 0,

φ(λ
σ )
2

, if y = 0,

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively.
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2.2. Properties

In this section, we present some properties of the NCSEL distribution.

Proposition 2.2. Let Y ∼ NCSEL(σ, q, λ; g). Then,

i) If λ = 0 and q →∞, then Y ∼ EL(0, σ2; g);

ii) If λ = 0, then Y ∼ SEL(0, σ2, q; g);

iii) If U1 = U1/q in (2.2), then the conditional pdf of U1 = u, given Y = y, is

fU1|Y (u|y) =
quq−1

fY (y)
fY |U1

(y|u) I(0,1)(u),

where fY |U1
( · |u) is the pdf of EL

(
λ
u , σ2

u2 ; g
)

distribution;

iv) If W = V −1/2Z0 ∼ NI(0, 1;HV ) in (2.2), then the conditional mean of U rV s for

r ≥ 0, s ≥ 0, given Y = y, is

E
[
U rV s |y

]
=

q

σ fY (y)

∫ 1

0
ur+q

[∫ ∞

0

vs+1/2

√
2πσ2

exp
{
− v

2σ2
(uy − λ)2

}
fV (v) dv

]
du.

For the special case V ∼ Gamma(ν/2, ν/2),

E
[
U rV s |y

]
=

qd(ν, s)
σ fY (y)

∫ 1

0
ur+q

[
ν +

(
uy − λ

σ

)2]− 2s+ν+1
2

du,

where

d(ν, s) = 2sνν/2 Γ
(

2s + ν + 1
2

)/(√
π Γ
(

ν

2

))
.

Remark 2.2. We now present some comments on the usefulness of the results pro-
posed in Proposition 2.2:

1) Parts i) and ii) state that the NCSEL distribution contains the elliptical distribution
as a special case as q →∞ and the noncentral parameter is zero (λ = 0). Moreover,
the NCSEL distribution contains as special case the SEL distribution when λ = 0.

2) Letting U2 = U−1/q in the representation in (2.2), we can get the following model

Y = µ + λU2 + U2W,(2.5)

where W ∼ EL(0, σ2; g) and U2 are independent and µ ∈ R. We note that the con-
ditional distribution of Y , given U2 = u follows a Y | (U2 = u) ∼ EL(µ + λu, uσ2; g)
for some density generator g( ·).

3) The distribution in (2.5) is like a variance-mean mixture of the EL distribution
proposed by Barndorff-Nielsen ([5]), in which W follows a normal distribution,
which has been used in financial empirical studies.

4) Finally, Part iv) is useful to implement the EM-algorithm in ML estimation.
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2.3. Moments

In this section, we discuss distributional moments of the NCSEL distribution, an impor-
tant need in any statistical analysis. Some of the important characteristics of a distribution
can be studied through moments, which are used to derive moment estimators, and skewness
and kurtosis coefficients.

Proposition 2.3. Let Y ∼ NCSEL(σ, q, λ; g) such that

Y =
σW + λ

U
1
q

= σ
W + δ

U
1
q

,

where δ = λ
σ . Then, for r = 1, 2, 3, ... and q > r, E[Y r] = σrµr, where

µr = E[Xr] =
q

q − r

r∑
k=0

(
r

k

)
δr−k ak/2,

with X∼ NCSEL(1, q, δ; g) and ak/2 =
∫∞
−∞ xkg(x2) dx.

Proof: Using the stochastic representation of X and Y , and the independence of W

and U , we have

µr = E[Xr] = E

[(
W + δ

U
1
q

)r]
= E

[
(W + δ)r

]
E
[
U
− r

q
]
.

Using the binomial theorem for (W + δ)r and applying expectation, we have

E
[
(W + δ)r

]
=

r∑
k=0

(
r

k

)
δr−k E

[
W k
]
,

where E[W k] = ak/2 =
∫∞
−∞ xkg(x2) dx. Since E[U− r

q ] = q
q−r , q > r, we obtain the required

result.

Corollary 2.3. Let Y ∼ NCSEL(σ, q, λ; g). Then, the mean and variance of Y are

given by

E[Y ] =
λ q

q − 1
, q > 1, and Var(Y ) =

σ2q

q − 2

((
λ

σ(q − 1)

)2
+ a1

)
, q > 2.

Proposition 2.4. Let Y ∼ NCSEL(σ, q, λ; g). Then, the asymmetry and kurtosis

coefficients of Y are respectively

γ1 =
q

q−3 (δ3 + 3a1)− 3δ q
(q−1)(q−2) (δ2 + a1) + 2δ3q3

(q−1)3[
q

q−2

(
δ2

(q−1)2
+ a1

)]3
2

, q > 3,

β2 =
q

q−4 (δ4 + 6δa1 + a2)− 4δ q2

(q−1)(q−3) (δ3 + 3a1) + 6δ2q3

(q−1)2 (q−2)
(δ2 + a1)− 3δ4q4

(q−1)4[
q

q−2

(
δ2

(q−1)2
+ a1

)]2 , q > 4.
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Proof: The proof follows by using the formulas of asymmetry and kurtosis coefficients
given respectively by

γ1 =
µ3 − 3µ1µ2 + 2 µ3

1

(µ2 − µ2
1)

3
2

and β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)2

,

where µk, k = 1, ..., 4, as given in Proposition 2.3.

Figure 3 displays graphs for the asymmetry coefficient and kurtosis coefficient of the
NCS distribution.
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Figure 3: Graphs for the asymmetry coefficient (left) and the kurtosis coefficient (right)
of the NCS distribution.

