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Abstract:

• This paper concerns kernel-type ridge estimators of parameters in a semiparametric model. These
estimators are a generalization of the well-known Speckman’s approach based on kernel smoothing
method. The most important factor in achieving this smoothing method is the selection of the
smoothing parameter. In the literature, many selection criteria for comparing regression models
have been produced. We will focus on six selection criterion improved version of Akaike information
criterion (AICc), generalized cross-validation (GCV), Mallows’ Cp criterion, risk estimation using
classical pilots (RECP), Bayes information criterion (BIC), and restricted maximum likelihood
(REML). Real and simulated data sets are considered to illustrate the key ideas in the paper.
Thus, suitable selection criterion are provided for optimum smoothing parameter selection.
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1. INTRODUCTION

Let us consider the following semiparametric regression model:

(1.1) yi = xiβ + f(ti) + εi, 1 ≤ i ≤ n,

where the yi’s are observations, the xi = (xi1, ..., xip) are known p-vectors with p < n and ti’s
have bounded support, say the unit interval and have been reordered so that ti ≤ t2 ≤ ··· ≤ tn.
β = (β1, β2, ..., βp)T is an unknown p-dimensional vector of parameters, f(·) is unknown func-
tion and εi’s are the random error terms assumed to be uncorrelated with mean zero and
variance σ2. Note that f symbolizes the smooth part of the model and assume that it shows
the unparameterized functional relationship.

The model (1.1) is also called as a partially linear model, due to the connection with
the classical linear model (see [8]). In matrix-vector form, the model (1.1) can be written as

(1.2) y = Xβ + f + ε,

where y = (y1, ..., yn)T, X = (x1, ..., xn)T, f = (f(t1), f(t2), ..., f(tn))T and ε = (ε1, ..., εn)T.
The key idea is to estimate the unknown parameter vector β, the nonparametric function f(t)
and the mean vector µ = Xβ+ f based on the data yi,xi, ti. Note that semiparametric models
have received a considerable attention in the past two decades. One of the most important
reasons for this is that these models are more flexible than the standard linear model because
they combine both parametric and nonparametric components. In this context, a number of
authors have studied the model (1.1), including Green and Silverman [12], Speckman [30],
Eubank et al. [9], Schimek [28], Liang [21], Aydin et al. [3], Ahmed [1] and among others.

In many regression problems, there is a perfect or exact relationship between the
columns of X. In this case, multicollinearity is a serious problem which can dramatically in-
fluence the effectiveness of a regression model. The multicollinearity results in large variances
and covariances of the parameter estimates and may lead to lack of statistical significance of
individual parameters even though the overall model may be significant. For the purposes of
the paper, we will employ the kernel type ridge regression procedure that is designed to deal
with multicollinearity in semiparametric regression.

Concerning the collinear data, Gibbons [11] introduced a simulation study of ridge
estimators for parametric linear models. Kibria [18] proposed some new estimators based
on generalized ridge regression approach and considered some methods to estimate ridge
parameter. For the linear regression models Muniz and Kibria [23] reviewed and proposed
some estimators based on Kibria [18]. Key references for semiparametric regression based on
kernel smoothing are Robinson [26] and Speckman [30]. It should be noted that Robinson
[26] introduced an estimator for parametric part of a semiparametric model when nonpara-
metric component is stochastic and of arbitrary dimension. Speckman [30] discussed two
estimation method, one related to partial smoothing spline and the other modified by par-
tial residual, in estimating the components of a semiparametric model and examined the
asymptotic behaviours for both methods. Chen [6] studied the parametric component of
the partial linear model. Foucart [10] used the ridge estimators on partial linear models
for combat multicollinearity. Ridge estimation of a semiparametric regression model and a
comparison of this ridge estimation with two steps estimation are introduced by Hu [15].
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Roozbeh et al. [27], Yuzbasi and Ahmed [36] and Yuzbasi et al. [37] proposed a semipara-
metric ridge regression estimator for partially linear models. More recently, semiparametric
regression models based on different selection methods were studied and compared by Aydin
[2]. Lastly, the pretest and shrinkage ridge regression estimators based on smoothing spline
approach for partially linear models was studied by Yuzbasi [35] and modified estimators
in semiparametric regression models based on right censored data is studied by Aydin and
Yilmaz [4].

The main difference of our study is that we consider various kernel type ridge estimators
to estimate the components of a semiparametric regression model with collinear data. The
most important issue in this problem is to determine an amount of smoothing. In order
to specify an optimum smoothing parameter we use six different selection criteria under
simulated and real data settings. The basic idea is to find a useful selection criteria that
provides a good estimation of the model (1.1) based on multicollinear data. Due to smoothing
parameter selection criteria, we provide a comparison of the different ridge type estimators.
To the best of our knowledge, the studies in the literature often address the problem of
comparing different ridge type estimators and the selection of ridge parameter, but such a
study that includes kernel type ridge estimators based on different selection criteria has not
yet been conducted. This paper is organized as follows. Estimation based on kernel smoothing
is examined in Section 2. In Section 3, the kernel type ridge estimators in semiparametric
models are discussed. Statistical properties of the ridge type estimators are examined in
Section 4. Section 5 reviews six different smoothing parameter selection methods. Section 6
compares these methods via a real example. In Section 7, a simulation study is given. Finally,
concluding remarks are presented in Section 8. Supplemental technical materials are relegated
to the Appendix.

2. ESTIMATION BASED ON KERNEL SMOOTHING

First we consider the nonparametric estimation of the unknown regression function f(t)
in (1.1). For convenience, we assume that β in equation (1.1) is known. In this case, the
relationship between yi −Xiβ and ti can be denoted by

(2.1) (yi −Xiβ) = f(ti) + εi, i = 1, ..., n.

