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1. INTRODUCTION

One of the most important references in models of adopting timing of innovations is
the model of Bass [1]. From this model, Bemmaor [3] formulated that the individual-level
model of adopting timing of a new product in a market is randomly distributed according to
the shifted Gompertz distribution. More recently, Lover et al. [8] show that modeling studies
of period of time to first relapse in human infections with malaria in the New World tropical
region, can support the shifted Gompertz distribution.

Some statistical properties of the shifted Gompertz distribution were obtained in Be-
mmaor [3]. Jiménez Torres and Jodrá [7] gave explicit expressions for the first and second
moment, a closed form expression for the quantile function was derived, and the limit distri-
butions of extreme order statistics were considered.

In Jiménez Torres [6] the method of least squares, method of maximum likelihood and
method of moments to estimate the parameters of the shifted Gompertz distribution were
used. In this paper we want to expand and complete the knowledge and statistical properties
of the shifted Gompertz distribution, solving the three conjectures presented in Jiménez
Torres and Jodrá [7] and obtaining a general expression for the moments.

Although the Gompertz distribution Z has been given in different forms in the lit-
erature, the cumulative distribution function (cdf) FZ(z) = P (Z ≤ z) = e−αe−βz

, −∞ < z <

+∞, found in Bemmaor [3], satisfies that its standard deviation, skewness and excess kurtosis
are equals to π/(

√
6β), 12

√
6ζ(3)/π3 and 2.4, respectively, where ζ(·) denotes the Riemann

zeta function. The skewness of a random variable X is defined by γ1 = E[(X − µ)3]/σ3 and
is a measure of the asymmetry of the probability distribution. The excess kurtosis of X is
given by γ2 = E[(X − µ)4]/σ4 − 3 and it describes the shape of the tails of the probability
distribution.

Let X be a random variable having the shifted Gompertz distribution with parameters
α and β, where α > 0 is a shape parameter and β > 0 is a scale parameter. The probability
density function of X is

(1.1) fX(x) = βe−(βx+αe−βx)(1 + α
(
1− e−βx)

)
, x > 0.

This model can be characterized as the maximum of two independent random varia-
bles with Gompertz distribution (parameters α > 0 and β > 0) and exponential distribution
(parameter β > 0). From (1.1), given that limα→0 fX(x) = βe−βx, it may be noted that
the shifted Gompertz distribution gets close to an exponential distribution with mean 1/β,
as the parameter α decreases to 0. So, for a fixed value of β, limα→0 σ = 1/β, where σ is
the standard deviation of X. For the shifted Gompertz distribution we have limα→0 γ1 = 2
and limα→0 γ2 = 6, which are the skewness and kurtosis of the exponential distribution.
If the shape parameter α increases to infinity, the asymptotic behavior of the shifted Gom-
pertz distribution is nontrivial and these limits require analytic tools for their calculation.
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Based on numerical evidence showed in Jiménez Torres and Jodrá [7] the next three
conjectures were presented:

Conjecture 1: lim
α→+∞

σ =
π√
6β

;

Conjecture 2: lim
α→+∞

γ1 =
12
√

6ζ(3)
π3

;

Conjecture 3: lim
α→+∞

γ2 = 2.4.

The remainder of this note is organized as follows. In Section 2, we prove Conjecture 1.
In Section 3, we provide an explicit expression for the i-th moment of the shifted Gompertz
distribution. In Section 4 and Section 5, we prove Conjecture 2 and Conjecture 3, respectively.
In Section 6 we show the importance of these results in the choice of the shifted Gompertz
distribution among the models to fit a real data set and finally, the main conclusions are
presented in Section 7.

