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Abstract:

• In life testing situations, the residual life time of a component which has survived t units of time is
Xt = X− t|X > t. In this paper, we give a central limit theorem result for the estimator of Var(Xt),
the variance residual life(VRL) function. The result is used to construct normal approximation
based confidence interval for the VRL. Furthermore, we use the jackknife empirical likelihood
ratio procedure to obtain confidence interval for the VRL function. These intervals are compared
through simulation study in terms of the average length and coverage probability. Finally, a
numerical example illustrating the theory is also given.
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1. INTRODUCTION

Let X be a lifetime random variable with distribution function F and survival function
F̄ = 1−F such that E(X) < ∞. The residual life random variable at age t, denoted by Xt =
X − t|X > t, is simply the remaining lifetime beyond that age. The mean residual life (MRL,
also known as the mean remaining life) function is defined formally as µ(t) = E(X− t|X > t).
In industrial reliability studies of repair and replacement strategies, the MRL function may
prove to be more relevant than the failure (hazard) rate function. The former summarizes the
entire residual life distribution, whereas the latter relates only to the risk of immediate failure.
In studies of human populations, demographers often refer the MRL under the names of life
expectancy or expectation of life. Obviously, the MRL is of vital importance to actuarial work
relating to life insurance policies. For a comprehensive literature review about the MRL see
Lai and Xie [21].

Another function which has also generated some interest in the recent years is the
variance residual life function defined as σ2(t) = Var(X − t|X > t), see for example, Launer
[22] and Gupta et al. [14]. An alternative expression for the residual variance in above is
given by

σ2(t) = E[(Xt − µ(t))2] =
1

F̄ (t)

∫ ∞

t
(x− t− µ(t))2dF (x) =

2
F̄ (t)

∫ ∞

t
F̄ (x)µ(x)dx− µ2(t),

where µ(t) is the mean residual life function.

Numerous research works reveal the importance of the VRL function as a reliability
function useful in inference procedures and characterizations, and as a means to classify
lifetime distribution using its mathematical behaviour. σ2(t) appears in the formula for
Var(µ̂n(t)), where µ̂n(t) is an estimator of the MRL function, see Hall and Wellner [15].
It also appears in the expression of weights assigned for censored observations, see Schmee
and Hahn [29]. Launer [22] used σ2(t) to define certain new classes of life distributions and to
provide bounds for the reliability function for certain specified class of distributions. Gupta et

al. [14] shew that the bihaviour of the VRL function is intimately connected to the behaviour
of the mean residual life function of the equilibrium distribution. Lynn and Singpurwalla
[25] viewed the burn-in concept as a process of reduction of uncertainty of the lifetime of a
component. One approach to this is to minimize the VRL. Combining this with maximizing
the MRL leads Block et al. [5] to consider balancing mean and variance residual life through
minimizing the residual coefficient of variation (CV). Characterizations of distributions using
the VRL function can be found in Huang and Su [16] and references therein.

The role and properties of the variance residual life and the residual coefficient of vari-
ation in reliability have been discussed considerably for continuous lifetime random variables
by various authors such as Gupta and Kirmani [11], [12], [13], El-Arishi [8], Al-Zahrani and
Stoyanov [4] and Abu-Youssef [1], [2], [3]. Gupta [9], [10] studied the VRL, its monotonicity
and the associated aging classes of lifetime distributions. Karlin [19] has studied the mono-
tonic behaviour of σ2(t) when the density is log-convex(log-concave). Kanwar and Madhu
[18] gave a test for the VRL. Khorashadizadeh, et al. [20] studied properties of the VRL in
discrete case. Some stochastic orders have also been defined based on the VRL function (cf.
Lai and Xie, [21], p. 61).
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Empirical Likelihood (EL) method was originally introduced by Thomas and Grunk-
kemeier [31] and Owen [26] as a method for constructing nonparametric confidence intervals.
During the past decades, the EL method has developed as a very competitive nonparamet-
ric test procedure for quite general settings, including the test of a parameter defined by∫

g(t)dF (t) with censored survival data (see, e.g., Owen, [27]; Zhao and Qin, [33]; Zhou and
Jeong, [34] and the references therein). Inference based on EL has many attractive prop-
erties: typically, it does not require estimation of any variance, the range of the parameter
space is automatically respected, confidence regions have greater accuracy than those based
on the normal approximation approach, furthermore, it inherits all the good properties of the
likelihood ratio test and can handle more general types of censored data.

