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1. INTRODUCTION

Dynamical systems occur in all branches of science. According to Martin Rasmussen
[29], “the main goal of the study of a dynamical system is to understand the long behaviour
of states in a system for which there is a deterministic rule for how a state evolves”. On
the other hand, Christian Pötzsche [28] claims that “an understanding of the asymptotic
behaviour of a dynamical system is probably one of the most relevant problems in sciences
based on mathematical modeling”.

There are two approaches in the study of such mathematical models. The autonomous
model where the system is governed by a single mapping and the non-autonomous model
where the evolution in time is, in general, governed by a family of different mappings.

The non-autonomous systems arise naturally in the study of phenomena that evolve in
time and cannot be ruled by the a single mapping by the simple fact that such phenomena do
not repeat. For a general theory of non-autonomous (periodic) difference equations we refer a
recent book by Lúıs [22] where the author presents the main concepts and results concerning
periodic difference equations.

A generalization of discrete non-autonomous systems can be given by stochastic differ-
ence equations or random dynamical systems. The study of these systems are appropriate in
the situation where the rules that govern the evolution of the system have a random nature.

Some works and authors in the field of random dynamical systems are worth-mention.
The book of Arnold [5], where the author explores, separately, both random differential equa-
tions and random difference equations. The work of Kifer, [17] where the author studies basic
connections between compositions of independent random transformations and corresponding
Markov chains together with some applications. Liu in [21] reviews a selection of basic results
in smooth ergodic theory and in the thermodynamic formalism of dynamical systems gener-
ated by compositions of random maps. An excellent tutorial on the asymptotic behaviours
of random orbits of dynamical systems with random parameters may be found in the work of
Ohno [27]. In 2009, Marie and Rousseau [25] presented a study of the recurrence behaviour
in certain random dynamical systems and randomly perturbed dynamical systems. Baladi [6]
uses transfer operators to construct invariant measures of chaotic dynamical systems. And to
end this short list of references on random dynamical systems, we refer the excellent survey of
Diaconis and Freedman [10] on iterated random functions, where the authors provide several
examples under the unifying idea that the iterates of random Lipschitz functions converge if
the functions are contracting on the average.

One of the well known models that have a discrete evolution is the quadratic model
given by
(1.1) xn+1 = µnxn(1− xn), x ∈ [0, 1], µn ∈ (0, 4), n = 0, 1, 2, ....

When the sequence of parameters µn is constant, the model given by (1.1) is the well known
logistic equation. The modern theory of discrete dynamical systems owns a great part of
its development to the understanding of the dynamics of this equation, and may be found
in many books on discrete dynamical systems, as the ones by Alligood, Sauer and Yorke [1,
Chapter 1], by Devaney [9, Chapter 1], by Elaydi [11, Chapter 1] and by Zhang [30, Chapter 2],
among others.
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When the sequence of parameters is not constant, the dynamics of equation (1.1) is
naturally more complex. Both, non-stochastic model, where the elements of the sequence of
parameters are taken with a deterministic rule from the interval (0, 4), and stochastic model,
where the referred elements are taken randomly from the same interval, are far from being
exhaustively studied. Some partial studies may be found in the literature. Grinfeld et al. [13]
studied the bifurcation in 2-periodic logistic equations. AlSharawi and Angelos [2] showed
that when µn+p = µn, for all n, the p-periodic logistic equation (1.1) has cycles (periodic
solutions) of minimal periods 1, p, 2p, 3p, .... The same authors have also extended Singer’s
theorem to periodic difference equations, and used it to show that the p-periodic logistic
equation has at most p stable cycles. Particular attention was given to the cases p = 2
and p = 3. AlSharawi et al. [3] and Alves [4] have, independently, presented an extension
of Sharkovsky’s theorem to periodic difference equations, where the main example is the
periodic logistic equation.