2. PROOF OF CONJECTURE 1

In Jiménez Torres and Jodrá [7] explicit expressions for the moments of orders 1 and 2
of X were obtained. The first moment of X, or mean µ of X, is

(2.1) E[X] =
1
β

(
γ + log(α) + E1(α) +

1− e−α

α

)
,

where γ ≈ 0.57721 is the Euler–Mascheroni constant and E1(x) is the exponential integral
function, defined by E1(x) =

∫ +∞
x

e−t

t dt, x > 0. The second moment of X is

(2.2) E[X2] =
2
αβ2

(
γ + log(α) + E1(α) + 3F3[1, 1, 1; 2, 2, 2;−α]α2

)
,

where 3F3[1, 1, 1; 2, 2, 2;−α] =
∑+∞

k=1
(−α)k−1

k!k2 is a generalized hypergeometric function. More-
over, we need the next expression (see Geller and Ng [5]) for a > 0 and b > 0

(2.3)
∫ +∞

b

E1(ax)
x

dx =
1
2
(
(γ + log(ab))2 + ζ(2)

)
+

+∞∑
k=1

(−ab)k

k!k2
,

where ζ(2) =
π2

6
. In particular, using (2.3) with a = 1 and b = α, we obtain

(2.4)
∫ +∞

α

E1(x)
x

dx =
1
2
(
(γ + log(α))2 + ζ(2)

)
+

+∞∑
k=1

(−α)k

k!k2
,

and in the next theorem, we prove Conjecture 1.
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Theorem 2.1. The limit of the standard deviation, σ, of the shifted Gompertz dis-

tribution X as the shape parameter α increases to +∞ is finite and its value is

(2.5) lim
α→+∞

σ =
π√
6β
.

Proof: The variance of a random variable X is σ2 = E[X2]− (E[X])2. From (2.1),
(2.2) and (2.4) we have

σ2 =
2
αβ2

[
γ + log(α) + E1(α)− α

∫ +∞

α

E1(x)
x

dx+
α

2
(
(γ + log(α))2 + ζ(2)

)]
− 1
β2

(
γ + log(α) + E1(α) +

1− e−α

α

)2

(2.6)

=
ζ(2)
β2

+R(α),

where

R(α) =
2
αβ2

(
γ + log(α) + E1(α)

)
− 2
β2

∫ +∞

α

E1(x)
x

dx(2.7)

+
1
β2

(
(γ + log(α)

)2 − 1
β2

(
γ + log(α) + E1(α) +

1− e−α

α

)2

.

So, lim
α→+∞

σ2 = ζ(2)/β2 + lim
α→+∞

R(α). Now, in (2.7) we take limit as α increases to +∞,

taking into account the next limits related to the exponential integral function (see Geller
and Ng [5]):

(2.8) lim
x→+∞

(
log(x)E1(x)

)
= lim

x→+∞

(
e−xE1(x)

)
= lim

x→+∞

(
xpE1(x)

)
= 0.

So, lim
α→+∞

R(α) = 0, and Conjecture 1 is proved.

To prove Conjecture 2 and Conjecture 3 we need expressions of the moments of orders
3 and 4, respectively. In Section 3 we are more ambitious and obtain a general expression for
the moment of order i of the shifted Gompertz distribution.

3. MOMENT OF ORDER i OF X

The i-th moment of X, denoted and defined by E[Xi] =
∫ +∞
0 xifX(x)dx, i = 1, 2, ...,

where fX(x) is given in (1.1), does not seem to have a closed-form expression in terms of
elementary functions, but we can find a series expansion. Let γ(a, b) be the lower incomplete
gamma function defined for any a > 0 and b > 0 by

(3.1) γ(a, b) =
∫ b

0
va−1e−vdv,

and let MX(t) be the moment generating function of X, i.e., MX(t) = E
[
etX
]
. In the next

theorem we obtain an expression of this function.
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Theorem 3.1. The moment generating function of the shifted Gompertz distribution

X for |t| < β is

(3.2) MX(t) = αt/β−1(α+ t/β)γ(1− t/β, α) + e−α.

Proof: By definition, we have

E
[
etX
]

=
∫ +∞

0
etxfX(x)dx = β

∫ +∞

0
etx−βx−αe−βx

(1 + α(1− e−βx))dx

= (1 + α)β
∫ +∞

0
etx−βx−αe−βx

dx− αβ

∫ +∞

0
etx−2βx−αe−βx

dx.(3.3)

The change of variable v = αe−βx in (3.3) provides

E
[
etX
]

= αt/β−1(1 + α)
∫ α

0
e−vv−t/βdv − αt/β−1

∫ α

0
e−vv1−t/βdv

= αt/β−1
(
(1 + α)γ(1− t/β, α)− γ(2− t/β, α)

)
.(3.4)

Integrating by parts in (3.1) yields the recurrence relation γ(a+ 1, b) = aγ(a, b)− bae−b. So,
we have

(3.5) E
[
etX
]

= αt/β−1
(
(α+ t/β)γ(1− t/β, α) + α1−t/βe−α

)
,

thereby completing the proof.

