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1. INTRODUCTION

Statistical distributions have been widely applied over the past decades for modeling
data in several areas. In fact, the statistics literature is filled with hundreds or thousands of
continuous univariate distributions. Among them, the exponential distribution is perhaps the
most widely applied statistical distribution in various fields, mainly because of the simplicity
of its mathematical quantities like moments, moment generating function, etc. However,
under some comparison criteria, it was shown that the Lindley distribution is a reliable
alternative to the exponential distribution in modeling lifetime data. The Lindley distribution
has a cumulative density function (cdf) of the form

F∗(x) = 1−
(

1 +
θ

1 + θ
x

)
e−θx, x, θ > 0.

The corresponding probability density function (pdf) is given by

(1.1) f∗(x) =
θ2

1 + θ
(1 + x)e−θx, x, θ > 0.

As indicated by its name, this distribution was introduced by [14, 15] to illustrate
a difference between fiducial distribution and posterior distribution. In the recent years,
the Lindley distribution is mainly used for studying stress-strength reliability modeling.
It finds applications in various areas such as engineering, demography, reliability, medicine
and biology. Its detailed properties can be found in [6], [10], [3], [1], [24], [27], etc.

In the last decades, its different generalizations have been emerged in distribution theory
and applications. In particular, the reader is refereed to the three parameters-Lindley dis-
tribution [31], generalized Poisson-Lindley distribution [16], generalized Lindley distribution
[22], Marshall-Olkin Lindley distribution [32], power Lindley distribution [5], two-parameter
Lindley distribution [25], quasi Lindley distribution [26], transmuted Lindley distribution
[18], transmuted Lindley-geometric distribution [19], beta-Lindley distribution [20] and dis-
crete Harris extended Lindley distribution [29], among others. Moreover, a latest version
of the Lindley distribution, called modified Lindley distribution, is given by [2]. Further,
Lindley distribution and its generalizations have been studied extensively by [30].

In this note, we consider two independent random variables following the Lindley distri-
bution with appropriate parameter and study the convolutions (sum and difference) of their
distributions. In addition, we investigate applications and structural properties of the new
models. In fact, this is a pioneering work in investigating comprehensively the applications
and properties of exact distributions of the sum and difference of Lindley random variables.
The article is outlined as follows: Section 2 deals with a detailed study of sum of two in-
dependent Lindley distributions. Section 3 presents difference of two independent Lindley
distributions. Finally, Section 4 offers some concluding remarks.
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2. ON THE SUM OF TWO INDEPENDENT LINDLEY DISTRIBUTION

This section is devoted to the sum of two independent random variables following the
Lindley distribution with pdf given by equation (1.1), including its main theoretical properties
and modeling.

2.1. Definition

We consider the pdf given by

f(x) =
θ4

(1 + θ)2
x

(
x2

6
+ x + 1

)
e−θx, x, θ > 0.(2.1)

The feature of this distribution is the following: let X and Y be two independent random
variables following the Lindley distribution with parameter θ. Then, the random variable
Z = X + Y has the pdf given by (2.1). This result is a particular case of [8, Theorem 2].
A crystal clear proof is given below. Since X and Y are independent, the pdf of Z is given
by the following convolution product: for x > 0,

f(x) =
∫ +∞

−∞
f∗(x− t)f∗(t)dt =

∫ x

0

θ2

1 + θ
(1 + x− t)e−θ(x−t) θ2

1 + θ
(1 + t)e−θtdt

=
θ4

(1 + θ)2
e−θx

∫ x

0
(1 + x− t)(1 + t)dt =

θ4

(1 + θ)2
x

(
x2

6
+ x + 1

)
e−θx.

For the purpose of this study, the corresponding distribution is called the 2S-Lindley
distribution (2S for Sum of 2 random variables). To the best of our knowledge, there is no
work on the theoretical and practical aspect of this distribution, which motivates a part of
this study.

As a first approach, some possible shapes of the pdf of the 2S-Lindley distribution are
shown in Figure 1.
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Figure 1: Plots of the pdf of the 2S-Lindley distribution for different values of θ.
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2.2. Probability functions

First of all, after some algebraic manipulations, the cdf of the 2S-Lindley distribution
is given by

F (x) = 1− 1
6(1 + θ)2

[
θ3x(x2 + 6x + 6) + 3θ2(x2 + 4x + 2) + 6θ(x + 2) + 6

]
e−θx,

x > 0.

The corresponding survival function (sf) is given by

S(x) = 1− F (x)

=
1

6(1 + θ)2
[
θ3x(x2 + 6x + 6) + 3θ2(x2 + 4x + 2) + 6θ(x + 2) + 6

]
e−θx,

x > 0.

The corresponding hazard rate function (hrf) is given by

h(x) =
f(x)
S(x)

=
θ4x(x2 + 6x + 6)

θ3x(x2 + 6x + 6) + 3θ2(x2 + 4x + 2) + 6θ(x + 2) + 6
, x > 0.

Also, the corresponding cumulative hazard rate function is given by

Ω(x) = − log[S(x)]

= log(6) + 2 log(1 + θ) + θx

− log
[
θ3x(x2 + 6x + 6) + 3θ2(x2 + 4x + 2) + 6θ(x + 2) + 6

]
, x > 0.

The corresponding quantile function (qf), say Q(u), can be obtained by solving the following
equation: F (Q(u)) = Q(F (u)), u ∈ (0, 1). It can not be presented analytically but can be
determined numerically for a given θ. Also, shapes of the hrf of the 2S-Lindley distribution
are shown in Figure 2.
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Figure 2: Plots of the hrf of the 2S-Lindley distribution for different values of θ.
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2.3. Moments

The (ordinary) moments of the 2S-Lindley distribution are expressed in the following
result.