In this paper some properties of a generalized logistic model given by

(1.2) xn+1 = µnxk
n(1− xn),

where xn ∈ [0, 1], k > 1 and µn > 0 for all n = 0, 1, 2..., are studied. Some particular studies
on the stability in both, non-autonomous (periodic) model (Section 2) and stochastic model
(Section 3) are presented. In particular, the dynamical system defined by equation (1.2) when
k = 2 and µn ∈ (0, 27/4] is deeply studied. The main focus of this study is the comprehension
of the model’s dynamics in the parameter space.

Finally, it should be mentioned that Marotto [26] studied the autonomous equation (1.2)
when k = 2 and µn = µ, for all natural n. When µn = µ, for all n, the dynamical properties
of the autonomous equation (1.2) have been addressed by several authors, like Levin and May
[20], Hernández-Bermejo and Brenig [14], Briden and Zhang [7], among others.

2. NON-STOCHASTIC MODEL

Let us consider the difference equation given by

(2.1) xn+1 = µnxkn
n (1− xn) ,

where xn ∈ [0, 1], µn > 0 and kn = 2, 3, 4, ... for all non negative integer n.

Equation (2.1) may be represented by the map

fn(x) = µnxkn (1− x) .

In order to insure that xn ∈ I = [0, 1] for all n, we make the following assumption
concerning the parameters

H: µn ≤
(

kn + 1
kn

)kn

(kn + 1), n = 0, 1, 2....

Assumption H guarantees that all the orbits in (2.1) are bounded. Furthermore, it
guarantees that fn maps the interval I into the interval I for all n = 0, 1, 2....
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2.1. Autonomous equation

Let us first study the dynamics of the particular map f (x) = µxk (1− x), with x ∈ I,

µ > 0 and k = 2, 3, .... To find the fixed points of f we determine the solutions of the equation
µxk(1− x) = x. After eliminating the trivial solution, x = 0, the positive fixed points are the
solutions of

(2.2) µxk−1 (1− x) = 1,

or equivalently

(2.3) ln(µ) = − (k − 1) ln x− ln (1− x) .

Letting g(x) = − (k − 1) ln x− ln (1− x), we see that g(x) > 0 for all x ∈ (0, 1). Moreover, g

is convex in the unit interval since g′(x) > 0, for all x ∈ I, and attains its minimum at g(cg)
where cg = k−1

k is the unique critical point of g in the unit interval. Let Oµ be the immediate
basin of attraction of the origin.

1. If g (cg) > ln(µ), then Eq. (2.3) has no solution. Hence, x∗ = 0 is the unique fixed

point of the map f whenever µ < k
(

k
k−1

)k−1
. Under this scenario x∗ = 0 is globally

asymptotically stable, given that it is the unique fixed point in I. Notice that at
the origin we have f ′(0) = 0 and that Oµ = [0, 1].

2. If g (cg) = ln(µ), then Eq. (2.3) has a unique solution, x∗ = k−1
k = cg. Hence,

the map f has a unique positive fixed point when µ = k
(

k
k−1

)k−1
. In this case

and using (2.2), we obtain |f ′ (x∗)| = 1 and |f ′′ (x∗)| = −k2 < 0, that allows us
to conclude that x∗ is an unstable fixed point, but semi-stable from the right.
Moreover, its immediate basin of attraction is the set

[
x∗,max f−1({x∗})

]
where

f−1({x∗}) is the pre-image of {x∗}. Notice that Oµ = I \
[
x∗,max f−1({x∗})

]
.

3. If g (cg) < ln(µ), then Eq. (2.3) has two positive solutions. Hence, the map f

possesses two positive fixed points whenever µ > k
(

k
k−1

)k−1
. The smaller, denoted

as Aµ, is known as a threshold point and the greater, denoted by Kµ, is known as a
carrying capacity. Under this scenario, the fixed point Aµ is always unstable and the
fixed point Kµ is locally asymptotically stable in the interval

(
Aµ,max f−1({Aµ}

)
if
∣∣k − µKk

µ

∣∣ < 1. Moreover, Oµ = [0,Aµ) ∪
(
max f−1({Aµ}), 1

]
.