According to Theorem 3.1, the moment generating function of the shifted Gompertz
distribution, MX(t), is finite in the open neighborhood (−β, β) of 0. In particular, it implies
that moments of all orders exist. In the next result, we provide an explicit expression of the
moment of order i.

Theorem 3.2. The moment of order i, i = 1, 2, ..., of the shifted Gompertz distribu-

tion X is

(3.6) E[Xi] =
i!
βi

(
1 +

+∞∑
k=1

(
1

(k + 1)i
− 1
ki

)
(−α)k

k!

)
.

Proof: Since MX(t) is finite for t in (−β, β), it can be expanded in a Taylor series
about 0 and the moments of X can be computed by differentiation of MX(t) at t = 0, i.e.,
M

(i)
X (t)|t=0 = M

(i)
X (0) = E[Xi], i = 1, 2, ..., where M (i)

X (t) denotes the i-th derivative of the
moment generating function of X. That is,

(3.7) MX(t) = 1 +
+∞∑
i=1

E[Xi]
i!

ti |t| < β.

Given the Taylor series of the exponential function e−v in (3.1), we have the following series
expansion of the lower incomplete gamma function

(3.8) γ(a, b) =
∫ b

0

+∞∑
k=0

(−1)k v
a+k−1

k!
dv =

+∞∑
k=0

(−1)kba+k

(a+ k)k!
.
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From (3.8), we have

(3.9) γ(1− t/β, α) =
+∞∑
k=0

(−1)kα1−t/β+k

(1− t/β + k)k!
|t| < β,

and substituting (3.9) in (3.2), we obtain

(3.10) MX(t) = (α+ t/β)
+∞∑
k=0

(−1)kαk

(1− t/β + k)k!
+ e−α |t| < β.

But the real number (1− t/β + k)−1 can be expressed as the sum of the terms of a geometric
series, i.e.,

(3.11)
1

1− t/β + k
=

1
k + 1

+∞∑
i=0

ti

(k + 1)iβi
|t| < β.

Finally, substituting (3.11) in (3.10),

(3.12) MX(t) = (α+ t/β)
+∞∑
k=0

(−α)k

(k + 1)!

+∞∑
i=0

ti

(k + 1)iβi
+ e−α |t| < β.

Identifying term to term of (3.7) and (3.12), we have

(3.13) E[Xi] =
i!
βi

(
1−

+∞∑
k=1

(
1
k!ki

− 1
(k + 1)!(k + 1)i−1

)
(−α)k

)
,

thereby completing the proof of Theorem 3.2.

4. PROOF OF CONJECTURE 2

To prove Conjecture 2 we need the next expression (see Geller [4]) for a > 0 and ρ > 0∫ ρ

0
e−axlog3(x)dx = −6ρ

(
+∞∑
k=0

(−aρ)k

k!(k + 1)4
− log(ρ)

+∞∑
k=0

(−aρ)k

k!(k + 1)3

)

−3
a
log2(ρ)

(
γ + log(aρ) + E1(aρ)−

1
3
log(ρ)(1− e−aρ)

)
.(4.1)

It may be noted that (4.1) corrects one misprint in Geller [4] (the sign of 1
3 log(ρ)(1− e−aρ)).

In particular, using (4.1) with a = 1 and ρ = α, we have∫ α

0
e−xlog3(x)dx = −6α

(
+∞∑
k=0

(−α)k

k!(k + 1)4
− log(α)

+∞∑
k=0

(−α)k

k!(k + 1)3

)

−3log2(α)
(
γ + log(α) + E1(α)− 1

3
log(α)(1− e−α)

)
.(4.2)

Moreover, we need the value of (4.2) as α increases to +∞, i.e.,
∫ +∞
0 e−xlog3(x)dx. This

integral is Γ(3)(1), the third derivative of gamma function evaluated at 1, where the gamma
function is defined by Γ(p) =