3. INFERENCE

Here, we discuss the moment method (MM) and ML estimation for parameters λ, σ and q

of the NCSEL distribution based on a random sample Y1, ..., Yn of Y ∼ NCSEL(σ, q, λ; g).
We present the MM estimation and then the ML estimation.

3.1. Method of moment estimation

We discuss an MM estimation based on the distributional moments which are presented
in the following result.
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Proposition 3.1. The moment estimators of λ and σ are

λ̂M (q̂M ) =
Y (q̂M − 1)

q̂M
and σ̂M (q̂M ) =

√√√√ 1
a1

(
S2(q̂M − 2)

q̂M
−

λ̂2
M

(q̂M − 1)2

)
,

where a1 = E[W 2], whereas the moment estimator of q is the solution in the interval (3,∞)
for the nonlinear equation

(q − 3) Y 3 − q
(
σM (q)

)3((λM (q)
σM (q)

)3
+ 3a1

)
= 0.

Proof: These equations follow from Proposition 2.3 and Corollary 2.3.

3.2. Maximum likelihood estimation

We now discuss the ML estimation for a sample of size n. The log-likelihood function
for the parameters σ, q and λ can be written as

(3.1) `(σ, q, λ) = −n log(σ) +
n∑

i=1

log G(yi),

where G(yi) = G(yi;σ, q, λ) =
∫ 1
0 v

1
q g

((
yi v

1
q −λ
σ

)2)
dv and hence the likelihood equations are

given by

(3.2)
n∑

i=1

Gσ(yi)
G(yi)

=
n

σ
,

n∑
i=1

Gq(yi)
G(yi)

= 0,

n∑
i=1

Gλ(yi)
G(yi)

= 0,

where Gσ(yi) = ∂
∂σG(yi), Gq(yi) = ∂

∂qG(yi), Gλ(yi) = ∂
∂λG(yi), which can be expressed as

Gσ(yi) = − 2
σ

∫ 1

0
u

1
q g′(t2i ) t2i du,

Gq(yi) = − 1
σq2

∫ 1

0
u

1
q log(u)

(
σg(t2i ) + 2 ti yi g

′(t2i )
)

du,

Gλ(yi) = − 2
σ

∫ 1

0
u

1
q g′(t2i ) ti du,

where ti = (yi u
1
q − λ)/σ. Solutions for equations in (3.2) can be obtained using numeri-

cal procedures such as the Newton–Raphson procedure. This procedure requires the maxi-
mization of the log-likelihood function which involves integrals that make the maximization
difficult, especially when the NCSEL model is based on a bimodal elliptical distribution.
But when the NCSEL model is based on the family of the NI distributions, an EM algorithm
can be implemented to obtain the ML estimates of the model parameters, as we show next.
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3.3. EM algorithm

The EM-algorithm is a well known technique for the ML estimation when unobserved
(or missing) data or latent variables are present while modeling. This estimation algo-
rithm enables computationally efficient determination of the ML estimates when iterative
methods are required. For a random sample of size n of the NCSEL(σ, q, λ;ν) model, let
y = (y1, ..., yn)> be observed data, and let u = (u1, ..., un)> and v = (v1, ..., vn) be unobserved
data, so the complete dataset is yc = (y>,v>,u>)>. In what follows, we describe the imple-
mentation of the EM-algorithm for the ML estimation of the parameters of the NCSEL model.
For this purpose, we first present the NCSEL model in an incomplete-data framework, where
the model can be written hierarchically as

Y | Ui = ui, Vi = vi ∼ N
(
u−1

i λ, σ2u−2
i v−1

i

)
,

Ui | Vi = vi ∼ Beta(q, 1),(3.3)

Vi ∼ h(·).

The complete-data log-likelihood function for θ = (σ, q, λ)> given yc (without the additive
constant) is given by

`c(θ|yc) = −n

2
log σ2 +

1
2

n∑
i=1

log(u2
i vi)−

1
2 σ2

n∑
i=1

(
u2

i vi y
2
i − 2 uiviλ yi + λ2vi

)
+ `c(q|yc),

where `c(q|yc) =
∑n

i=1 `ci(q|yc), with `ci(q|yc) = log q + (q − 1) log ui. Letting ûivi =
E(UiVi |yi,θ = θ̂), û2

i vi = E(U2
i Vi |yi,θ = θ̂) and v̂i = E(Vi |yi,θ = θ̂). The conditional expec-

tation of the complete-data log-likelihood function (without the additive constant) is given
by Q(θ|θ̂) = E

[
`c(θ|yc) |y, θ̂

]
=
∑n

i=1 Qi(θ|θ̂), where Qi(θ|θ̂) has the form

Qi(θ|θ̂) = −1
2

log σ2 − 1
2 σ2

(
û2

i vi y
2
i − 2 λ ûivi yi + λ2 v̂i

)
+ Qci(q|θ̂),

where Qci(q|θ̂) = log q + (q − 1)Si, with Si = E
[
log Ui |yi

]
, i = 1, ..., n. Since the quantity Si

does not have closed form, it must be computed numerically. We follow the idea from Lee
and Xu ([21]) and Reyes et al. ([27]) to compute Qci(q|θ̂). Specifically, let {ur; r = 1, ..., R}
be a sample randomly drawn from the conditional distribution Ui | (Yi = yi,θ = θ̂), so the
quantity Qci(q|θ̂) can be approximated as follows:

Qci(q|θ̂) ≈ 1
R

R∑
r=1

`ci(q|ur).