Notice that the sequence ak =
(

k+1
k

)k
(k + 1) that is used to define Assumption H is

increasing for k = 2, 3, .... We now resume the precedent ideas in the following result, for a
general integer k = 2, 3, ...:

Theorem 2.1. Let f(x) = µxk(1− x), k = 2, 3, .... Then the following yields:

1. If µ < k
(

k
k−1

)k−1
, then x∗ = 0 is a globally asymptotically stable fixed point of f

and its basin of attraction is the unit interval.

2. If µ = k
(

k
k−1

)k−1
, then the map has two fixed points, the origin and a positive

fixed point x∗ = k−1
k . This last one is locally asymptotically stable from the right

and its immediate basin of attraction is the set
[
x∗,max f−1({x∗})

]
. Moreover,

Oµ = I \
[
x∗,max f−1({x∗})

]
.
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3. If µ > k
(

k
k−1

)k−1
, then the map has three fixed points, the origin, a threshold

fixed point Aµ and a carrying capacity Kµ such that Aµ < Kµ. The threshold fixed

point is always unstable and if |k−µKk
µ| < 1 the carrying capacity is locally asymp-

totically stable with a basin of attraction given by the set
(
Aµ,max f−1({Aµ})

)
.

Moreover, Oµ = I \
[
Aµ,max f−1({Aµ})

]
.

Remark 2.1. Before ending this subsection and having in mind the next section, let
us have a particular look in the dynamics of the autonomous equation when k = 2, i.e., the
dynamics of the equation when the map is given by f(x) = µx2(1− x). We will be needing
these results when studying the corresponding stochastic equation.

1. If µ < 4, then the origin is a globally asymptotically stable fixed point provided
that it is the unique fixed point in the unit interval.

2. If µ = 4, then the map possesses two fixed points, the origin and x∗ = 1
2 . The basin

of attraction of the origin is

(2.4) O4 =
[
0,

1
2

)
∪

(
1 +

√
5

4
, 1

]
,

while the basin of attraction of the positive fixed point is
[

1
2 , 1+

√
5

4

]
. Notice that

x∗ = 1
2 is a fixed point semi-stable from the right.

3. If 4 < µ, then the map has three fixed points, the origin, the threshold point Aµ =
1
2

(
1−

√
µ−4

µ

)
and the carrying capacity Kµ = 1

2

(
1 +

√
µ−4

µ

)
.

It is a straightforward computation to see that, when µ > 4,

|f ′(Aµ)| = 3 +
µ

2

(
−1 +

√
µ− 4

µ

)
> 1.

Hence, the fixed point Aµ is unstable.
Similarly, we see that

|f ′(Kµ)| =
∣∣∣∣3− µ

2

(
1 +

√
µ− 4

µ

)∣∣∣∣ < 1 iff 4 < µ <
16
3

.

When µ = 16
3 we have f ′(Kµ) = −1. Forward computations show that the

Schwarzian derivative evaluated at the fixed point is negative, i.e., Sf(Kµ) < 0.
Consequently, from Theorem 2 in [24] it follows that the fixed point Kµ is asymp-
totically stable. Thus, the fixed point x∗ = Kµ is locally asymptotically stable
whenever 4 < µ ≤ 16

3 and its basin of attraction is the set
(
Aµ, max f−1({Aµ})

)
.

Moreover,

(2.5) Oµ = [0,Aµ) ∪
(
max f−1({Aµ}), 1

]
.

2.2. Non-autonomous equation

We start this subsection presenting a result related to the non-autonomous equation
(2.1) when k = 2 (although it may be extended for other values of the parameter k as well).
It is not hard to prove the following:
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Lemma 2.1. Consider the non-autonomous difference equation given by

(2.6) xn+1 = µnx2
n (1− xn) ,

where xn ∈ [0, 1], µn ∈
(
0, 27

4

]
, for n = 0, 1, 2..., and Oµ the immediate basin of attraction of

the origin. Then

(2.7) 4 ≤ µ1 ≤ µ2 ≤
27
4
⇒ O4 ⊇ Oµ1 ⊇ Oµ2 ⊇ O 27

4
,

where O4 is given by (2.4) and

(2.8) O 27
4

=

[
0,

9−
√

33
18

)
∪
(
max f−1

({
A 27

4

})
, 1
]
,

where max f−1
({

A 27
4

})
≈ 0.971 62.