∫ +∞
0 tp−1e−tdt, for a real number p > 0. To know the value
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of Γ(3)(1) we can use the digamma function, define by ψ(p) = Γ′(p)/Γ(p) and polygamma
functions, ψ′(p), ψ(2)(p), ψ(3)(p) .... These functions are derivatives of the logarithm of the
gamma function. In particular, we have ψ(1) = −γ and ψ(n)(1) = (−1)n+1n!ζ(n+ 1), for n =
1, 2, 3... (see, e.g. [9, 5.15.2]). Using this relation we have ψ′(1) = ζ(2) and ψ(2)(1) = −2ζ(3).
So, the value of Γ(3)(1) is

(4.3) Γ(3)(1) = (ψ(1))3 + 3ψ(1)ψ′(1) + ψ(2)(1) = −γ3 − 3γζ(2)− 2ζ(3),

where ζ(3) ≈ 1.20205 is a real number known as Apéry’s constant. In the next theorem, we
prove Conjecture 2.

Theorem 4.1. The limit of the coefficient of skewness, γ1, of the shifted Gompertz

distribution X as the shape parameter α increases to +∞ is finite and its value is

(4.4) lim
α→+∞

γ1 =
12
√

6ζ(3)
π3

.

Proof: The coefficient of skewness of X is

(4.5) γ1 = E[(X − µ)3]/σ3 =
(
E[X3]− 3µE[X2] + 2µ3

)
/σ3.

We can study every term of this equation. The first term of (4.5) is E[X3]. According to
(3.6), the moment of order 3 of X is

(4.6) E[X3] =
3!
β3

(
1 +

+∞∑
k=1

(
1

(k + 1)3
− 1
k3

)
(−α)k

k!

)
.

From (4.2), we have

+∞∑
k=0

(−α)k

k!(k + 1)4
= − 1

6α

(∫ α

0
e−xlog3(x)dx− 6αlog(α)

+∞∑
k=0

(−α)k

k!(k + 1)3

+3log2(α)
(
γ + log(α) + E1(α)− 1

3
log(α)(1− e−α)

))
.(4.7)

Given that
∑+∞

k=1
(−α)k

k!ki = −α
∑+∞

k=0
(−α)k

k!(k+1)i+1 , i = 0, 1, 2, ..., from (2.4), (4.6) and (4.7)

E[X3] = − 1
β3

[
6
(
α−1 + log(α))

(∫ +∞

α

E1(x)
x

dx− 1
2
(
(γ + log(α))2 + ζ(2)

))
+
∫ α

0
e−xlog3(x)dx+ 3log2(α)

(
γ + log(α) + E1(α)

)
− log3(α)(1− e−α)

]
.(4.8)

Now, we study −3µE[X2], the second term of (4.5). From (2.1) and (2.2), it is

− 3µE[X2] = − 6
αβ3

(
γ + log(α) + E1(α) +

1− e−α

α

)
×
(
γ + log(α) + E1(α)− α

+∞∑
k=1

(−α)k

k!k2

)
,(4.9)
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and from (2.4), we have

− 3µE[X2] = − 6
αβ3

(
γ + log(α) + E1(α) +

1− e−α

α

)
×
(
γ + log(α) + E1(α)− α

∫ +∞

α

E1(x)
x

dx+
α

2
(
(γ + log(α))2 + ζ(2)

))
.(4.10)

The third term of (4.5) is 2µ3. From (2.1), it is

(4.11) 2µ3 =
2
β3

(
γ + log(α) + E1(α) +

1− e−α

α

)3

.

Finally, taking into account the three terms of (4.5), i.e., (4.8), (4.10) and (4.11), that
limα→+∞

∫ α
0 e−xlog3(x)dx = Γ(3)(1) given in (4.3) and the limits (2.8), we have

(4.12) lim
α→+∞

E[(X − µ)3] =
2ζ(3)
β3

.

According to Theorem 2.1, lim
α→+∞

σ3 =
π3

6
√

6β3
, and Conjecture 2 is proved.

5. PROOF OF CONJECTURE 3

To prove Conjecture 3 we need the next expression (see Geller [4]), valid for a > 0,
ρ > 0, p > −1 and n = 0, 1, 2, 3, ...