Empirical likelihood has been widely utilized in many settings. However, there exist a
lot of computational difficulties when applied to complicated nonlinear functional. To over-
come the computational difficulties, a modified EL method was proposed by Jing et al. [17],
which was called jackknife empirical likelihood (JEL). The main idea of the JEL is to “turn
the statistic of interest into a sample mean based on jackknife pseudo-values” (see Quenouille,
[28]). The goal of this paper is to develop the jackknife empirical likelihood (JEL) method
for interval estimation of the VRL function.

The rest of the paper is organized as follows. A U-statistic based estimator of the VRL,
the asymptotic normality of the estimator and the corresponding confidence interval/band
are given in Section 2. In this Section, we also propose a jackknife empirical likelihood, an
adjusted jackknife empirical likelihood for the VRL function, finding better interval estima-
tors of the VRL function. In Section 3, performance of the jackknife empirical likelihood
ratio confidence intervals is compared with the normal approximation based ones in terms
of coverage probability and average length through a simulation study. Section 4 looks at a
real data example illustrating the methods and finally, some concluding remarks are given in
Section 5.

2. INFERENCE METHODS

In this section we give the normal approximation based interval for the VRL function.
We also develop new interval estimator using jackknife EL methods. In order to overcome
the potential undercoverage problem that the JEL methods may encounter as observed in
Jing et al. [17], we further propose the adjusted jackknife empirical likelihood by adding one
more pseudo-value.

2.1. Normal approximation method

First, note that σ2(t) can be rewritten as

σ2(t) =
1

F̄ 2(t)

[
F̄ (t)

∫ ∞

t
x2dF (x)−

(∫ ∞

t
xdF (x)

)2
]
.
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Then, given a random sample X1, ..., Xn from the population of X with distribution function
F , the VRL function can be estimated as a ratio of two U-statistics

U (1)
n =

1(
n
2

) ∑
1≤i<j≤n

φ
(1)
t (Xi, Xj)

and
U (2)

n =
1(
n
2

) ∑
1≤i<j≤n

φ
(2)
t (Xi, Xj)

with the symmetric kernels φ
(1)
t (X1, X2) = [0.5(X2

1 + X2
2 )−X1X2]I(X1 > t)I(X2 > t) and

φ
(2)
t (X1, X2) = I(X1 > t)I(X2 > t), that is

σ̂2
n(t) =

U
(1)
n

U
(2)
n

,

where I(·) is the indicator function. The following theorem gives the asymptotic distribution
of σ̂2

n(t).

Theorem 2.1. Assume that E(X4) < ∞. Then

√
n(σ̂2

n(t)− σ2(t)) d→ N(0, υ2(t)),

(
d→ represents convergence in distribution). N(0, υ2(t)) represents the normal random vari-

able with mean 0 and variance

υ2(t) = 4
[

µ4(t)
4F̄ 2(t)

+
2µ2

1(t)µ2(t)
F̄ 4(t)

− µ4
1(t)

F̄ 5(t)
− µ1(t)µ3(t)

F̄ 3(t)
− µ2

2(t)
4F̄ 3(t)

]
,

where µi(t) =
∫∞
t xidF (x), i = 1, 2, 3, 4.

Proof: The result immediately follows from Theorem 6.1.6 in Lehmann ([24], p. 376)
and the standard delta method.

It is obvious that υ2(t) can be consistently estimated by its empirical counterpart,

υ̂2
n(t) = 4

[
µ̂4(t)

4F̄ 2
n(t)

+
2µ̂2

1(t)µ̂2(t)
F̄ 4

n(t)
− µ̂4

1(t)
F̄ 5

n(t)
− µ̂1(t)µ̂3(t)

F̄ 3
n(t)

− µ̂2
2(t)

4F̄ 3
n(t)

]
I(X(n) > t),

where Fn(t) = 1
n

∑n
i=1 I(Xi ≤ t) is the empirical distribution function, F̄n = 1− Fn,

µ̂i(t) =
∫ ∞

t
xidFn(x) =

1
n

n∑
j=1

Xi
jI(Xj > t), i = 1, 2, 3, 4,

and X(n) = max{X1, ..., Xn}. Thus, an asymptotic 100(1− α)% confidence interval for σ2(t)
at fixed time t based on the above normal approximation can be given by{

σ2(t) : n(σ̂2
n(t)− σ2(t))2 ≤ υ̂2(t)χ2

1−α(1)
}

,

where χ2
1−α(1) is the 100(1− α)-percentile of the chi-square distribution with one degree of

freedom.