Equation (2.1) can be considered as equivalent to the nonparametric part of a semiparametric
model. As expressed in the study of Speckman [30], this leads to the Nadaraya-Watson
estimator proposed by Nadaraya [24] and Watson [34], and this is also referred to as the
kernel estimator:

(2.2) f̂λ(t) =
n∑

i=1

wiλ(ti)(yi −Xiβ) = Wλ(y −Xβ),

where λ is a smoothing parameter (or bandwidth) and Wλ is a kernel smoother matrix with
j-th entries wiλ, given by

(2.3) wiλ(ti) = K

(
t− ti

λ

)/ n∑
i=1

K

(
t− ti

λ

)
= K(ui)/

∑
i

K(ui).
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As shown in (2.1), kernel smoothing (or regression) uses the appropriate weights wiλ(t)
to estimate f(t). The weights given to the observations ti are directed by the kernel function
K(u) with a smoothing parameter λ, which controls the size of the neighborhood around t

[31]. Note that K(u) in (2.3) is a kernel or weight function such that
∫

K(u)du = 1, and
K(u) = K(−u). The kernel function is selected to give most weight to observations close to
and least weight to observations far from t.

Using the matrix and vector form of the model (1.2), we can obtain the following partial
residuals in matrix form:

(2.4) ε = y−Xβ − f̂ = (I−Wλ)(y−Xβ) = ỹ− X̃β,

where X̃ = (I−Wλ)X and ỹ = (I−Wλ)y. Thus, we obtain a transformed set of data based
on kernel residuals. Considering these partial residuals for the vector β yields the following
weighted least squares (WLS) criterion:

(2.5) WLS(β;λ) = ((I−Wλ)(y−Xβ))T ((I−Wλ)(y−Xβ)) =
(
ỹ− X̃β

)′ (
ỹ− X̃β

)
.

In analogy with ordinary least squares, the solution to the criterion WLS(β;λ) given in
equation (2.5) is easily seen to be

(2.6) β̂p =
(
X̃
′
X̃
)−1

X̃
′
ỹ.

Moreover, according to the equation (2.3) updating the steps for f(t) simplifies to

(2.7) f̂λ(t) =
n∑

i=1

K

(
t− ti

λ

) / n∑
i=1

K

(
t− ti

λ

)(
yi −Xiβ̂p

)
.

Equation (2.7) can also be written in a matrix form as

(2.8) f̂p = Wλ

(
y−Xβ̂p

)
.

Our estimate of µp is then

µp = Xβ̂p + f̂p = X
(
X̃
′
X̃
−1

X̃
′
ỹ + Wλ(y−Xβ̂p)

)
for

(2.9) Hp = Wλ + X̃
(
X̃
′
X̃
)−1

X̃
′
(I−Wλ) .

Equations (2.6) and (2.8) are hierarchical in the sense that the adjustment is made for t.
Adjusting for X first would produce a different estimator. One advantage of β̂p is that, there
is no iteration in calculation of β̂p even if a non-linear smoother is used. As a result the
approach requires only a standard regression routine if a computation of the X̃ and ỹ has
been done with smoother matrix Wλ.

3. KERNEL TYPE RIDGE ESTIMATORS IN SEMIPARAMETRIC
MODELS

Ridge regression has been proposed by Hoerl and Kennard [13], [14] as a solution
to the multicollinearity problem. It is well known that a ridge estimator provides a slight
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improvement on the estimations of partial regression coefficients when the column vectors of
the matrix X in a linear model y = Xβ + ε are highly correlated. Generally, the linear model
can be written in centered and scaled form. For notational convenience, we do not consider
an explicitly centered and scaled model here.Then, the ridge estimate of β for some k > 0
can be written as

(3.1) β̂r(k) =
(
X′X + kI

)−1 X′y,

where I is p× p identity matrix and k is the shrinkage parameter, whose value is specified by
the researcher. When k = 0 the ridge estimate corresponds to the least squares estimate. To
fit the model (1.1) to data, we can use ridge regression that shrinks the regression coefficients
by imposing a penalty on their size. This procedure can be related to the idea of hints due
to Speckman [30], where the parameter vector β is obtained by minimizing the penalized
residual sum of squares criterion

(3.2) PRSS(β;λ) =
n∑

i=1

(
ỹi − X̃iβ

)2
+ k

n∑
j=1

β2
j =

n∑
i=1

(
ỹi − X̃iβ

)2
+

n∑
j=1

(0− kβj)
2 ,

where k ≥ 0 is the shrinkage parameter that controls the magnitude of the penalty term. The
basic idea is to recast the linear regression problem as a linear smoother problem for another
data set. This means that if artificial data having response value zero are introduced, then a
fitting procedure can be forced to shrink the coefficients toward zero.

In matrix and vector form, equation (3.2) can be rewritten as

(3.3) PRSS (β;λ) =
(
ỹ− X̃β

)′ (
ỹ− X̃β

)
+ k‖0− β‖2.

The main objective is to find parameter vector β such that equation (3.3) is as small
as possible. The following theorem gives the estimates.

Theorem 3.1. Let ỹ = X̃β+ ε̃ where ε̃ = f̃+ε∗, f̃ = (I−Wλ) f and ε∗ = (I−Wλ) ε.

Also, X̃ is a n× p matrix and ỹ is a n× 1 vector, as defined in (2.8), respectively. If Wλ

is an arbitrary smoother matrix then the ridge regression estimates may be computed by

augmenting data

XA =
[

X̃√
kIp

]
and ỹA =

[
ỹ
0

]
.

The kernel type ridge estimator for β is indicated by β̂R(k) and given by

(3.4) β̂(k) =
(
X̃

′
X̃ + kIp

)−1
X̃

′
ỹ.

Proof of the Theorem 3.1 is given in Appendix A.1.

As in discussion Theorem 3.1, β̂R(k) is the ridge type estimator of the vector β in the
model (1.2). When k = 0, the ridge estimate reduces to a Speckman estimate problem in the
equation (2.8). Also, it is seen that there is a formal similarity between the equation (3.3)
and ridge estimator of the linear regression model. Combining equations (3.3) and (3.4) we
obtain the estimator of f as

(3.5) f̂R(k) = Wλ

(
y−Xβ̂R(k)

)
.