(5.1)
∫ ρ

0
xpe−axlogn(x)dx = (−1)nn!ρp+1

n∑
k=0

(−1)klogk(ρ)
k!

+∞∑
l=0

(−aρ)l

l!(p+ l + 1)n−k+1
.

In particular, we need (5.1) for a = 1, ρ = α, p = 0 and n = 4, i.e.,∫ α

0
e−xlog4(x)dx = 4!α

4∑
k=0

(−1)klogk(α)
k!

+∞∑
l=0

(−α)l

l!(l + 1)5−k

= 4!α

[
+∞∑
k=0

(−α)k

k!(k + 1)5
− log(α)

+∞∑
k=0

(−α)k

k!(k + 1)4

+
log2(α)

2

+∞∑
k=0

(−α)k

k!(k + 1)3
− log3(α)

3!

+∞∑
k=0

(−α)k

k!(k + 1)2

+
log4(α)

4!

+∞∑
k=0

(−α)k

k!(k + 1)

]
.(5.2)

Moreover, we need the value of (5.2) as α increases to +∞, i.e.,
∫ +∞
0 e−xlog4(x)dx, the 4-th

Euler–Mascheroni integral. This integral is Γ(4)(1), the fourth derivative of Γ(p), evaluated at
p = 1. Given that ψ(3)(1) = 6ζ(4),

(
ζ(2)

)2 = 5ζ(4)/2 and ζ(4) = π4/90, the value of Γ(4)(1)
is

Γ(4)(1) =
(
ψ(1)

)4 + 6ψ′(1)
(
ψ(1)

)2 + 4ψ(2)(1)ψ(1) + ψ(3)(1) + 3
(
ψ′(1)

)2
= γ4 + 6γ2ζ(2) + 8γζ(3) +

27
2
ζ(4).(5.3)
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In the next theorem, we prove Conjecture 3.

Theorem 5.1. The limit of the excess kurtosis, γ2, of the shifted Gompertz distribu-

tion X as the shape parameter α increases to +∞ is finite and its value is

(5.4) lim
α→+∞

γ2 = 2.4.

Proof: The excess kurtosis of X is

(5.5) γ2 = E[(X − µ)4]/σ4 − 3 = (E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4)/σ4 − 3.

We can study every term of this equation. The first term of (5.5) is E[X4]. According to
(3.6), the fourth moment of X is

E[X4] =
4!
β4

(
1 +

+∞∑
k=1

( 1
(k + 1)4

− 1
k4

)(−α)k

k!

)

=
4!
αβ4

(
α

+∞∑
k=1

(−α)k

k!(k + 1)4
+ α2

+∞∑
k=0

(−α)k

k!(k + 1)5

)
.(5.6)

From (5.2), we have

+∞∑
k=0

(−α)k

k!(k + 1)5
=

1
24α

[∫ α

0
e−xlog4(x)dx+ 24αlog(α)

+∞∑
k=0

(−α)k

k!(k + 1)4

−12αlog2(α)
+∞∑
k=0

(−α)k

k!(k + 1)3
+ 4αlog3(α)

+∞∑
k=0

(−α)k

k!(k + 1)2

−αlog4(α)
+∞∑
k=0

(−α)k

k!(k + 1)

]
.(5.7)

From (4.7) and (5.7),

E[X4] =
24
αβ4

[
− 1

6

∫ α

0
e−xlog3(x)dx− 1

2
log2(α)

(
γ + log(α) + E1(α)

)
−1

6
log3(α)(1− e−α)− log(α)

(∫ +∞

α

E1(x)
x

dx− 1
2
(
(γ + log(α)

)2
+ζ(2)

))
+
α

24

(∫ α

0
e−xlog4(x)dx− 4log(α)

∫ α

0
e−xlog3(x)dx

−12log2(α)
∫ +∞

α

E1(x)
x

dx+ 6log2(α)
(
(γ + log(α))2 + ζ(2)

)
−8log3(α)

(
γ + log(α) + E1(α)

)
+ 3log4(α)(1− e−α)

]
.(5.8)

Now, we study −4µE[X3], the second term of (5.5). From (2.1) and (4.8), it is

− 4µE[X3] = − 4
β4

(
γ + log(α) + E1(α) +

1− e−α

α

)
×
[
− 6
(
α−1 + log(α))