Jackknife Empirical Likelihood Inference for the Variance Residual Life Function 27

The following theorem gives the weak convergence of the stochastic process based on
σ̂2

n(t) which can be used to construct a simultaneous confidence band for σ2(t). Let b < ∞
and b ∈ [0, τ ], where τ = inf{t : F (t) = 1} and denote

ρ(s, t) = E
[
(X − s− µ(s))2(X − t− µ(t))2I(X > t)

]
,

ν(s, t) =
∫ ∞

t
(x− s− µ(s))2dF (x).

Theorem 2.2. Suppose that E(X4) < ∞. Then the process
√

n(σ̂2
n(t)− σ2(t)) for

t ∈ [0, b] converges in distribution to a Gaussian process U(t) with mean zero and covariance

function

Γ(s, t) =
1

F̄ (s)F̄ (t)

[
ρ(b, b)− ρ(t, b)− ρ(s, b) + ρ(s, t)− F̄ 4(b)σ4(b)

+ F̄ (s)F̄ (b)σ2(s)σ2(b) + F̄ (t)F̄ (b)σ2(t)σ2(b)− σ2(t)ν(s, t)
]
,

where 0 ≤ s ≤ t ≤ b.

Proof: First note that the estimator σ̂2
n(t) can also be given by

σ̂2
n(t) =

1
nF̄n(t)

n∑
i=1

(Xi − t− µn(t))2I(Xi > t)

=
1

nF̄n(t)

n∑
i=1

(Xi − t− µ(t))2I(Xi > t)− [µn(t)− µ(t)]2,

where µn(t) = 1
F̄n(t)

∫∞
t F̄n(x)dx is the empirical estimator of the mean residual life function.

Then
√

n(σ̂2
n(t)− σ2(t)) =

1
F̄n(t)

{
Vn(t)− σ2(t)

√
n[F̄n(t)− F̄ (t)]

}
−
√

n[µn(t)− µ(t)]2,

where

Vn(t) = n−
1
2

n∑
i=1

[
(Xi − t− µn(t))2I(Xi > t)− σ2(t)F̄ (t)

]
.

Applying the same procedure of proof of Lemma 3 in Yang [32] follows that Vn(t) weakly
converges to a Gaussian process V (t) with E[V (t)] = 0 and

E[V (s)V (t)] = ρ(b, b)− ρ(t, b)− ρ(s, b) + ρ(s, t)− F̄ 4(b)σ4(b)

+ F̄ (s)F̄ (b)σ2(s)σ2(b) + F̄ (t)F̄ (b)σ2(t)σ2(b)− σ2(s)σ2(t)F̄ (s)F̄ (t),

where 0≤ s≤ t≤ b. On the other hand, Theorem 1 in Yang [32] implies that
√

n[µn(t)−µ(t)]2

= op(1), uniformly in t ∈ [0, b]. The result now follows from the fact that
√

n[F̄n(t)− F̄ (t)]
converges to a Brownian bridge and F̄−1

n (t) → F̄−1(t) uniformly in t ∈ [0, b] with probability
one.

Theorem 2.2 can be used to obtain the following confidence band for σ2(t). By the
continuous mapping theorem we have

sup
0≤t≤b

{√
n(σ̂2

n(t)− σ2(t))
}

d→ sup
0≤t≤b

U(t).
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Now, we can define the asymptotic 100(1− α)% simultaneous confidence band for σ2(t) in
t ∈ [0, b] as follows: {

σ2(t) :
√

n(σ̂2
n(t)− σ2(t)) ≤ cα

}
,

where cα is the upper α-percentile of the distribution of sup0≤t≤b U(t).