Thus the estimator (3.5) is defined as the kernel type ridge estimator for the unknown function
f in the model (1.2).
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4. FURTHER PROPERTIES OF THE ESTIMATORS

It is easily seen that equation (3.4) is identical to

(4.1) β̂R(k) =
(
X̃
′
X̃ + kIp

)−1
X̃
′
X̃βp =

[
Ip + k

(
X̃
′
X̃
)−1

]−1

β̂p,

where β̂p is the Speckman estimate, as defined in (2.8). Using the fact (AB)−1 = B−1A−1,
the equation (3.4) also becomes

(4.2) β̂R(k) =
[
Ip + k

(
X̃
′
X̃
)−1

]−1

β̂p =
(
X̃
′
X̃
′
+ kIp

)−1
X̃
′
ỹ.

It appears from (4.2) that the ridge type estimator is clearly biased, since[
Ip + k

(
X̃
′
X̃
)−1

]−1

6= Ip.

Hoerl and Kennard [13], [14] used this interpretation as a basis for the definition of
the β̂R(k) with k ≥ 0, the shrinkage parameter that controls the size of coefficients. Also,
equation (4.2) can be viewed as the Speckman estimator for k = 0.

Using the abbreviation

(4.3) Gk =
(
X̃
′
X̃ + kIp

)−1
.

Moments of the kernel type ridge estimator can be obtained as follows:

(4.4) E
(
β̂R(k)

)
= Gk

(
X̃
′
X̃β + X̃

′
f̃
)

= β − kGkβ + GkX̃f,

(4.5) Bias
(
β̂R(k)

)
= GkX̃

′
f̃− kGkβ,

(4.6) Var
(
β̂R(k)

)
= σ2GkX̃

′
(I−Wλ) .

The implementation details of Equations (4.4)–(4.6) are given in Appendix A.2.
It should be noted that in practice β and σ2 stated in equations above are replaced by
their estimated values.

4.1. Estimating the error variance

The error variance σ2 is usually unknown. In practice, σ2 needs to be estimated. In
a general semiparametric regression model, the estimate of variance σ2 can be found by the
residual sum of squares

RSS =
(
y− ŷ′

)′ (y− ŷ′
)

where {ŷ = Xβ̂R(k) + f̂R(k)}

=
(
y−

(
Xβ̂R(k) + f̂R(k)

))′ (
y−

(
Xβ̂R(k) + f̂R(k)

))
.
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Substituting ŷ =
(
Xβ̂R(k) + f̂R(k)

)
= Hλy, we obtain

(4.7) RSS = (y−Hλy)′ (y−Hλy) =‖ (I−Hλ)y ‖2
2,

where Hλ is called the smoother matrix which depends on λ > 0. Note that the matrix Hλ

is used to estimate the fitted values of the model in (1.2) and is expressed as

(4.8) Hλ = Wλ + (Ip −Wλ) X̃GkX̃
′
.

Furthermore, the expected value of RSS is

E(RSS) = σ2
[
n− tr(2Hλ −H2

λ)
]
+ E(y′)(I−Hλ)′(I−Hλ)E(y),

where the first term measures the variance, while the second term measures bias, respectively.
Detailed implementations of the equation (4.7) and E(RSS) are given in Appendix A.3.

Hence, similar to ordinary least squares regression,estimation of the error variance can
be defined by

(4.9) σ̂2 =
RSS

tr (I−Hλ)2
=
‖ (I−Hλ)y ‖2

2

n− p
,

where tr (I−Hλ)2 = n− tr
(
2Hλ −H′

λHλ

)
= n− p is the residual degrees of freedom. From

equation (4.9) see that the degrees of freedom for RSS is also known as the number of total
observations minus total number of the parameters in the model.

To show that σ̂2 is biased or unbiased for σ2, E(σ̂2) is found as

E(σ̂2) =
1

n− p
E
(
‖ (I−Hλ)y ‖2

2

)
=

1
n− p

E(RSS).

The expected value of E(RSS) implies that the estimator of σ2 in equation (4.9) has
a positive bias. However, it should be noted that the (4.9) yields asymptotically negligible
bias. Considering this point of view, it is noteworthy that σ̂2 is equivalent to mean square
error (MSE) which is a widely used criterion for measuring the quality of estimation (see
Speckman [30]).

4.2. Measuring the risk and performance efficiency

This section investigates the superiority of a biased estimator β̂R1(k) with respect to any
other biased estimator β̂R2(k). It is well known that ridge type estimators are biased and need
to measure the loss of information. Generally, the expected loss of a vector β̂R(k) estimator
is measured by risk (i.e., the bias-variance decomposition). Our task is now to approximate
the risk in the models in (1.1) or (1.2). Such approximations have the advantage of being
simpler to optimize the practical selection of smoothing parameters. For convenience, we will
work with the scalar valued mean dispersion error.
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Definition 4.1. The risk is closely related to the matrix valued mean dispersion error
(MDE) of an estimator β̂R(k) of β. The scalar valued version of the MDE matrix is specified
as

SMDE
(
β̂R(k),β

)
= E

(
β̂R(k)− β

)′ (
β̂R(k)− β

)
= tr

(
MDE

(
β̂R(k)− β

))
.

Lemma 4.1. Consider different estimators β̂jR(k) of βj .The mean dispersion error

(MDE) of these estimators is the sum of the covariance matrix and the squared bias:

E
(
‖ β̂R(k)− β ‖2

)
=

k∑
j=1

E
(
β̂jR(k)− βj

)2
= tr

[
Var

(
β̂R(k)

)]
+
[
Bias

(
β̂R(k)

)]2
.

Note that Var
(
β̂R(k)

)
is the covariance matrix of β̂R(k) and its trace can be illustrated as

tr
(∑p

j=1 Var
(
β̂jR(k)

))
.

For the proof, see Appendix A.4.

Applying the equations (4.4), (4.5) and (4.6), we obtain

(4.10) E

[(
β̂R(k)− β

)2
]

= σ2GkX̃
′
(I−Wλ)2 X̃Gk + Gk

(
X̃
′
f̃− kβ

)(
X̃
′
f̃− kβ

)′
Gk.