(∫ +∞

α

E1(x)
x

dx− 1
2
(
(γ + log(α))2 + ζ(2)

))
(5.9)

−
∫ α

0
e−xlog3(x)dx− 3log2(α)

(
γ + log(α) + E1(α)

)
+ log3(α)(1− e−α)

)]
.
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The third term of (5.5) is 6µ2E[X2]. From (2.1), (2.2) and (2.4), it is

6µ2E[X2] =
12
β4

(
γ + log(α) + E1(α) +

1− e−α

α

)2

×
[
γ + log(α) + E1(α)

α
−
∫ +∞

α

E1(x)
x

dx+
1
2
(
(γ + log(α))2 + ζ(2)

)]
.(5.10)

The fourth and last term of (5.5) is −3µ4. From (2.1), it is

(5.11) −3µ4 = − 3
β4

(
γ + log(α) + E1(α) +

1− e−α

α

)4

.

Finally, taking into account that limα→+∞
∫ α
0 e−xlog4(x)dx = Γ(4)(1) given in (5.3), the four

terms of (5.5), i.e., (5.8), (5.9), (5.10) and (5.11), and the limits (2.8), we have

(5.12) lim
α→+∞

E[(X − µ)4] =
27ζ(4)
2β4

.

According to Theorem 2.1, lim
α→+∞

σ4 =
π4

36β4
. Given the value of ζ(4) =

π4

90
, Conjecture 3 is

proved.

6. REAL DATA APPLICATION

One of the human malaria parasites with the widest geographic distribution in the
world is plasmodium vivax. If a patient was not fully cured or insufficiently treated, he can
relapse in a few weeks after the initial infection, i.e., new clinical symptoms begin after the
disease disappeared from the blood following the primary infection. In this section, we have
considered an application with periods of time to first relapse or recurrence in 38 patients
located at Brazil. We have chosen Brazil since it is located geographically in the New World
tropical region, where following Lover et al. [8], the shifted Gompertz distribution is suitable
for modeling times to first relapse. Tropical region is delimited by the ±23.5◦ latitude lines.
Table 1 shows times (days) to first relapse observed, reported in Battle et al. [2].

Table 1: Real data set: Times (days) to first relapse observed (malaria
parasite plasmodium vivax ) in 38 patients located at Brazil.

31 32 32 33 34 35 37 37 44 45 48 53 57 57 58 62 63 64 68

69 70 70 70 71 75 78 80 82 83 86 91 97 97 112 124 132 158 185

According to Theorem 4.1, the values of γ1 of the shifted Gompertz distribution are
greater than 12

√
6ζ(3)/π3 ≈ 1.1395, i.e., are always positive and possibly this can be a good

model to fit a data set with positive asymmetry. Similarly, according to Theorem 5.1, the
values of γ2 of the shifted Gompertz distribution are greater than 2.4, i.e., are always positive.
This means that the shifted Gompertz distribution is a fat-tailed probability distribution, and
possibly it can be a good model to fit a data set with positive excess kurtosis.
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The results proved in this paper allow to place the shifted Gompertz distribution in the
Skewness–Kurtosis diagram (see Vargo et al. [11]). This moment-ratio diagram (see Figure 1)
is a plot containing the (γ1, γ2) values for probability distributions. When a probabilistic
model has no shape parameter (for example, normal, logistic, Gompertz, exponential or Gum-
bell distribution, among other), its locus in this diagram corresponds to a point. When a pro-
babilistic model has one shape parameter (for example, log-logistic, gamma, Weibull, Lindley,
Lomax or shifted Gompertz distribution, among other), its locus in this diagram corresponds
to a curve. In this diagram, the shifted Gompertz distribution starts at the locus of the expo-
nential distribution and ends at the locus of Gompertz distribution. Also, in Figure 1 there
is a curve representing the frontier γ2 ≥ γ2

1 − 2 for all distributions (see Stuart and Ord [10]).
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Figure 1: Skewness (γ1) versus excess kurtosis (γ2) for some probabilistic
models and the locus of the malaria data set.