We then have the EM-algorithm for the ML estimation of the parameters of the NCSEL
model as follows:

E-Step: Given θ = θ̂
(k)

=
(
σ̂(k), q̂(k), λ̂(k)

)>, compute ûivi
(k), û2

i vi

(k)
and v̂i

(k), for
i = 1, ..., n;
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CM-step I: Update λ̂(k) and σ̂(k) and maximize Q
(
θ|θ̂

(k))
over λ and σ, which leads

to the expressions:

λ̂(k+1) =
∑n

i=1 ûivi
(k)yi∑n

i=1 v̂i
(k)

,

σ̂2(k+1) =
1
n

n∑
i=1

(
û2

i vi

(k)
y2

i − 2 λ̂(k+1) ûivi
(k)yi + λ̂2(k+1) v̂i

(k)
)
;

CM-step II: Fix λ = λ̂(k) and σ2 = σ̂2
(k)

, update q(k) by

q̂(k+1) = arg max
q

Q
(
λ̂(k), σ̂2

(k)
, q|θ̂

(k)
)
.

The iterations are repeated until a suitable convergence rule is satisfied, say
∥∥θ(l+1) − θ(l)

∥∥
sufficiently small. Useful starting values are required to implement this algorithm, and the
moment estimates can be used effectively as initial values in the iterative procedure for
computing the ML estimates.

3.4. Estimation of standard errors

To compute the standard errors of the ML estimates, we follow the information-based
method exploited by Louis ([22]) and Meilijson ([23]), who proposed using of empirical infor-
mation matrix, which is computed as

Ic(θ|y) =
n∑

i=1

s(yi |θ) s(yi |θ)> − 1
n

S(y|θ) S(y|θ)>,

where S(y|θ) =
∑n

i=1 s(yi |θ), with s(yi |θ) = E
[(

∂`(θ|yci)/∂θ
) ∣∣ yi, θ

]
being the empirical

score function for the i-th individual, which can be written as

s(yi |θ) =
(
∂Qi(θ|θ̂)/∂σ, ∂Qi(θ|θ̂)/∂q, ∂Qi(θ|θ̂)/∂λ

)>
,

whose elements are given by

∂Qi(θ|θ̂)/∂σ = − 1
σ

+
1
σ3

(
û2

i vi y
2
i − 2 λ ûivi yi + λ2 v̂i

)
,

∂Qi(θ|θ̂)/∂q =
1
q

+ E
[
log Ui |yi

]
,

∂Qi(θ|θ̂)/∂λ =
1
σ2

(
ûivi yi − λv̂i

)
.

Now, replacing θ by its ML estimates θ̂ in Ic(θ|y), we obtain

Ic(θ̂|y) =
n∑

i=1

s(yi |θ̂) s(yi |θ̂)> − 1
n

S(y|θ̂) S(y|θ̂)>,

which is used to compute the standard errors of the ML estimates.
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4. ILLUSTRATIVE EXAMPLES

4.1. Simulation study

For each scenario, we simulate data based on the stochastic representation of the model
presented in (2.1). The objective of this simulation study is to evaluate if the estimation al-
gorithm developed in Section 3.3 can recover the parameters with which the simulation is
performed. We consider two special cases of NCSEL models based on the NCS distribution
(Table 1) and the NCSt distribution with ν = 5 (Table 2), while for ν = 10 the result is
reported in the Appendix (see Table 9). We consider three cases for λ: −0.5, 0.5 and 1.0;

Table 1: Simulation for the NCS distribution.

true values n = 50 n = 100 n = 200

λ σ q
bθ

mean s.e.
√

MSE mean s.e.
√

MSE mean s.e.
√

MSE

bλ −0.5223 0.1201 0.1238 −0.5137 0.0837 0.0899 −0.5128 0.0584 0.0678
1 bσ 0.5250 0.1203 0.1333 0.5127 0.0826 0.1046 0.5129 0.0579 0.0730

0.5
bq 1.1230 0.2760 0.4144 1.0610 0.1693 0.1810 1.0391 0.1143 0.1229

bλ −0.5237 0.1067 0.1125 −0.5160 0.0739 0.0762 −0.5054 0.0502 0.0518
3 bσ 0.5150 0.1054 0.1062 0.5118 0.0733 0.0794 0.5032 0.0494 0.0494

−0.5
bq 4.4343 3.7121 3.1171 3.7622 1.7486 2.0391 3.2533 0.7639 0.9762

bλ −0.5244 0.1922 0.1874 −0.5143 0.1328 0.1406 −0.5105 0.0926 0.0965
1 bσ 1.0459 0.2533 0.2627 1.0377 0.1737 0.2160 1.0269 0.1207 0.1564

1.0
bq 1.1265 0.3081 0.4225 1.0654 0.1807 0.1958 1.0447 0.1222 0.1346

bλ −0.5162 0.1782 0.1732 −0.5184 0.1230 0.1256 −0.5065 0.0843 0.0843
3 bσ 1.0549 0.2290 0.2290 1.0349 0.1585 0.1624 1.0150 0.1068 0.1120

bq 4.9179 5.0027 3.6413 3.9935 2.3857 2.4501 3.3853 1.0160 1.3326

bλ 0.5257 0.1206 0.1239 0.5151 0.0838 0.0896 0.5104 0.0588 0.0669
1 bσ 0.5261 0.1207 0.1270 0.5149 0.0831 0.0982 0.5139 0.0583 0.0812

0.5
bq 1.1091 0.2599 0.2906 1.0582 0.1691 0.1826 1.0365 0.1147 0.1271

bλ 0.5201 0.1061 0.1006 0.5133 0.0741 0.0755 0.5085 0.0504 0.0504
3 bσ 0.5185 0.1053 0.1077 0.5140 0.0741 0.0804 0.5071 0.0497 0.0508