As stated in Definition 4.1, the MDE matrix decomposes into a sum of the squared bias
and covariance of the estimator. Also, it can be interpreted as the mean Euclidean distance
between the vectors β̂R(k) and β. Thus, from Definition 4.1, the MDE matrix is written as

(4.11) MDE
(
β̂R(k),β

)
= Gk

(
σ2X̃

′
(I−Wλ)2 X̃ +

(
X̃
′
f̃− kβ

)(
X̃
′
f̃− kβ

)′)
Gk.

As in Definition 4.1, the scalar valued version of the MDE matrix in (4.11) is given by

SMDE
(
β̂R(k),β

)
= tr{MDE

(
β̂R(k),β

)
}

= tr{Gk

(
σ2X̃

′
(I−Wλ)2X̃ + (X̃

′
f̃− kβ)(X̃

′
f̃− kβ)′

)
Gk}.

(4.12)

Hence, we can compare the quality of two estimators by looking at the ratio of their
SMDE in (4.12). This ratio gives the following definition concerning the superiority of any
two estimators.

Definition 4.2. The relative efficiency of an estimator β̂R1(k) compared to another
estimator β̂R2(k) is obtained by the ratio,

(4.13) RE
(
β̂R1(k), β̂R2(k)

)
=

R
(
β̂R2(k),β

)
R
(
β̂R1(k),β

) =
SMDE

(
β̂R2(k)

)
SMDE

(
β̂R1(k)

) ,

where R(·) denotes the scalar risk that is equivalent to the equation (4.12). β̂R2(k) is said to
be more efficient than β̂R1(k) if RE

(
β̂R1(k), β̂R2(k)

)
< 1.
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5. CHOOSING THE SMOOTHING PARAMETER

The main idea of this paper is how to select the smoothing parameter expressed in a
penalized residual sum of squares criterion (3.3). Our task is to select an optimum value
of the λ. In practice, this can be achieved by using smoothing parameter selection criteria.
A reasonable value of λ can be chosen to minimize the mentioned criteria. Examples of the
most widely used selection methods are summarized as follows:

GCV Criterion: The generalized cross validation (GCV) score is specified by (see
Craven and Wahba, [7])

GCV(λ) = n−1 ‖ (I−Hλ)y ‖2

/ [
n−1 tr(I−Hλ)

]2
,

where Hλ, as is defined in (4.8), is the smoother matrix based on λ.

Cp Criterion: This criterion proposed by Mallows [22] is aimed to provide an estimate
of the MSE in (4.9) scaled by σ2, and given as

Cp(λ) =
1
n
{‖ (Hλ − I)y ‖2 +2σ2 tr(Hλ)− σ2} =

1
n
{‖ y− f̂λ ‖2 +2σ2 tr(Hλ)− σ2)}.

If σ2 is unknown, in practice an estimation for σ2 can be provided by

σ̂2 = σ̂2
λ̂p

=‖ (Hλ̂p
− I)y ‖2

/
tr
(
I−Hλp

)
,

where λ̂ is an estimate of λ pre-chosen with any of the selection criterion (for example GCV).
For details, see Liang [21], Mallows [22] and Wahba [33].

AICc Criterion: Notice that the classical Akaike information criterion tends to overfit
when the sample size is relatively small. Hurvich et al. [16] suggested an improved version,
called AICc, which is defined by

AICc(λ) = 1 + log
[
‖ (Hλ − I)y ‖2

/
n

]
+
[
2{tr(Hλ) + 1}

/
n− tr(Hλ)− 2

]
.

BIC Criterion: Schwarz [29] improved the Bayesian information criterion (BIC) by
using Bayes estimators. Thus, the BIC is also called Schwarz Information Criterion (SIC).
The criterion is expressed as

BIC(λ) = 1/n ‖ (I−Hλ)y ‖2 +(log(n)/n) tr(Hλ).

RECP Criterion: Risk estimation criteria (RECP) measures the distance between f
and f̂λ. By direct calculation, the RECP(λ̂p) score is defined as

RECP(λp) = 1/n{‖ (Hλ − I)̂fλp ‖2 +σ̂2
λp

tr(HλHT
λ)} = 1/nE ‖ f− f̂λp ‖2,

where σ̂2
λp

and f̂λp are the appropriate pilot estimates for σ2 and f, respectively. The pilot
λp selected by classical methods is used for computation of the pilot estimates (see Lee [19],
[20]).
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REML Criterion: The restricted maximum likelihood (REML) criterion motivates
treating λ as a variance parameter. The REML and GCV have a similar form and provide
identical values. Moreover, the derivatives of both the REML and the GCV with respect to λ

can be determined quite naturally in a common form (see Reiss and Ogden [25]). The REML
score can be specified as

REML(λ) =‖ (I−Hλ)y ‖2

/
n− tr(Hλ).

5.1. Comparisons of computational times

In this paper, we discuss different parameter selection techniques proposed in the litera-
ture. Generally, they differ in the amount of computational time as well as a priori information
required. The four selection methods GCV, AICc, BIC, and REML need approximately the
same computational time for finding their corresponding smoothing parameter λ, as their
computations only require one numerical minimization problem. From computational per-
spective, a causing difficulty term is tr(Hλ), which takes O(n2) operations to assess directly,
for each set of smoothing parameters. Compared to these four methods, both Cp and RECP
require a longer computation time, as they need an estimate of parameter λ pre-chosen with
a selection criterion, such as GCV. So, there are two numerical minimization in computations
of Cp and RECP. However, it should be noted that some calculations are unnecessary for
these two numerical minimizations. For this reason, when careful programming is made, the
overall calculation time will not be doubled.

6. REAL DATA EXAMPLE

In this study, to illustrate how ridge type kernel method works on real data, power
plant data has been used. The power plant dataset includes 500 data points collected from a
Combined Cycle Power Plant. The goal is to predict the net hourly electrical energy output
(EP) of the plant from the features consisting of hourly average ambient variables such as
temperature (T ), ambient pressure (AP), relative humidity (RH ) and exhaust vacuum (V ).

Tufekci [32] has used the dataset for prediction of electrical power output of a base load
operated combined cycle power plant using machine learning methods. Also, Kaya et al. [17]
have used this data in their study called “Local and Global Learning Methods for Predicting
Power of a Combined Gas and Steam Turbine”.