Given the observed values of skewness and excess kurtosis for malaria data set (γ1 =
1.3317, γ2 = 1.9009), we can place it in this diagram (see Figure 1) and use it as valuable
help in model selection (see chosen models in Table 2).

Table 2: Models and their cumulative distribution functions F (x).

Shape
Model

parameter
F (x)

Exponential: E(λ) — 1− e−λx

Gamma: G(α, β) α γ(α, x/β)/Γ(α)

Gompertz: GO(α, β) — e−αe−βx

Gumbell: GU(α, β) — 1− e−αeβx

Lindley: LD(θ) θ 1− (1 + θ + θx)e−θx/(1 + θ)

Logistic: LG(µ, s) — (1 + e−(x−µ)/s)−1

Log-logistic: LL(λ, p) p 1− (1 + (λx)p)−1

Lomax: LO(α, β) α 1− (1 + βx)−α

Normal: N(µ, σ) — Φ((x− µ)/σ)

Weibull: W(α, β) α 1− e−(x/β)α

Shifted Gompertz: SG(α, β) α e−αe−βx

(1− e−βx)
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It is reasonable to think that models located relatively near the locus of malaria data
set (for example, Weibull, gamma, Gompertz or shifted Gompertz distribution) can provide a
better fit than models located farther away (for example, Gumbell, logistic, normal or Lomax,
among other). To accept or rejected this surmise, we estimate the parameters of the shifted
Gompertz distribution and of all models represented in Figure 1 by the maximum likelihood
method. We obtain the performance of each model based on the following goodness-of-
fit measures: log-likelihood function (LogL), Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Kolmogorov–Smirnov (K-S) statistic with the corresponding
p-value, Cramer von Mises (W*) and Anderson–Darling (A*).

The results obtained (see Table 3) show that the shifted Gompertz distribution presents
the best fit in almost all goodness-of-fit measures. The smallest values of −LogL, AIC, BIC,
W* and A* correspond to the shifted Gompertz distributions. The best values of K-S and
its p-value are obtained by gamma and shifted Gompertz distribution. In addition, Weibull,
gamma or Gompertz distribution present, in general, better fit than Gumbell, logistic, normal,
Lindley, exponential, log-logistic or Lomax distribution.

Table 3: The MLEs of the parameters and goodness-of-fit tests.

Malaria data set

Model MLE parameter −LogL AIC BIC K-S p-val(K-S) W* A*

E 0.0139 — 200.290 402.580 404.218 0.351 10−4 1.113 5.749
G 4.965 14.414 183.079 370.158 373.434 0.089 0.923 0.054 0.448
GO 10.024 0.040 182.983 369.967 373.242 0.102 0.823 0.047 0.425
GU 0.126 0.022 198.302 400.605 403.880 0.226 0.041 0.492 2.899
LD 0.0275 — 189.961 381.923 383.561 0.220 0.049 0.386 2.359
LG 67.520 18.091 186.779 377.558 380.834 0.117 0.673 0.056 0.667
LL 0.015 3.821 221.181 446.363 449.638 0.103 0.811 1.606 8.397
LO 0.114 99.634 278.846 561.693 564.968 0.600 10−12 3.477 16.062
N 71.578 34.505 188.481 380.963 384.238 0.138 0.461 0.169 1.156
W 2.202 81.129 185.522 375.045 378.320 0.113 0.714 0.107 0.779
SG 8.709 0.040 182.759 369.518 372.793 0.101 0.831 0.046 0.419

Best fitting model is shown in bold.

7. CONCLUSIONS

Three conjectures on the standard deviation, skewness and kurtosis of the shifted Gom-
pertz distribution, as the shape parameter α increases to +∞, have been proved, solving the
asymptotic problems found in Jiménez Torres and Jodrá [7]. In addition, an explicit expre-
ssion for the i-th moment of the shifted Gompertz distribution has been obtained. These
results allow to place the shifted Gompertz distribution in the Skewness–Kurtosis diagram,
starting at the locus of the exponential distribution and ending at the locus of Gompertz
distribution. To check their usefulness, a real malaria data set has been fitted, estimating the
parameters by maximum likelihood. The results obtained show that the shifted Gompertz
distribution presents a very good fit among the analyzed models, suggesting that the results
proved in this paper can play an important rule in the decision to choose this model to fit data.
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