0.5
bq 4.4930 3.6785 3.1798 3.8143 1.8557 2.1013 3.2819 0.7595 0.8955

bλ 0.5206 0.1930 0.2006 0.5186 0.1325 0.1336 0.5085 0.0924 0.0941
1 bσ 1.0612 0.2536 0.2761 1.0364 0.1736 0.1792 1.0254 0.1204 0.1304

1.0
bq 1.1279 0.3017 0.3844 1.0627 0.1793 0.1973 1.0433 0.1217 0.1272

bλ 0.5269 0.1779 0.1758 0.5128 0.1230 0.1304 0.5086 0.0848 0.0842
3 bσ 1.0445 0.2312 0.2270 1.0398 0.1593 0.1701 1.0184 0.1082 0.1115

bq 4.8398 5.0577 3.5896 4.0944 2.5002 2.5839 3.3558 0.9935 1.2306

bλ 1.0273 0.1600 0.1719 1.0230 0.1120 0.1271 1.0211 0.0785 0.1279
1 bσ 0.5068 0.1157 0.1313 0.5051 0.0797 0.1007 0.5123 0.0554 0.1152

0.5
bq 1.0760 0.2167 0.2387 1.0495 0.1457 0.1567 1.0396 0.1010 0.1253

bλ 1.0303 0.1318 0.1380 1.0150 0.0899 0.0939 1.0087 0.0620 0.0610
3 bσ 0.5076 0.0980 0.1059 0.5045 0.0670 0.0690 0.5015 0.0460 0.0435

1.0
bq 3.8927 2.1092 2.2969 3.3113 0.8944 1.1456 3.1370 0.5151 0.5628

bλ 1.0566 0.2452 0.2488 1.0311 0.1686 0.1752 1.0307 0.1186 0.1524
1 bσ 1.0597 0.2465 0.2595 1.0353 0.1674 0.1953 1.0326 0.1172 0.1834

1.0
bq 1.1176 0.2673 0.3278 1.0721 0.1720 0.1955 1.0404 0.1156 0.1274

bλ 1.0501 0.2142 0.2096 1.0324 0.1478 0.1531 1.0138 0.1011 0.1031
3 bσ 1.0414 0.2118 0.2181 1.0255 0.1468 0.1573 1.0130 0.0999 0.1032

bq 4.5624 3.8165 3.2397 3.7511 1.7692 2.0399 3.2569 0.7691 0.9233
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two for σ: 0.5 and 1.0; two for q: 1 and 3; and three for the sample size: n = 50, n = 100
and n = 200. Each combination of parameters and sample size was replicated 1000 times.
We present the mean of the obtained estimators, the mean of the standard deviations calcu-
lated based on the observed information matrix and the root mean square error. Note that
the bias of the estimators is acceptable and decreases as the sample size increases. Addition-
ally, when the sample size increases, the mean of the estimated deviations approximates the
term

√
MSE, suggesting consistent estimators.

Table 2: Simulation for the NCSt distribution with ν = 5 degrees of freedom.

true values n = 50 n = 100 n = 200

λ σ q
bθ

mean s.e.
√

MSE mean s.e.
√

MSE mean s.e.
√

MSE

bλ −0.5299 0.1315 0.1346 −0.5174 0.0906 0.0894 −0.5121 0.0632 0.0601
1 bσ 0.5361 0.1395 0.1441 0.5207 0.0953 0.0946 0.5191 0.0665 0.0620

0.5
bq 1.1435 0.2982 0.3739 1.0772 0.1830 0.2004 1.0560 0.1239 0.1254

bλ −0.5174 0.1245 0.1151 −0.5128 0.0872 0.0849 −0.5091 0.0599 0.0603
3 bσ 0.5196 0.1336 0.1200 0.5149 0.0946 0.0902 0.5086 0.0651 0.0656

−0.5
bq 4.7202 5.7034 3.4817 4.1062 3.3006 2.6697 3.4869 1.4701 1.5523

bλ −0.5331 0.2151 0.2202 −0.5146 0.1443 0.1431 −0.5173 0.1017 0.1055
1 bσ 1.0902 0.2921 0.3318 1.0422 0.1947 0.1942 1.0312 0.1363 0.1294

1.0
bq 1.1882 0.4338 0.6419 1.0734 0.1946 0.2034 1.0517 0.1320 0.1383

bλ −0.5181 0.2047 0.1882 −0.5214 0.1453 0.1395 −0.5163 0.1008 0.1009
3 bσ 1.0402 0.2914 0.2394 1.0381 0.2103 0.1863 1.0252 0.1457 0.1435

bq 5.0573 8.1198 3.8670 4.2968 4.4232 2.9118 3.7668 2.3982 2.1330

bλ 0.5302 0.1315 0.1326 0.5180 0.0898 0.0904 0.5146 0.0632 0.0608
1 bσ 0.5426 0.1403 0.1523 0.5208 0.0945 0.0893 0.5174 0.0660 0.0619

0.5
bq 1.1508 0.3073 0.3942 1.0856 0.1845 0.2021 1.0604 0.1246 0.1299

bλ 0.5195 0.1260 0.1164 0.5142 0.0882 0.0832 0.5108 0.0608 0.0609
3 bσ 0.5219 0.1358 0.1246 0.5165 0.0962 0.0910 0.5113 0.0661 0.0672

0.5
bq 4.8069 6.2872 3.5639 4.0846 3.3858 2.5787 3.5687 1.7137 1.7158

bλ 0.5380 0.2131 0.2281 0.5261 0.1464 0.1445 0.5123 0.1011 0.0956
1 bσ 1.0749 0.2865 0.3011 1.0518 0.1959 0.2048 1.0345 0.1359 0.1298