Let us now turn our attention to the non-autonomous periodic equation (2.1).
We will study the case where the sequence of maps is p-periodic, i.e., when fn+p = fn, for all
n = 0, 1, 2, .... Under this scenario, equation (2.1) is p-periodic.

The dynamics of the non-autonomous p-periodic equation (2.1) is completely deter-
mined by the following composition operator

Φp = fp−1 ◦ ... ◦ f1 ◦ f0.

From assumption H it follows that Φp(I) ⊆ I with Φp(0) = 0 and Φp(1) = 0. Hence, by the
Brouwer’s fixed point theorem [16], the composition operator Φp has a fixed point in the unit
interval.

It is clear that x∗ = 0 is a locally asymptotically stable fixed point of Φp provided that
|Φ′

p(0)| = 0. Now, if Φp(x) < x, for all x ∈ (0, 1), then x∗ = 0 is the unique fixed point of the
composition operator Φp in the unit interval. In this case, x∗ = 0 is a globally asymptotically
stable fixed point and its basin of attraction is the entire unit interval. This is the case where
local stability implies global stability in the sense that every orbit of x0 ∈ I converge to the
origin.

Notice that, if CΦp is the set of critical points of Φp, i.e., if CΦp contains all the solutions
in the unit interval of the p equations Φi(x) = ci, i = 0, 1, ..., p− 1, where ci is the critical
point of the map fi, then Φp(x) < x, for all x ∈ (0, 1) if Φp(cΦp) < cΦp , where cΦp ∈ CΦp .

Now, if |Φp(x)| > x for some x ∈ (0, 1),the composition operator Φp has more than one
fixed point. We know from Coppel’s Theorem [8] that every orbit converges to a fixed point
if and only if the equation Φp ◦ Φp(x) = x has no solutions with the exception of the fixed
points of Φp. It is not possible, in general, to say much concerning the number of fixed points
of Φp since we have many scenarios. However, if all maps fi have a threshold fixed point
Ai and we let Am = min{A0,A1, ...,Ap−1} and AM = max{A0,A1, ...,Ap−1}, then one can
show that the minimal positive fixed point of Φp, AΦp , lies between Am and AM and is, in
fact, an unstable fixed point. Under this scenario, the immediate basin of attraction of the
origin is ∪i≥1Ji where Ji ⊂ I and

Φp(Ji) ⊂ [0,AΦp).
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See Figure 1 for an example of this scenario.

Figure 1: Composition of three generalized logistic maps. The composition map Φ3

is represented by the solid curve and the individual maps are represented
by the dashed curves. The values of parameters are k = 2, µ0 = 6.5 (f0),
µ1 = 5.5 (f1) and µ2 = 6 (f2).

We remark that each fixed point of the composition map Φp, with the exception of
x∗ = 0, generates a periodic orbit in equation (2.1). More precisely, if x∗ is a non-trivial fixed
point of Φp, then

C = {x0 = x∗, x1 = f0(x0), x2 = f1(x1), ..., xp−1 = fp−2(xp−2)}

is a periodic cycle of equation (2.1), which is locally asymptotically stable if

|Φ′
p(x

∗)| =

∣∣∣∣∣
p−1∏
i=0

f ′i(xi)

∣∣∣∣∣ < 1.

Notice that, due the periodicity of the maps fi, we have xp = fp−1(xp−1) = x0, xp+1 = x1,
and so on.