2.2. Jackknife empirical likelihood method

In this subsection, we construct a confidence interval for the true σ2(t) via jackknife
empirical likelihood (JEL). Let X1, ..., Xn(n ≥ 2) be a random sample from a distribution
function F . We define a one-sample U-statistic of degree 2

Un(σ2(t)) =
1(
n
2

) ∑
1≤i<j≤n

φt(Xi, Xj ;σ2(t)),

with symmetric kernel

φt(X1, X2;σ2(t)) =
[
σ2(t) + X1X2 − 0.5(X2

1 + X2
2 )

]
I(X1 > t)I(X2 > t).

It is easy to check that E[Un(σ2(t))] = 0, for the true σ2(t). To apply the JEL, we define our
jackknife pseudo-values by

V̂i(σ2(t)) = nUn(σ2(t))− (n− 1)U (−i)
n−1 (σ2(t)),

where U
(−i)
n−1 is the U-statistic after deleting the ith observation Xi. It can be easily shown

that E[V̂i] = 0 and

Un(σ2(t)) =
1
n

n∑
i=1

V̂i(σ2(t)).

Then, one can apply the standard EL method to V̂i. Let p = (p1, ..., pn) be the probability
vector over V̂i. The jackknife empirical likelihood ratio at true value σ2(t) is defined by

R(σ2(t)) = max

{
n∏

i=1

npi : pi ≥ 0, i = 1, ..., n,

n∑
i=1

pi = 1,

n∑
i=1

piV̂i(σ2(t)) = 0

}
.

By using the standard Lagrange multiplier method, we know that R(σ2(t)) is maximized
when

pi =
1
n

{
1 + λV̂i(σ2(t))

}−1
, i = 1, ..., n,

where λ = λ(σ2(t)) satisfies
1
n

n∑
i=1

V̂i(σ2(t))
1 + λV̂i(σ2(t))

= 0.

Let g(x) = E[φt(x,X2;σ2(t))] and σ2
g = Var(g(X1)). Now we have Wilks’ theorem for the

JEL as follows.

Theorem 2.3. Assume that E(X4) < ∞ and σ2
g > 0. Then, as n →∞

−2 log R(σ2(t)) d→ χ2
1,

where χ2
1 is a chi-distribution with one degree of freedom.
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Theorem 2.3 is a special case of Theorem 1 in Jing et al. [17] with m = 2. Instead
of the regularity condition E[φ2

t (X1, X2;σ2(t))] required by Theorem 1 in Jing et al. [17],
Theorem 2.3 requires existence of the forth moment because of the specific form of the VRL
function.

Following this, an asymptotic 100(1− α)% confidence interval for σ2(t) at time t can
be given by {

σ̃2(t) : −2 log R(σ̃2(t)) ≤ χ2
1−α(1)

}
,

where χ2
1−α(1) is the is 100(1− α)-percentile of the chi-square distribution with one degree

of freedom.

From practical point of view, the function el.cen.EM2 inside the package emplik,
which is an extension package to be used with the R software, carries out calculating the
above confidence interval.

Remark 2.1. Using the same procedure as the proof of Theorem 2.2 of Zhao and Qin
[33] and following Theorem 2.1 of Jing et al. [17], the above Theorem 2.2 implies that

−2 log R(σ2(t)) d→ W (t)
4σ2

g

,

where W (t) is a Gaussian process with mean zero and covariance function

Cov(W (s),W (t)) = F̄ (s)F̄ (t)Γ(s, t).

Thus, an JEL-based asymptotic 100(1− α)% simultaneous confidence band for σ2(t) in t ∈
[0, b] can be given by {

σ̃2(t) : −2 log R(σ̃2(t)) ≤ kα

}
,

where kα is the upper α-percentile of the distribution of sup0≤t≤b
W (t)
4σ2

g
.