1.0
bq 1.1655 0.3513 0.4978 1.0810 0.1974 0.2185 1.0543 0.1324 0.1372

bλ 0.5269 0.2062 0.1976 0.5206 0.1462 0.1400 0.5160 0.1004 0.0992
3 bσ 1.0444 0.2898 0.2434 1.0442 0.2135 0.1956 1.0208 0.1455 0.1376

bq 4.9896 7.5749 3.8015 4.3185 4.5664 2.9438 3.7512 2.3581 2.0826

bλ 1.0530 0.1734 0.1826 1.0363 0.1197 0.1211 1.0298 0.0855 0.0804
1 bσ 0.5341 0.1403 0.1475 0.5235 0.0952 0.0956 0.5187 0.0676 0.0653

0.5
bq 1.1284 0.2458 0.3075 1.0859 0.1590 0.1768 1.0677 0.1109 0.1215

bλ 1.0383 0.1514 0.1523 1.0149 0.1026 0.1044 1.0084 0.0698 0.0718
3 bσ 0.5177 0.1227 0.1225 0.5076 0.0838 0.0851 0.5061 0.0574 0.0583

1.0
bq 4.1493 3.1966 2.6803 3.4830 1.4792 1.5935 3.2059 0.6775 0.7802

bλ 1.0635 0.2631 0.2795 1.0414 0.1807 0.1830 1.0265 0.1257 0.1239
1 bσ 1.0739 0.2784 0.3209 1.0503 0.1903 0.1866 1.0335 0.1317 0.1249

1.0
bq 1.1522 0.3307 0.5153 1.0766 0.1817 0.1832 1.0615 0.1248 0.1327

bλ 1.0436 0.2494 0.2362 1.0352 0.1751 0.1659 1.0115 0.1193 0.1195
3 bσ 1.0400 0.2683 0.2404 1.0316 0.1897 0.1813 1.0202 0.1299 0.1308

bq 4.7107 5.8531 3.4608 4.0555 3.2062 2.5689 3.5171 1.5251 1.6419
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4.2. Applications to real data

In this section, we use two real datasets to show the flexibility and applicability of the
proposed NCSEL model. In these applications, we present analyses of the two real datasets
to show the flexibility and applicability of the proposed NCSEL model by illustrating the fit
of the proposed model and the use of the proposed EM-algorithm. We compare the results
of these fits with other models that have been used. All the computations were done using
the R package.

4.2.1. Nickel dataset

In this application, we consider a dataset consisting details regarding of Nickel (Ni)
concentrations in 86 soil samples analyzed at the Mining Department of the University of
Atacama, Chile. We report the ML estimates obtained under other models such as the
Epsilon Skew-Normal (ESN) distribution (Mudholkar and Hutson ([25])) and Skew-Normal
(SN) distribution (Azzalini ([4])), and compare them with our NCS model. A descriptive
summary of this dataset is displayed in Table 3 where b1 and b2 are sample asymmetry and
kurtosis coefficients, respectively.

Table 3: Nickel data: Descriptive summary of the mineral data.

n X S b1 b2

86 21.3372 16.6392 2.4483 12.0429

We observe that the data have positive asymmetry and high kurtosis. For this dataset,
the NCS model moment estimators are given by λ̂M = 15.340, σ̂M = 9.234 and q̂M = 3.558,
which were used as initial values to start the EM algorithm. The ML estimates of the
parameters of the ESN, SN and NCS models are found in Table 4. The AIC values Akaike ([1])
are given in Table 4. The model that provides the best fit for these data is the NCS model,
which is supported by results in Figure 4 and the Q-Q plot in Figure 5.

Table 4: Nickel data: ML estimates and corresponding standard error (SE)
for ESN, SN and NCS models.

Parameter ESN SN NCS

µ 4.006 (1.249) 2.626 (2.066)
σ 13.398 (1.022) 24.975 (2.454) 5.329 (0.735)
q 2.190 (0.398)
λ 10.259 (9.603) 12.030 (1.044)
ε −0.856 (0.057)

AIC 696.419 695.523 680.363
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Figure 4: Nickel data: Fitted models, ESN (dotted line), estimated SN (dashed line)
and estimated NCS (solid line) (Left panel). Upper tail of histogram with
estimated ESN (dotted line), estimated SN (dashed line) and estimated NCS
(solid line) (Right panel).
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Figure 5: Nickel data: Q-Q plots; ESN model (a), SN model (b) and NCS model (c).
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4.2.2. Copper data

This dataset refers to the soluble copper concentration of 1933 samples (Fuentes ([11])),
for which the ML estimates are obtained for the Epsilon Skew-t (ESt) model (Gómez et al.

([14])), the Skew-t (St) model and for our NCSt model. A descriptive summary of this
dataset is reported in Table 5. For this dataset, we observe positive asymmetry and kurtosis
coefficients.

Table 5: Copper data: Descriptive statistics of the dataset.

n y S b1 b2

1933 0.591 0.302 1.196 4.633

Moreover, the moment estimates under the NCS model are given by λ̂M = 0.441, σ̂M =
0.150 and q̂M = 3.950, which were used as initial values to start the EM algorithm. Table 6
reports the estimates of the degrees of freedom, ν, for each model based on the Student-t distri-
bution, which are obtained by maximizing the profile log-likelihood function, as in Vilca et al.

([30]). The estimates of ν is obtained for the ESt, St and NCSt models, as reported in Table 7.
This table also includes the AIC values, revealing that the NCSt model fits the data well.