From the dynamical point of view, it is interesting to know the region where the stability
of the fixed points occurs. Since we are not able to find explicitly the fixed points of the
composition map Φp for general values of the parameters ki and µi, i = 0, 1, ..., p− 1, we will
particularize and study the cases where this is possible as are the cases when p = 2, 3, 4 and
k = 2, i.e., we will study the dynamics of the system when the sequence of maps is 2-periodic
and given by

fn mod(2)(x) = µn mod(2) xk(1− x), k = 2, 3, 4.

Let us start with the case k = 2. Following the techniques employed in [23], one can
find the region of local stability of the fixed points of the composition map Φ2 = f1 ◦ f0

by calculating the boundary where the absolute value of Φ′
2(x

∗) is equal to one. Since the
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computations are long we will omit them here. The stability regions are depicted in Figure 2,
in the parameter space µ0Oµ1.

O

S

A1
A2

A3

R

0 2 4 6 8 10

0

2

4

6

8

10

Μ0

Μ
1

Figure 2: Region of local stability, in the parameter space µ0Oµ1 where
the fixed points of f1 ◦ f0 are locally asymptotically stable and
the maps are given by fi(x) = µix

2(1− x), i = 0, 2.

If the parameters µ0 and µ1 belong to the region O, then the origin is a fixed point
globally asymptotically stable. Once the parameters cross the dashed curve, from Region O
to Region S, a bifurcation occurs, known as saddle-node bifurcation. The fixed point x∗ = 0
becomes unstable and a new locally stable fixed point of Φ2 is born. This fixed point is, in
fact, a 2-periodic cycle of the 2-periodic equation (2.1). Now if the parameters µ0 and µ1

cross the dashed curve from Region S to Region R, a saddle-node bifurcation occurs. The
2-periodic cycle becomes unstable and a new locally asymptotically stable 2-periodic cycle is
born.

At the solid curve a new type of bifurcation occurs known as a period-doubling bi-
furcation. Hence, when the parameters cross the solid curve from Region S to Region Ai,
i = 1, 2, 3, the 2-periodic cycle of equation (2.1) becomes unstable and a new locally asymp-
totically stable 4-periodic cycle is born.

Following a similar idea as before, we are able to find (numerically) the regions of local
stability of the 4-periodic cycle identified before. We notice that this scenario of period-
doubling bifurcation continues route to chaos.

For a general framework of bifurcation in one-dimensional periodic difference equations,
we refer the work of Elaydi, Lúıs, and Oliveira in [12].

Now, following the same techniques as before, we are able to find the regions of local
stability of fixed points when k = 3 and k = 4. These regions are represented in Figure 3.
As we can observe, they are similar to the case k = 2 and the conclusions follow in the same
fashion.
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Figure 3: Regions of local stability, in the parameter space, of the 2-periodic equation
when k = 3 (left) and k = 4 (right).

3. STOCHASTIC MODEL

In this section, we will consider the stochastic version of the difference equation (2.1)
when kn = 2, for all n, defined by the equation

(3.1) xn+1 = fn (xn) = b (µn, xn) = µnx2
n (1− xn) ,

with x0 ∈ I = [0, 1], {µn, n∈N0} a sequence of independent and identically distributed random
variables with support contained in S =

(
0, 27

4

]
and common probability density function φ.

3.1. Stochastic kernel and asymptotic behaviour

Notice that xn, for n ∈ N, defined by (3.1) is an absolutely continuous random variable
(with respect to Lebesgue measure). Let fn be the probability density function of xn. For
each n ∈ N, the random variables µn and xn are independent and hence their joint probability
density function is the product of the individual probability density functions φfn. Let h be
an arbitrary bounded function defined in I (h ∈ L∞ (I)). We have

(3.2) E [h (xn+1)] =
∫

I
h (x) fn+1 (x) dx,

and, on the other hand,

E [h (xn+1)] = E [h (b (µn, xn))] =
∫

I

∫
S

h (b (u, x))φ (u) fn (x) dudx.