In order to explain the variables clearly, their intervals and units are defined as follows:
T , AP , RH , V and EP lie in the range 1.81–37.11 Celsius, 992.89–1033.30 milibar, 25.56%–
100.16%, 25.36–81.56 cm-Hg, and 420.26–495.76 MW, respectively. The averages are taken
from various locations around the plant. Also, ambient variables are recorded every second.

Scatterplot matrix and Correlogram of these variables are shown in Figures 1–2, respec-
tively. According to Figure 1, V seems to have a curvilinear structure according to response
variable EP . In this context, this variable breaches the linearity assumption of the classical
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regression model. Therefore, V will compose a nonparametric part of the semiparametric
regression model. Other variables have considerable linear structure; consequently, T , AP ,
RH variables will be the parametric component of the semiparametric model.

Figure 1: Scatterplot matrix of power plant data.

Thus, the semiparametric regression model in equation (1.1) can be defined the follow-
ing way:

(6.1) EP i = β1(Ti1) + β2(AP i2) + β3(RH i3) + f(Vi4) + εi, i = 1, ..., 500.

Collinearity can be checked by simply calculating the correlations of the predictors in
the model (6.1). Let X be a 500× 4 matrix of the levels of the predictors in our real data
example. A very simple measure of multicollinearity is inspection of the Correlogram given
in Figure 2. It can be seen that several predictors have strong relationships with each other.

The eigenvalues of the X′X for power plant data are λ1 = 0.01, λ2 = 1613, λ3 =
3481, λ4 = 138950, respectively. As is known, small eigenvalues indicate a bad condition
in the data and maybe a collinearity problem. In order to determine the existence of mul-
ticollinearity, a condition index might be used. Condition Index (CI ) is commonly used as
an overall collinearity measure (Belsley et al., [5]). If the value of CI exceeds 30, then we
conclude that there is a strong multicollinearity in the data. This index is calculated as
follows:

CI =
[
λmax(X′X)/λmin(X′X)

]1/2 = 3723.10.

The value of CI = 3723.10 is an indication of potential multicollinearity problems. To combat
with the collinearity, researchers use the ridge regression estimators given in (3.1). The
illustration here will be based on kernel type ridge estimators given in (3.4) and (3.5). The
parameter are chosen by minimizing the AICc,GCV,BIC,REML,Cp and RECP criteria,
respectively. Also, the tuning parameter k is chosen with the generalized ridge regression
estimator suggested by Hoerl and Kennard [13], [14]. The outcomes are given in Table 1.
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Figure 2: Correlogram for power plant data: Red colour indicates a negative correlation between
the variables, while blue colour denotes a positive correlation. Size of the circle and
intensity of the colour shows the strength of the relationships between variables.

As denoted in Table 1, slope parameters estimated with AICc and RECP are very
similar and likewise BIC and GCV. The SMDE values, variances and bias values of the
semiparametric model have been obtained from six different selection methods. The SMDE,
bias and variance values calculated by RECP criterion smaller than other methods. This
is indicated in bold. In this situation, it is obvious that the RECP criterion has a more
convincing performance for the selection of the parameter λ and that Cp method does not
perform well under study.

Table 1: Estimated coefficients of parametric component of the model.

β̂AICc β̂BIC β̂GCV β̂REML β̂RECP β̂Cp

T −2.21931 −2.1932 −2.1924 −2.1928 −2.20437 −2.20721
AP 0.5024 0.4925 0.5003 0.5023 0.48276 0.47746
RH −0.1660 −0.1678 −0.1657 −0.1659 −0.16813 −0.16862
SMDE 425.2455 571.9484 565.9700 672.4861 408.2248 696.5099
Bias 19.8500 23.2257 23.1069 25.1973 19.69050 25.67990
Variance 31.2230 32.7831 32.3670 37.9560 20.50790 37.0527

The smooth curves in Figure 3 are the graph of ŷ = f̂(V ), different nonparametric
estimates of the effect of V variable on EP . For smoothed curves the MISE values given
in (7.2) are 24.8788, 26.0882, 26.0683, 26.3782, 24.1794 and 26.7481, respectively. Here, all
of the selection methods have shown almost the same performance except the Cp criterion.
Thus, we can say that the Cp does not provide a good empirical approximation.
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Figure 3: The smoothed curves for different kernel type ridge estimators based on
AICc,BIC,GCV,REML,RECP and Cp methods, respectively.

7. MONTE CARLO SIMULATION STUDY

In this section, a Monte Carlo simulation study are carried out to compare the per-
formance of the six selection methods expressed in Section 5. In the study, we simulate the
response variable for samples of size n = 50, 100 and 200 with 103 iteration from the following
model:

(7.1) yi = β1xi1 + β2xi2 + β3xi3 + βxi4 + f(ti) + εi, i = 1, ..., n,

where ε ∼ N(0, σ2In) which the values of σ = 0.5 and 1, β = (β1, β2, β3, β4)′ = (5, 4, 3, 2)′,
x1, x2, x3 and x4 are the correlated random variables, from the normal distribution. In here,
three correlation (ρ) levels are considered as: 0.85, 0.95 and 0.99. Finally, the function f is
represented by

f(ti) =
√

ti(1− ti) sin(2π/ti) with ti = (1− 0.5)/n.

It should be emphasized that we investigate three correlation levels, as stated above.
If ρ = 0.85, for instance, this allows us to obtain about the same correlation levels between
all pairs of variables. They are displayed in Table 2 for detecting correlations between the
explanatory variables. Note that the outcomes from correlated data based on ρ = 0.95, and
0.99 are not reported here, because of space limitations.

Table 2: Correlation matrix for ρ = 0.85 level.

X x1 x2 x3 x4

x1 1.00 0.83 0.83 0.82
x2 0.83 1.00 0.83 0.86
x3 0.83 0.83 1.00 0.84
x4 0.82 0.86 0.84 1.00
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7.1. Evaluating the parametric part

The focus of the study is to estimate the parametric and nonparametric components of
the semiparametric model. Additionally, the study is illustrating behaviors and performances
of the selection methods with small, medium and large samples under multicollinear data sets.
For each of the data sets, 1000 estimates of β = (β1, β2, β3, β4) are obtained. These estimates
are formed through a parametric component of the semiparametric regression model. The
following tables and figures summarize the results of the simulation study.