2.3. Adjusted jackknife empirical likelihood method

Chen et al. [7] developed an adjusted empirical likelihood method, which significantly
improves the performance of the empirical likelihood method in terms of coverage probability
when the sample size is not large. We adapt their approach to the JEL for σ2(t) by adding
one more jackknife pseudo-value

V̂n+1(σ2(t)) = −an

n

n∑
i=1

V̂i(σ2(t)),

for constant an = max{1, 1
2 log(n)}. The adjusted jackknife empirical likelihood (AJEL) ratio

of σ2(t) is given by

Rad(σ2(t)) = max

{
n+1∏
i=1

(n + 1)pi : pi ≥ 0, i = 1, ..., n + 1,
n+1∑
i=1

pi = 1,
n+1∑
i=1

piV̂i(σ2(t)) = 0

}
.
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With the same conditions given by Jing et al. [17], Wilk’s theorem of the AJEL has been
established by Chen and Ning [6]. Thus, as a special case, the following theorem holds for
the above AJEL ratio. For the proof, we refer the reader to Chen and Ning [6].

Theorem 2.4. Assume that E(X4) < ∞ and σ2
g > 0. Then, as n →∞

−2 log Rad(σ2(t)) d→ χ2
1.

A 100(1− α)% confidence interval for σ2(t) by the adjusted JEL method can be devel-
oped similarly.

3. SIMULATION STUDY

Simulation exercises were undertaken to assess the performance of the normal approx-
imation (NA) based confidence interval, comparing with the jackknife empirical likelihood
(JEL) and adjusted jackknife empirical likelihood (AJEL) confidence intervals in terms of
the average length and coverage probability. In the simulation, we considered the following
two models for the underling lifetime distribution of X:

(i) X is uniformly distributed on (0, 1),

(ii) X has a Weibull distribution with survival function F̄ (x) = e−
1
2
x2

.

One can readily show that in case (i)

σ2(t) =
1

3(1− t)
(1− 3t + 3t2 − t3)− 1

4
(1− t)2,

and in case (ii)

σ2(t) = 2
[
1− tΦ̄(t)

φ(t)

]
− 2πet2Φ̄2(t),

where φ(t) and Φ̄(t) refer to the standard normal density and survival function, respectively.
In each case, we ran 2000 simulation trials of different sample sizes n = 50, 100 and 150 to
obtain confidence intervals with nominal confidence level of 0.95. We compute the average
length of intervals and coverage probabilities, i.e. the proportion of intervals which cover the
true value σ2(t) for different values of t.

Table 1 – Table 2 summarize the results of the 2000 simulation trials for both models.
From the tables, as the sample size n increases, all methods improve in terms of coverage
probabilities. It is also evident from the tables that, specially in Weibull model, the coverage
probability of the NA confidence interval is not satisfied when the sample size is small and
moderate. However, JEL and AJEL produce slightly better coverage probabilities for the
same sample size. When the sample size is large, NA, JEL and AJEL methods have similar
performance in terms of coverage probability. We can see coverage probability for AJEL is
very close to nominal level 0.95, and AJEL has better performance than JEL for the small
sample size. Though, for large values of t, the coverage probability of all the methods is
slightly far from the nominal level.
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For all the methods, the length of confidence interval becomes shorter when the sample
size becomes larger. When the sample size increases from moderate to large, the length of
confidence interval for all the methods are very close. It seems that, for large values of t,
the length of the NA confidence intervals is slightly shorter than JEL and AJEL confidence
intervals.

Table 1: Empirical coverage probabilities (average length) for σ2(t), uniform model.

n Method t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8

NA
0.930 0.935 0.923 0.906 0.822

(0.041) (0.029) (0.019) (0.010) (0.003)

50 JEL
0.929 0.935 0.924 0.888 0.908

(0.040) (0.029) (0.018) (0.010) (0.068)

AJEL
0.940 0.946 0.937 0.908 0.946

(0.042) (0.030) (0.019) (0.011) (0.089)

NA
0.939 0.936 0.930 0.928 0.900

(0.029) (0.021) (0.013) (0.007) (0.002)

100 JEL
0.935 0.930 0.930 0.922 0.919

(0.028) (0.020) (0.013) (0.007) (0.003)

AJEL
0.941 0.938 0.935 0.931 0.932

(0.029) (0.021) (0.013) (0.007) (0.003)

NA
0.941 0.936 0.944 0.938 0.920

(0.024) (0.017) (0.011) (0.006) (0.002)

150 JEL
0.937 0.932 0.943 0.940 0.947

(0.022) (0.016) (0.011) (0.006) (0.002)