Letting y = b (u, x) = ux2 (1− x) in the inner integral, we obtain

(3.3) E [h (xn+1)] =
∫

I

[∫ 27
4

x2(1−x)

0
h (y) φ

(
y

x2 (1− x)

)
fn (x)

1
x2 (1− x)

dy

]
dx.
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Let γ1 : [0, 1] →
[
0, 2

3

]
be the inverse function of γ :

[
0, 2

3

]
→ [0, 1] and γ2 : [0, 1] →

[
2
3 , 1
]

the inverse function of γ :
[

2
3 , 1
]
→ [0, 1], i.e.,

γ1 (y) =
1
3

 3

√
2
√

y2 − y − 2y + 1 +
1

3

√
2
√

y2 − y − 2y + 1
+ 1


and

γ2 (y) = −1
6

(
1 + i

√
3
)

3

√
2
√

y2 − y − 2y + 1− 1− i
√

3

6 3

√
2
√

y2 − y − 2y + 1
+

1
3
.

The functions γ, γ1 and γ2 are represented in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Graphs of γ (grey solid line), γ1 (black solid line) and γ2 (dashed line)
in the unit interval.

Inverting the integration order in (3.3) we obtain

E [h (xn+1)] =
∫

I
h (y)

[∫ γ2(y)

γ1(y)
φ

(
y

x2 (1− x)

)
fn (x)

1
x2 (1− x)

dx

]
dy.(3.4)

Comparing (3.2) and (3.4), since h is arbitrary, it follows that

fn+1 (y) =
∫

I
φ

(
27
4

y

γ (x)

)
fn (x)

27
4

1
γ (x)

I[γ1(y),γ2(y)] (x) dx

(where IA (v) = 1 if v ∈ A, IA (v) = 0, otherwise).

It is not difficult to prove that if fn is supported on Sn ⊆ I, then fn+1 is supported on
Sn+1 ⊆ I.

Let f ∈ L1 (I) , i.e., such that
∫
I |f (x)| dx < +∞ and P : L1 (I) → L1 (I) the operator

defined by

(3.5) Pf (u) =
∫

I
L (u, v) f (v) dv,
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were L is defined for (u, v) ∈ on I × I by

(3.6) L (u, v) = φ

(
u

v2 (1− v)

)
1

v2 (1− v)
I[γ1(u),γ2(u)] (v) .

Notice that ∫
I
L (u, v) du =

∫ 27
4

0
φ (y) dy = 1,

i.e., L is a stochastic kernel on I × I, since, in addition, L ≥ 0, and also that

Pn+1f (u) =
∫

I
f (v) Ln+1 (u, v) dv

with

Ln+1 (v0, vn+1) =
∫

In

n+1∏
i=1

L (vi−1, vi) dvn...dv2dv1.

In the sequel will study the asymptotically behaviour of the sequence {Pn, n ∈ N} .

Suppose φ is a bounded probability density function with support [a, b] ⊂
(
0, 27

4

]
and consider

the function
hu (v) =

u

v2 (1− v)
,

defined for v ∈ (0, 1) and u ∈ I (cf. Figure 5 for some graphical examples). The minimum of
hu (v) is obtained when v = 2

3 and is given by hu

(
2
3

)
= u27

4 .

v

h
u
(v

)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

2
0

u = 1.0

u = 0.6

u = 0.2

Figure 5: Graphs of hu when u = 1 (solid line), u = 0.6 (dotted line)
and u = 0.2 (dashed line).

Notice that (cf. (3.6))

L (u, v) = φ (hu(v))
1

v2 (1− v)
I[γ1(u),γ2(u)] (v) .
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There are three possibilities, for a given u:

1. If u is such that hu

(
2
3

)
> b, i.e., if u > 4

27b, then L (u, v) = 0, for all v ∈ I.

2. If u is such that a ≤ hu

(
2
3

)
≤ b, i.e., if 4

27a ≤ u ≤ 4
27b, then

(3.7) L (u, v) = φ (hu(v))
1

v2 (1− v)
I[γ1(u),γ2(u)]∩V (u) (v) ≤ 27

4
b

a
M,

where V (u) =
[
minh−1

u ({b}) ,max h−1
u ({b})

]
and M = sup

u,v∈[0,1]
φ (hu(v)).