Table 6: Copper data: Estimation of ν for the St, ESt and NCSt models
by maximizing the log-likelihood function.

Log-likelihood Log-likelihood Log-likelihood
ν

St ESt NCSt

1 −359.599 −416.062 −709.297
2 −327.326 −266.335 −328.671
3 −209.663 −227.596 −223.877
4 −197.641 −213.163 −192.580
5 −191.688 −206.886 −188.485
6 −188.635 −203.988 −185.151
7 −187.067 −202.669 −189.139
8 −186.303 −202.151 −189.365
9 −185.992 −202.068 −190.621
10 −185.941 −202.195 −192.370
11 −186.042 −202.455 −193.973

Table 7: Copper data: ML estimates and the corresponding SE (in parentheses)
for the St (ν = 10), ESt (ν = 9) and NCSt (ν = 6) models.

Parameter St ESt NCSt

µ 0.253 (0.008) 0.351 (0.013) —
σ 0.404 (0.010) 0.2396 (0.004) 0.1355 (0.022)
q 5.991 (0.168)
λ 4.262 (0.360) 3.162 (0.475)
ε −0.563 (0.029)

AIC 377.881 410.115 376.301
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Moreover, we present other results to show the performance of our approach. Figure 6 depicts
plots of the fitted St, ESt and NCSt models using the ML estimates. We note that the fitted
NCSt model presents heavier tails than the other models. Figure 7 shows the Q-Q plots for
these fitted models. From all these summaries and plots, we can conclude that the NCSt
model provides the best fit to the data.
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Figure 6: Copper data: Fitted models, NCSt (solid line), St (dashed line)
and ESt (dotted line) (Left panel). Plots of the tails for the models
(Right panel).
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Figure 7: Copper data: Q-Q plots; St model (a), ESt model (b) and NCSt model (c).
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4.2.3. Snack data

We consider in this application part of the data of an experiment performed in the
Department of Nutrition of the Faculty of Public Health of the University of São Paulo, in
which 5 different forms of a new type of snack, with low content of saturated fat and fatty
acids, were compared over the course of 20 weeks. In this new product the hydrogenated
vegetable fat has been replaced, in whole or in part, by canola oil. The forms are as follow:
A (22% of fat 0% of canola oil), B (0% fat, 22% canola oil), C (17% fat, 5% canola oil),
D (11% fat, 11% canola oil) and E (5% fat, 17% canola oil). The experiment was conducted
so that in the even weeks 15 packs of each of the products A, B, C, D and E were analyzed
in the laboratory and several variables were observed. In particular, we study the texture
behavior of the products through the force necessary for shear (y). For more details on the
study, see Paula ([26]), Section 2.8.1. The equation is

yi = β0 + β1xiB + β2xiC + β3xiD + β4xiD + β5xiE + β6weeks i + εi, i = 1, ..., n,

where xiT = 1 if measurement i corresponds to a snack of type T , for T = B,D,C,E, and
weeksi is the number of weeks that passed until measurement i was made.

We assume that εi ∼ NCS(σ, q, λ), where λ = −β0(q− 1)/q, with q > 1. This condition
is to obtain that E(εi) = 0, i = 1, ..., n, with the purpose of comparing the fit under εi ∼
ESN(σ, ε, µ1) and SN(σ, λ, µ2) distributions. We also consider appropriate restrictions such
as µ1 = g(σ, ε, β0) and µ2 = g(σ, λ, β0), in order to obtain that E(εi) = 0, i = 1, ..., n.

Results of the fit of the models are reported in Table 8. Note that, according to the
AIC criterion, the best fit is provided by the NCS regression model. This is confirmed by the
randomized quantile residuals, see Dunn and Smyth ([8]). If the model is correctly specified
for the data, such residuals should be a random sample from the standard normal distribution.
Figure 8 confirms that the NCS regression model provides a better fit than the ESN and SN
regression models.

Table 8: Snack data: ML estimates and corresponding standard errors (SE)
for ESN, SN and NCS regression models.

Parameter
ESN SN NCS

Estimate SE Estimate SE Estimate SE

β0 58.044 2.095 57.958 46.910 56.483 1.512
β1 −10.907 1.755 −10.907 1.680 −8.167 1.626
β2 −4.569 1.68 −4.569 1.680 −4.762 1.634
β3 −15.174 1.84 −15.174 1.680 −11.708 1.632
β4 −15.945 1.858 −15.944 1.680 −12.624 1.627
β5 0.742 0.094 0.742 0.092 0.713 0.082
σ 14.550 0.399 14.551 0.379 9.233 0.527
ε 0.000 0.054 — —
λ — 0.007 4.038 —
q — — 6.444 0.614

AIC 6160.839 6160.839 6083.816
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Figure 8: Snack data: Empirical cdf for randomized quantile residual versus
cdf of standard normal distribution for ESN, SN and NCS regres-
sion models. Also provided are the statistics and p-values for the
Kolmogorov–Smirnov (KS) test to compare both curves.

5. MULTIVARIATE NCSEL DISTRIBUTIONS

In this section the multivariate NCSEL distribution is introduced, its pdf is derived
and some additional properties are studied.

In the multivariate setup, a k-dimensional random vector Y = (Y1, ..., Yk)> follows an
EL distribution with location parameter vector µ and scale parameter matrix Σ, which is
positive definite, if its pdf is given by

fY(y) = |Σ|−1/2g
(
(y − µ)> Σ−1(y − µ)

)
, y ∈ Rk,

where g is the density generator function satisfying∫ ∞

0
uk−1g(u2) du < ∞.