AJEL
0.941 0.937 0.947 0.942 0.950

(0.022) (0.017) (0.011) (0.006) (0.002)

Table 2: Empirical coverage probabilities (average length) for σ2(t), Weibull model.

n Method t = 0 t = 0.25 t = 0.5 t = 1 t = 1.7

NA
0.887 0.878 0.864 0.834 0.679

(0.328) (0.316) (0.300) (0.277) (0.250)

50 JEL
0.909 0.903 0.894 0.862 0.870

(0.304) (0.306) (0.302) (0.296) (0.426)

AJEL
0.924 0.910 0.908 0.873 0.896

(0.315) (0.318) (0.314) (0.310) (0.480)

NA
0.913 0.924 0.908 0.886 0.778

(0.239) (0.236) (0.223) (0.214) (0.207)

100 JEL
0.925 0.929 0.919 0.917 0.834

(0.240) (0.240) (0.167) (0.154) (0.241)

AJEL
0.935 0.935 0.928 0.923 0.845

(0.245) (0.246) (0.170) (0.157) (0.251)

NA
0.927 0.926 0.923 0.909 0.811

(0.200) (0.193) (0.185) (0.179) (0.187)

150 JEL
0.929 0.938 0.929 0.926 0.859

(0.200) (0.144) (0.132) (0.184) (0.201)

AJEL
0.934 0.940 0.934 0.930 0.865

(0.203) (0.146) (0.134) (0.187) (0.205)
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4. REAL DATA ANALYSIS

In this section, we use a real data coming from reliability engineering to illustrate ap-
plications of the NA-based and JEL-based confidence intervals for the VRL function. Since
the variance estimator υ̂2(t) is unstable, the NA-based confidence interval for the VRL con-
tains negative values. In the following computation results, the values outside of the positive
range of the VRL are removed and the negative lower bounds of the confidence intervals are
replaced with zero.

Lawless [23] used the breaking strengths of single carbon fibers of different to fit a
parametric regression model. We use the data set consisting of breaking strengths of 57
single carbon fibers with unit length taken from Lawless [23] to estimate σ2(t). Table 3 gives
the estimated VRL function and corresponding 95% lower bound (LB), upper bound (UB)
and length based on the NA, JEL and AJEL methods at different time points t. We can see
from the table that the lengths of confidence intervals for the NA is longer than one for the
JEL and AJEL methods. Also, there is no big difference among the lengths of the JEL and
AJEL confidence intervals.

Table 3: Estimated variance residual lifetimes, 95% confidence intervals and lengths,
carbon fiber data.

NA JEL AJEL
t VRL

LB UB Length LB UB Length LB UB Length

0.5 0.697 0 2.503 3.612 0.477 0.998 0.521 0.472 1.015 0.543
2.5 0.637 0 2.232 3.189 0.443 0.901 0.458 0.433 0.911 0.477
3.5 0.432 0 1.627 2.389 0.291 0.643 0.352 0.284 0.654 0.370
4.5 0.250 0 1.057 1.615 0.145 0.413 0.268 0.138 0.423 0.285
5.0 0.130 0 0.620 0.979 0.001 1.129 1.128 0.328 1.129 0.801

5. CONCLUSION

In this paper, we have considered an estimator of the VRL function. The estima-
tor was shown to converge in distribution to a normal random variable. Furthermore, a
confidence interval for the VRL function at time t was constructed by using the normal ap-
proximation (NA) method. As alternative methods, we have also considered constructing
confidence interval/band for the VRL function using the jackknife empirical likelihood (JEL)
and adjusted jackknife empirical likelihood (AJEL) approaches. A major advantage of the
EL-based method is no need for nonparametric estimation of any kind of variance for statis-
tical inference. A simulation exercise was undertaken to compare between the performance
of the NA-based and El-based confidence intervals in terms of coverage probabilities and the
average lengths. As shown from the simulation study, the coverage probability for the NA
method is far away from our expectation when the sample size is small. However, the coverage
probability of confidence intervals for JEL and AJEL methods is very close to nominal level.
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The length of confidence interval for all the methods is very close when the sample size in-
creases from moderate to large. Finally, using a numerical example, the application of the
methods for constructing confidence intervals was illustrated.
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