3. Finally, for u such that hu

(
2
3

)
< a, L is null if v /∈ {v : a ≤ hu (v) ≤ b} , and the

same condition (3.7) is obtained.

We can then conclude that ∀u, v ∈ I we have

L (u, v) ≤ 27
4

b

a
M.

Since
∫
I

b
a

27
4 Mdx < +∞, we have proven the following result (cf. [18], p. 99 and Theorem

5.7.3 in p. 118):

Theorem 3.1. The sequence {Pn, n ∈ N}, where P is defined by (3.5), is asymptoti-

cally periodic.

This means that there exists a finite sequence of densities g1, ...gr, a sequence of linear
functionals λ1, ..., λr, and a permutation ω of the integers 1, ..., r such that

Pgi = gω(i), gigj = 0 for i 6= j

and

lim
n→∞

∥∥∥∥∥Pnf −
r∑

i=1

λi(f)gωn(i)

∥∥∥∥∥ = 0 forf ∈ L1.

For better understanding the behaviour of the sequence {Pn, n ∈ N}, where P is defined
by (3.5), let the parameters µn, for n ∈ N from the stochastic difference equation (3.1) be
uniform in an interval C ⊆ S = (0, 27/4], i.e., let φ(x) = 1

|C|IC(x). The asymptotic behaviour
of the process depends on the set C. For example, if C = S, i.e., if φ(x) = 4

27IS(x), then at
the instant n the system can be in one of the following intervals:

E1 =
[
0,A 27

4

)
, E2 =

(
A 27

4
,
1
2

)
, E3 =

[
1
2
,
1 +

√
5

4

]
,

E4 =

(
1 +

√
5

4
,max f−1

({
A 27

4

}))
, E5 =

(
max f−1

({
A 27

4

})
, 1
]
,

where, recall, A 27
4

= 9−
√

33
18 . Consider Pn = [pi,j,n]i,j∈{1,...,5} where pi,j,n =P (xn+1∈Ej |xn∈Ei).
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We have

Pn =


1 0 0 0 0

p2,1,n p2,2,n p2,3,n p2,4,n p2,5,n

p3,1,n p3,2,n p3,3,n p3,4,n p3,5,n

p4,1,n p4,2,n p4,3,n p4,4,n p4,5,n

1 0 0 0 0

 .

Since pi,j,n 6= 0 for i ∈ {2, 3, 4} and j ∈ {1, .., 5} , the fixed point zero will attract all
points with probability one. Also, if there exists a natural number n0 such that pi,j,n0 = 0,
then pi,j,n = 0, for all n ≥ n0.

On the other hand, if, e.g., C = (4, 16/3) and x0 ∈ E3, the system will remain in E3

(Figure 6 represents two samples of the position of the system after 20000 steps). Hence, in
this case, there exists a set of positive Lebesgue measure where the inequality Pnf > 0 holds
for n ≥ n0(f), for every probability density function, f , with support on the positive real
numbers set. Using, e.g., Lemma 1 from [19], we can then conclude the following result:

Corollary 3.1. If φ is the uniform distribution based on a non null subset of (4, 16
3 ),

the sequence {Pn, n ∈ N}, where P is defined by (3.5) and (3.6), is asymptotically stable, i.e.,

there exists a probability density function f∗ on R+ such that Pf∗ = f∗ and

lim
x→∞

‖Pnf − f∗‖ = 0,

for any probability density function f on R+, where ‖.‖ denotes the norm in L1.
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Figure 6: Two samples of size 10000 of the random variable x20000 when
the sequence µn is uniformly distributed in (4, 10/3) and x0 = 0.6.
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[22] Lúıs, R. (2017). Nonautonomous Periodic Difference Equations with Applications to Popula-
tions Dynamics and Economics, Lambert Academic Publishing, Germany.
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