There are four panels in Figure 4. In each panel,“AIC1, AIC2 and AIC3”denote the para-
metric biases of β̂ from semiparametric regression using ridge type kernel smoothing based on
a smoothing parameter selected by improved AICc method for n = 50, 100 and 200, respec-
tively; similarly, “BIC1, BIC2 and BIC3” denote the case using BIC method for the sample
sizes; “GCV1, GCV2 and GCV3” denote the case for GCV method; “R1, R2 and R3” denote
REML method; “P1, P2 and P3” denote the RECP method; “Cp1, Cp2 and Cp3” illustrate
Mallows’ Cp method . The ordinate indicates the scale of the biases of regression coefficients.

Figure 4: Boxplots of the estimates (n = 50, 100 and 200) obtained from semiparametric model
for ρ = 0.95 and σ = 1. Panels indicate the boxplots of β̂1, β̂2, β̂3 and β̂4.

In this study, there are 18 different configurations. Since it is hard to illustrate here
all of these configurations, some of them are given in Figure 4 for correlation level ρ = 0.95
and σ = 1. As the sample size n gets larger, the range of estimates are getting narrower.
That means that estimates from medium and large sized samples are more stable than those
from small sized samples. If there is a correlation between the predictors, then the sample
size has an effect on the quality of parametric estimates. We can say that kernel type ridge
estimators work well for all samples. The key idea of the study is to compare the SMDEs for
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the estimators computed with each one of the criteria. The values of SMDE are illustrated
in Table 3. The criterion that has the smallest SMDE is the best one.

Table 3: Average SMDEs of the parameters based on 1000 Monte Carlo runs.

n ρ CI σ AICc BIC GCV REML RECP Cp

50

0.85
21.62 0.5 0.0043 0.0040 0.0040 0.0040 0.0040 0.0045
34.03 1.0 0.0050 0.0048 0.0047 0.0047 0.0045 0.0055

0.95
47.70 0.5 0.0157 0.0155 0.0159 0.0155 0.0132 0.0168
53.21 1.0 0.0211 0.0209 0.0201 0.0193 0.0199 0.0246

0.99
98.15 0.5 0.1348 0.1444 0.1267 0.1047 0.1366 0.1195

100.56 1.0 0.2356 0.2244 0.2457 0.2032 0.1995 0.2010

100

0.85
14.78 0.5 0.0007 0.0007 0.0007 0.0007 0.0007 0.0008
30.16 1.0 0.0010 0.0009 0.0009 0.0009 0.0009 0.0018

0.95
45.84 0.5 0.0043 0.0043 0.0043 0.0042 0.0038 0.0044
68.12 1.0 0.0052 0.0051 0.0052 0.0051 0.0050 0.0064

0.99
75.24 0.5 0.0272 0.0275 0.0278 0.0268 0.0258 0.0278
91.01 1.0 0.0385 0.0384 0.0398 0.0381 0.0383 0.0399

200

0.85
24.42 0.5 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002
22.31 1.0 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

0.95
57.71 0.5 0.0012 0.0012 0.0011 0.0011 0.0011 0.0011
63.94 1.0 0.0014 0.0014 0.0015 0.0014 0.0014 0.0018

0.99
99.41 0.5 0.0102 0.0110 0.0111 0.0113 0.0088 0.0136

110.48 1.0 0.0152 0.0154 0.0156 0.0151 0.0148 0.0177

As discussed in real data, the values of CI presented in Table 3 are given to measure
the extent of multicollinearity in the simulated data sets. It is readily seen that we have
mostly multicollinear data sets. According to the same table, it is possible to see that the
BIC, GCV, REML and RECP outperform AICc and Cp criteria for samples of size n = 50
and ρ = 0.85. Also, we see that the performances of five criteria, except Cp, behaviour
quite similar in the medium and large sized samples generated by various scenarios. Notice,
however, that RECP has a better performance under multi-collinear data sets especially for
highly correlation levels. They are indicated in bold in Table 3. A very attractive component
here is that as the sample size increase, the SMDE values decrease for all criteria based on
correlation level of ρ = 0.99.

Table 4: Simulated bias of the slope parameters for ρ = 0.99 and σ = 0.5.

n β AICc BIC GCV REML RECP Cp

50

β̂1 0.0827 0.0811 0.0866 0.0852 0.0841 0.0933

β̂2 0.0462 0.0458 0.0472 0.0492 0.0428 0.0444

β̂3 0.0240 0.0234 0.0248 0.0242 0.0237 0.0320

β̂4 0.0842 0.0980 0.0951 0.0985 0.0846 0.0874

100

β̂1 0.0547 0.0559 0.0558 0.0589 0.0563 0.0393

β̂2 0.0186 0.0177 0.0176 0.0181 0.0127 0.0175

β̂3 0,0138 0.0151 0.0151 0.0146 0.0107 0.0153

β̂4 0.0311 0.0391 0.0390 0.0382 0.0283 0.0321

200

β̂1 0.0219 0.0226 0.0219 0.0222 0.0150 0.0164

β̂2 0.0031 0.0037 0.0035 0.0033 0.0019 0.0036

β̂3 0.0032 0.0032 0.0033 0.0032 0.0028 0.0034

β̂4 0.0152 0.0169 0.0173 0.0168 0.0126 0.0177
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Table 4 presents a checking of the bias of the slope parameters of the model (7.1).
The number of parameters p = 4 and the parametric component of the model consists of real
parameter vector β = (5, 4, 3, 2)T. In general, sample sizes get larger, estimates obtained by
six different kernel type estimators give small bias values, as expected. Among six kernel
type ridge estimators, the one obtained by using RECP criterion provide the smallest bias of
the estimation of real coefficients, especially for samples of size n = 200. Results that related
to other correlation and sigma levels are similar. So, they are not reported here.