We use the notation Y∼ ELk(µ,Σ; g). If the moments of each element of the random vec-
tor Y are finite, then it follows that E(Y) = µ and Var(Y) = αgΣ, where αg is a positive
constant, as seen for example, in Fang et al. ([10]). Now a multivariate NCSEL distri-
bution is proposed, where a k-variate vector Y is said to have a multivariate noncentral
slash-elliptical(MNCSEL) distribution with scale matrix Σ positive definite, λ being the
non-centrality parameter and q the kurtosis parameter

Y =
Σ

1
2 X + λ

U
1
q

,(5.1)

where X∼ ELk(0, Ik; g) is independent of U∼ U(0, 1). The resulting distribution is denoted
by Y∼ MNCSELk(Σ, q,λ; g). The pdf of Y is presented in the following result.

Proposition 5.1. Let Y∼ MNCSELk(Σ, q,λ; g). Then, the pdf of Y is given by

f(y) = |Σ|−
1
2

∫ 1

0
z

k
q g
[(

yz
1
q − λ

)>Σ−1
(
yz

1
q − λ

)]
dz.(5.2)
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Proof: Using the fact that X and U are independent and standard calculations of the
Jacobian transformation of

Y =
Σ

1
2 X + λ

U
1
q

and Z = U,

we obtain the join pdf of Y and Z given by

fY,Z(y, z) = |Σ|−
1
2 z

k
q g
[(

yz
1
q − λ)>Σ−1(yz

1
q − λ

)]
.

The required result is obtained by integrating the above joint pdf with respect to z.

Remark 5.1. If λ = 0, we obtain the family of distributions discussed by Gómez et

al. ([13]) and Gómez and Venegas ([15]). On the other hand for λ = 0 and under normality
of X, we obtain the slash multivariate introduced by Wang and Genton ([31]).

Another important property is that the MNCSEL distribution can be written as a scale
mixture of an elliptical distribution and a uniform distribution in the unit interval.

Proposition 5.2. Let Y | (Z = z) ∼ ELk

(
z
− 1

q λ, z
− 2

q Σ; g
)

and Z ∼ U(0, 1). Then

Y∼ MNCSELk(Σ, q,λ; g).

Proof: We can write

fY(y) =
∫ 1

0
fY|Z(y)fZ(z) dz

=
∫ 1

0

∣∣z− 2
q Σ
∣∣−1/2

g
[(

y − z
− 1

q λ
)>(

z
− 2

q Σ
)−1(y − z

− 1
q λ
)]

dz.

The result follows using properties of determinants.

Proposition 5.3. Let Y∼ MNCSELk(Σ, q,λ; g). Then,

E[Y] =
qλ

q − 1
, q > 1, and Var(Y) =

q

q − 2

(
λλ>

(q − 1)2
+ αg Σ

)
, q > 2.

Proof: Following the procedure in Proposition 5.2, we have Y | (Z = z) ∼
ELk

(
z
− 1

q λ, z
− 2

q Σ
)
. So, using the fact that E

[
Z
− r

q
]

= q
q−r , q > r and the conditional ex-

pectation properties:

E[Y] = E
[
E(Y|Z)

]
= E

[
Z
− 1

q λ
]

=
qλ

q − 1
, q > 1.

Moreover, following the same idea we obtain the variance of Y as follows:

Var(Y) = Var
[
E(Y|Z)

]
+ E

[
Var(Y|Z)

]
= Var

[
Z
− 1

q λ
]
+ E

[
Z
− 2

q αgΣ
]

= λVar
[
Z
− 1

q
]
λ> + αg E

[
Z
− 2

q
]
Σ

= λλ>
q

(q − 2)(q − 1)2
+ αg Σ

q

q − 2
, q > 2

=
q

q − 2

(
λλ>

(q − 1)2
+ αg Σ

)
, q > 2.
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6. CONCLUSION

Here we have introduced a new distribution called the NCSEL distribution. The main
idea is to incorporate a non-centrality parameter in the usual SEL distribution. The resulting
distribution is an asymmetric distribution that contains as special cases the EL and SEL
distributions. For this family of distributions we point out some important characteristics and
properties that allow us to obtain qualitatively robust ML estimates and efficiently compute
them by using the EM-algorithm for a special class based on the family of NI distributions.
We illustrate our results by using three numerical examples. They show the flexibility and
inherent robustness of the estimation procedure in the NCSEL model.

Finally, the NCSEL can be used along the same lines as the skew distributions in the
context of regression. This issue is currently under investigation, and we hope to report these
findings in a future paper.
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A. APPENDIX — Simulation study with ν = 10 degrees of freedom

Table 9: Simulation for the NCSt distribution with ν = 10 degrees of freedom.

true values n = 50 n = 100 n = 200

λ σ q
bθ

mean s.e.
√

MSE mean s.e.
√

MSE mean s.e.
√

MSE

bλ −0.5237 0.1261 0.1303 −0.5150 0.0874 0.0862 −0.5085 0.0606 0.0594
1 bσ 0.5286 0.1306 0.1324 0.5209 0.0901 0.0889 0.5125 0.0631 0.0603

0.5
bq 1.0905 0.2628 0.2901 1.0666 0.1759 0.1848 1.0399 0.1178 0.1219

bλ −0.5195 0.1147 0.1113 −0.5132 0.0796 0.0803 −0.5078 0.0549 0.0556
3 bσ 0.5171 0.1188 0.1110 0.5122 0.0825 0.0826 0.5100 0.0568 0.0611