7.2. Measuring and comparing the efficiencies

In order to illustrate and compare the efficiency of the selection methods based on
highly correlated data, a relative efficiency values are constructed from the SMDE ratios in
(4.13). For each sample size the mentioned values are displayed in Figure 5. As can be
seen from Figure 5, relative efficiency values of the RECP are better than others except for
samples of size n = 50 and ρ = 0.85. This case shows that RECP is more efficient than the
other selection methods, especially for all samples based on highly correlated data. Note also
that outcomes from correlated data based on ρ = 0.90 are similar to the results displayed in
Figure 5 under ρ = 0.99 and are not reported here.

Figure 5: The column chart provides the averaged-relative efficiencies
computed by the selection criteria.

Inspection of the relative efficiency values in Figure 5 also reveal that for ρ = 0.85,
RECP criterion converges at 0.82, the highest rate when sample size is large. This indicates
that under multicollinear data and noisy data, RECP criterion has the best performance
among all other criteria, making it an ideal selection method for semiparametric regression
based on ridge type kernel smoothing method. It can also be observed from Figure 5 in
which four criteria, AICc, BIC, GCV and REML, perform similarly, and better than the Cp

criterion.
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7.3. Evaluating the nonparametric part

In order to measure the nonparametric component of the semiparametric model, 1000
estimates of function f are obtained for each selection criterion. Smoothness and appropri-
ateness of curve estimates have been measured by using the mean of the integrated squared
error (MISE) value:

(7.2) MISE =
1

1000

1000∑
j=1

ISEj ,

where ISEj denotes the integrated square error for the sample j, given by

ISEj =
∫ (

f(t)− f̂j(t)
)2

dt ≈ 1
n

n∑
i=1

(
f(ti)− f̂j(ti)

)2
where ti =

i− 0.5
n

,

where f(ti) value at ti points to the appropriate function f . In our simulation study, because
18 different configurations are carried out, it is very hard to illustrate all of them. Therefore,
only four different configurations will be presented in Figure 6. The left panels in the figure
represent the smoothed curves together with a real function f(t). In each graph, the smoothed
curves, f(AICc), f(BIC), f(GCV), f(REML), f(Cp), respectively, are estimates of function
f(t) using ridge type kernel smoothing based on AICc, BIC, GCV, REML, RECP and Cp

criteria. Also, the right panels of the Figure 6 denote the boxplots of the MISE values in
(7.2) for each criterion.

Figure 6: (a) n = 50, ρ = 0.85, σ = 1; (b) n = 50, ρ = 0.99, σ = 0.5;
(c) n = 100, ρ = 0.85, σ = 1; (d) n = 200, ρ = 0.99, σ = 1.

In Figure 6 we see that the improvements in the MISE values mostly depend on the
size of samples used in study. We also see that increasing the levels of correlation leads
to poor performance in terms of MISE values, even if the sample sizes are the same. On
the other hand, a visual inspection of the boxplots in all panels ((a) to (d)) denoted that
RECP criteria maintain their dominance over the remaining selection methods, especially
for large sized samples (say n = 200) based on data sets with ρ = 0.99 and σ = 1. On the
contrary, the Cp criterion similar behaviors to others in terms of performance (see panels (a)
and (c) of Figure 6). Notice, however, that the Cp yields poor estimates of the nonparametric
component, compared to the estimates obtained by other methods, as in parametric cases.
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8. CONCLUDING REMARKS

In this paper, for the parameters of the semiparametric model we proposed, kernel type
ridge estimators minimize the penalized residual sum of squares method. Efficient computa-
tion of this method requires an optimum smoothing parameter λ. This optimum parameter
is provided by means of AICc, BIC, GCV, REML, RECP and Cp criteria. Accordingly, we
obtained six different estimators for the parametric and nonparametric components of the
semiparametric model. We considered a real data example and simulated 1000 test observa-
tions to compare six different kernel type ridge estimators.

The empirical results confirmed that in the case of multicollinearity the kernel type ridge
estimators based on AICc, BIC, GCV, REML and RECP, criteria have similar values of the
SMDEs. The RECP, however, are superior to others in terms of SMDEs, especially when
higher correlation levels are used. Throughout this discussion, the estimators based on Cp

do not yield better performance in prediction of parametric and nonparametric components.
On the other hand, although the REML criterion is more stable than AICc, GCV and RECP
criteria, its performance is not good for all sample sizes and correlation levels. For the
simulation studies, the findings of the numerical experiments are summarized in Tables 3–4
and Figures 4–6. We conclude the following statements from these tables and figures:

• For all the selection criteria, the SMDE, variance, and bias values of the slope
parameters (or regression coefficients) start to decrease as the sample size n gets
larger.

• For small sample sizes, as expected the bias values of slope parameter increase as
the correlation and sigma levels increase.

• Also expected, when the lower correlation levels (i.e., ρ = 0.85) are used, the MISE
values decreases for all selection criteria.

• Finally, when comparing the six selection methods, we see that the kernel type ridge
estimators based on RECP method perform better than the others in terms of the
SMDE, variance and bias values of the estimates for all sample sizes under collinear
data.
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A. APPENDIX: SUPPLEMENTAL TECHNICAL MATERIALS

A.1. Proof of Theorem 3.1

Consider data augmentation methods of penalized residual sum of squares fitting.
Suppose that Wλ is symmetric smoother matrix. We wish to obtain the vector β̂R(k) that
minimizes the penalized residual sum of squares criterion (3.3) by using augmented data sets
of the form

XA =

[
X̃n×p(√

kI
)

p

]
=



x̃11 x̃12 ... x̃1p

x̃21 x̃22 ... x̃2p
...

...
...

...
x̃n1 x̃n2 ... x̃np√

k 0 ... 0

0
√

k ...
...

... ...
. . . 0

0 ... 0
√

k


((n+p)×p)

and yA =
[
ỹn×1

0p

]
=



ỹ11

ỹ21
...

ỹn1

0
0
...
0


((n+p)×1)

,

where
√

kIp is a p× p new diagonal matrix with diagonal elements equal to the square root
of the shrinkage parameter and 0p is p× 1 new vector of zeros. Also, X̃ = (I−Wλ)X and
ỹ = (I−Wλ)y as defined in equation (2.8), are partial residuals.

Similar to the ordinary least squares, the kernel ridge type estimators can be conve-
niently obtained using an augmented data set. A researcher could use this information to
construct a penalized least-squares estimator β̂R(k) of β. The estimator can be derived by

β̂ =
(
X′

AXA

)−1 X′
AyA

=

([
X̃
′

(
√

kIp)′
] [ X̃

′

(
√

kIp)′

])−1 [
X̃
′

(
√

kIp)′
] [ ỹ

0p

]
=
(
X̃
′
X̃ +

(√
kIp

)2
)−1 (

X̃
′
ỹ +

(√
kIp

)
0p

)
=
(
X̃
′
X̃ + kIp

)−1
X̃ỹ.

Hence, as claimed, this confirms that the kernel type ridge type estimator of the unknown
parameters in the models (1.1) or (1.2) is

(A.1) β̂(k) =
(
X′

AXA

)−1 X′
AyA =

(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ.
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A.2. Derivation of the equations (4.4)–(4.6)

Using the definition of β̂R(k) ridge and our modeling assumption on the mean function
E(ỹ|X̃) = X̃β, we obtain:(
β̂R(k)

)
= E

[(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ
]

= E

[(
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)y

]
= E

[(
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ) (Xβ + f + ε)

]
= E

[(
X̃
′
X̃ + kIp

)−1
X̃
′
X̃β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃ +
(
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ) ε

]
=
(
X̃
′
X̃ + kIp

)−1
X̃
′
X̃β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃

=
(
X̃
′
X̃ + kIp

)−1 (
X̃
′
X̃ + kIp − kIp

)
β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃

=
(
X̃
′
X̃ + kIp

)−1 [(
X̃
′
X̃ + kIp

)
β − kIpβ

]
+
(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃

=
[
Ip − k

(
X̃
′
X̃ + kIp

)−1
]

β +
(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃

= β − k
(
X̃
′
X̃ + kIp

)−1
β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃.

Equivalently, from (4.1), we obtain

E
(
β̂R(k)

)
= E

((
Ip + k(X̃

′
X̃)−1

)−1
β̂p

)
= E

[(
Ip + k(X̃

′
X̃)−1

)−1
(X̃

′
X̃)−1X̃

′
(I−Wλ)y

]
=
(
X̃
′
X̃ + kIp

)−1 (
X̃
′
X̃β + X̃

′
f̃
)

.

Hence, using the abbreviation in equation (4.3), as claimed before, it is obtained E
(
β̂R(k)

)
,

and Bias
(
β̂R(k)

)
in equations (4.4), (4.5), and (4.6), respectively. Also, we denote the

variance property of an estimator β̂R(k) by covariance matrix:

Var
(
β̂R(k)

)
= E

[(
β̂R(k)− E

(
β̂R(k)

))(
β̂R(k)− E

(
β̂R(k)

))′]
= E

(
X̃
′
X̃+ kIp

)−1
X̃
′
X̃β +

(
X̃
′
X̃+ kIp

)−1
X̃
′
f̃ +
(
X̃
′
X̃+ kIp

)−1
X̃
′
(I−Wλ) ε

−
[(

X̃
′
X̃ + kIp

)−1
X̃
′
X̃β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃
]

= E

(((
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)ε

)((
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)ε

)′)
= E

((
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)2

)((
X̃
′
X̃ + kIp

)−1
X̃
′
)

E(ε2)

= σ2
(
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)2

(
X̃
′
X̃ + kIp

)−1
X̃.

As a result, it can be expressed as the following result with abbreviation

Var
(
β̂R(k)

)
= σ2GkX̃

′
(I−Wλ)2X̃Gk,

as claimed.
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A.3. The derivation of the smoother matrix and E(RSS)

ŷ = X̃β̂R(k) + f̂R(k) = X̃
(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ + Wλ

(
y−Xβ̂R(k)

)
= X̃

(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ + Wλ

[
y−X

(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ
]

= X̃GkX̃
′
ỹ + Wλ

[
y−XGkX̃

′
ỹ
]

= X(Ip −Wλ)GkX̃
′
y + Wλ

(
y−X(Ip −Wλ)GkX̃

′
y
)

= X̃GkX̃
′
y + Wλy−WλHy = Wλy + (Ip −Wλ)Hy

= [Wλ + (Ip −Wλ)H]y = Hλy,

where H = X̃GkX̃
′
. Accordingly, the smoother matrix based on smoothing parameter λ is

Hλ = Wλ + (Ip −Wλ)X̃GkX̃
′
,

as defined in the equation (4.8).

The expected value of the RSS in equation (4.9) can be given by

E(RSS) = E
(
(y−Hλ)′(y−Hλ)

)
= E

(
y′(I−Hλ)′(I−Hλ)y

)
= E

(
y′(I−Hλ)2y

)
= tr

(
(I−Hλ)2σ2I

)
+ E(y′)(I−Hλ)2E(y)

= nσ2 tr(H2
λ)− 2σ2 tr(Hλ) + E(y′)(I−Hλ)2E(y)

= σ2
[
n− tr(2Hλ −H2

λ)
]
+ E(y′)(I−Hλ)′(I−Hλ)E(y).

A.4. Proof of Lemma 4.1

Since the MDE equals
∑k

j=1 E
(
β̂jR(k)− βj

)2
it is sufficient to prove for a scalar β̂R(k)

E

[(
β̂R(k)− β

)2
]

= Var
(
β̂R(k)

)
+ Bias2

(
β̂R(k)

)
= E

[(
β̂R(k)− E

(
β̂R(k)

))
+
(
E
(
β̂R(k)

)
− β

)]2
= E

(
β̂R(k)− E

(
β̂R(k)

))2
+
(
E
(
β̂R(k)

)
− β

)2

+ 2
(
β̂R(k)− E

(
β̂R(k)

))′ (
β̂R(k)− E

(
β̂R(k)

))
= E

(
β̂R(k)− E

(
β̂R(k)

))2
+ E

(
E
(
β̂R(k)

)
− β

)2

= Var
(
β̂R(k)

)
+ Bias2

(
β̂R(k)

)
.

This completes the proof of the Lemma 4.1.
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