−0.5
bq 4.4553 4.3511 3.1883 3.8335 2.2236 2.2079 3.4520 1.1176 1.3898

bλ −0.5300 0.2026 0.2120 −0.5131 0.1377 0.1423 −0.5142 0.0974 0.0966
1 bσ 1.0666 0.2710 0.2854 1.0309 0.1827 0.1846 1.0346 0.129 0.1309

1.0
bq 1.1467 0.3292 0.4879 1.0635 0.1852 0.1984 1.0458 0.126 0.1296

bλ −0.5410 0.1955 0.1905 −0.5144 0.1340 0.1342 −0.5102 0.0924 0.0944
3 bσ 1.0590 0.2610 0.2388 1.0393 0.1832 0.1805 1.0285 0.1242 0.1291

bq 5.1102 6.5417 3.8243 4.2180 3.4874 2.8081 3.6203 1.5291 1.7002

bλ 0.5294 0.1266 0.1269 0.5181 0.0871 0.0873 0.5099 0.0612 0.0581
1 bσ 0.5319 0.1303 0.1420 0.5224 0.0895 0.0897 0.5146 0.0628 0.0603

0.5
bq 1.1341 0.3178 0.4400 1.0661 0.1738 0.1850 1.0458 0.1194 0.1248

bλ 0.5292 0.1171 0.1142 0.5147 0.0800 0.0802 0.5058 0.0543 0.053
3 bσ 0.5273 0.1206 0.1170 0.5170 0.0828 0.0811 0.5061 0.056 0.0577

0.5
bq 4.8062 4.9793 3.4829 3.8846 2.3178 2.2996 3.3449 0.9999 1.213

bλ 0.5249 0.2025 0.2049 0.5109 0.1383 0.1383 0.5146 0.0978 0.0995
1 bσ 1.0680 0.2701 0.2850 1.0363 0.1849 0.1837 1.0337 0.1295 0.1285

1.0
bq 1.1345 0.3277 0.4665 1.0620 0.1851 0.1953 1.0371 0.1244 0.1284

bλ 0.5214 0.1928 0.1852 0.5266 0.1347 0.1325 0.5096 0.0917 0.094
3 bσ 1.0617 0.2578 0.2414 1.0418 0.1835 0.1784 1.0192 0.1231 0.1261

bq 5.1212 6.3880 3.8663 4.2130 3.3634 2.7218 3.5264 1.4173 1.5681

bλ 1.0358 0.1656 0.1707 1.0212 0.1147 0.1091 1.0168 0.0801 0.0757
1 bσ 0.5075 0.1261 0.1363 0.5079 0.0870 0.0862 0.5106 0.0607 0.0601

0.5
bq 1.0947 0.2264 0.2533 1.0569 0.1496 0.1536 1.0458 0.1031 0.1122

bλ 1.0376 0.1399 0.1438 1.0137 0.0952 0.0996 1.0064 0.0653 0.0656
3 bσ 0.5153 0.1090 0.1133 0.5087 0.0747 0.0791 0.5028 0.051 0.0507

1.0
bq 4.0107 2.4780 2.4694 3.4097 1.0933 1.3396 3.1600 0.5736 0.6723

bλ 1.0500 0.2525 0.2634 1.0242 0.1724 0.1668 1.0138 0.1207 0.1197
1 bσ 1.0579 0.2605 0.2797 1.0320 0.1775 0.1751 1.0235 0.1243 0.118

1.0
bq 1.1121 0.2715 0.3156 1.0594 0.1729 0.1839 1.0375 0.1172 0.1208

bλ 1.0392 0.2312 0.2183 1.0212 0.1581 0.1585 1.0148 0.1085 0.1091
3 bσ 1.0405 0.2388 0.2193 1.0229 0.1638 0.1628 1.0136 0.1116 0.1131

bq 4.5632 4.5408 3.2450 3.8152 2.1794 2.1591 3.3253 0.9405 1.0617
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Birnbaum–Saunders distribution, Hacettepe Journal of Mathematics and Statistics, 46(5), 969–
984.

[28] Rogers, W.H. and Tukey, J.W. (1972). Understanding some long-tailed symmetrical dis-
tributions, Statistica Neerlandica, 26(3), 211–226.

[29] Tsionas, E.G. (2002). Stochastic frontier models with random coefficients, Journal of Applied
Econometrics, 17, 127–147.

[30] Vilca, F.L.; Zeller, C.B. and Cordeiro, G.M. (2015). The sinh-normal/independent
nonlinear regression model, Journal of Applied Statistics, 42, 1659–1676.

[31] Wang, J. and Genton, M.G. (2006). The multivariate skew-slash distribution, Journal
Statistical Planning and Inference, 136, 209–220.


	"STATISTICAL INFERENCE FOR A GENERAL CLASS OF NONCENTRAL ELLIPTICAL DISTRIBUTIONS"
	1 INTRODUCTION
	2 NONCENTRAL SLASH-ELLIPTICAL DISTRIBUTIONS
	2.1 Density function
	2.2 Properties
	2.3 Moments

	3 INFERENCE
	3.1 Method of moment estimation
	3.2 Maximum likelihood estimation
	3.3 EM algorithm
	3.4 Estimation of standard errors

	4 ILLUSTRATIVE EXAMPLES
	4.1 Simulation study
	4.2 Applications to real data
	4.2.1 Nickel dataset
	4.2.2 Copper data
	4.2.3 Snack data


	5 MULTIVARIATE NCSEL DISTRIBUTIONS
	6 CONCLUSION
	A APPENDIX - Simulation study with nu=10 degrees of freedom
	ACKNOWLEDGMENTS
	REFERENCES