Proposition 2.1. Let r ∈ N and Z a random variable following the 2S-Lindley dis-

tribution with parameter θ. Then, the r-th moment of Z is given by

µ∗r = E(Zr) =
1

6θr

1
(1 + θ)2

(r + 1)!
[
6θ2 + 6θ(r + 2) + r2 + 5r + 6

]
.

Proof: Let us introduce the gamma function defined by Γ(x) =
∫ +∞
0 tx−1e−tdt, x > 0.

By using the pdf of Z given by (2.1), we have

µ∗r = E(Zr) =
∫ +∞

−∞
xrf(x)dx

=
θ4

(1 + θ)2

[
1
6

∫ +∞

0
xr+3e−θxdx +

∫ +∞

0
xr+2e−θxdx +

∫ +∞

0
xr+1e−θxdx

]
=

θ4

(1 + θ)2

[
1
6

1
θr+4

Γ(r + 4) +
1

θr+3
Γ(r + 3) +

1
θr+2

Γ(r + 2)
]

=
1

6θr

1
(1 + θ)2

(r + 1)!
[
6θ2 + 6θ(r + 2) + r2 + 5r + 6

]
.

This ends the proof of Proposition 2.1.

An alternative proof of Proposition 2.1 using the Lindley distribution as baseline is
given below. Let us recall that, for any r ∈ N and a random variable X following the Lindley
distribution with parameter θ, the r-th moment of X is given by

µ′r = E(Xr) =
r!(θ + r + 1)

θr(1 + θ)
.

Therefore, by Z = X + Y and the binomial formula, the r-th moment of Z is given by

µ∗r = E((X + Y )r) =
r∑

k=0

(
r

k

)
µ′r−kµ

′
k

=
r∑

k=0

(
r

k

)
(r − k)!(θ + r − k + 1)

θr−k(1 + θ)
k!(θ + k + 1)

θk(1 + θ)

=
1
θr

1
(1 + θ)2

r!
r∑

k=0

(θ + r − k + 1)(θ + k + 1)

=
1

6θr

1
(1 + θ)2

(r + 1)!
[
6θ2 + 6θ(r + 2) + r2 + 5r + 6

]
.

Also, owing to Proposition 2.1, we have

µ∗1 =
2(θ + 2)
θ(1 + θ)

, µ∗2 =
6θ(θ + 4) + 20

θ2(1 + θ)2
, µ∗3 =

24(θ2 + 5θ + 5)
θ3(1 + θ)2
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and

µ∗4 =
120(θ2 + 6θ + 7)

θ4(1 + θ)2
.

In particular, the mean of Z is given by µ = µ∗1 and the variance of Z is given by

σ2 = µ∗2 − µ2 =
2(θ2 + 4θ + 2)

θ2(1 + θ)2
.

Other important quantities can be defined via the moments as, for instance, the skewness
and kurtosis coefficients of Z, respectively given by

√
β1 =

1
σ3

E
[
(Z − µ)3

]
=

1
σ3

3∑
k=0

(
3
k

)
(−1)3−kµ∗kµ

3−k

and

β2 =
1
σ4

E
[
(Z − µ)4

]
=

1
σ4

4∑
k=0

(
4
k

)
(−1)4−kµ∗kµ

4−k.

Table 1 indicates numerical values for the quantities above, i.e., µ∗1, µ∗2, µ∗3, µ∗4, σ2,
√

β1 and
β2, for selected values for θ.

Table 1: Numerical values of some measures of the 2S-Lindley distribution
for selected values of parameter θ.

θ µ∗1 µ∗2 µ∗3 µ∗4 σ2 √
β1 β2

0.002 1998.004 4992018 14970071832 5.23803e+13 999998 14.9442 4.5000

0.02 198.0392 49217.61 14707036 5132929642 9998.0787 14.4597 4.500

0.2 18.3333 434.7222 12583.33 429166.7 98.6111 10.8801 4.5420

0.1 38.1818 1856.198 109289.3 7547107 398.3471 12.6300 4.5124

1 3.0000 12.5000 66.0000 420.0000 3.5000 4.3525 4.8980

2 1.3333 2.5556 6.3333 19.1666 0.7778 0.4860 5.2347

5 0.4667 0.3222 0.2933 0.3305 0.1044 8.2294 5.6713

10 0.2182 0.0711 0.0307 0.0166 0.0235 22.0892 5.8688

20 0.1048 0.0164 0.0035 0.0009 0.0054 50.0478 5.9566

100 0.0202 0.0006 2.4715e-05 1.2477e-06 0.0002 275.9059 5.9978

2.4. Incomplete moments

A result on the incomplete moments for the 2S-Lindley distribution is given below.
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Proposition 2.2. Let r be a positive integer and Z a random variable following the

2S-Lindley distribution with parameter θ. Let us introduce the lower gamma function defined

by γ(x, y) =
∫ y
0 tx−1e−tdt, x > 0 and y ≥ 0. Then, the r-th incomplete moment of Z is given

by

µ∗r(t) = E(Zr1{Z≤t}) =
1

(1 + θ)2θr

[
1
6
γ(r + 4, θt) + θγ(r + 3, θt) + θ2γ(r + 2, θt)

]
.

Proof: By using the pdf of Z given by (2.1), we have

µ∗r(t) =
∫ t

−∞
xrf(x)dx

=
θ4

(1 + θ)2

[
1
6

∫ t

0
xr+3e−θxdx +

∫ t

0
xr+2e−θxdx +

∫ t

0
xr+1e−θxdx

]
=

θ4

(1 + θ)2

[
1
6

1
θr+4

γ(r + 4, θt) +
1

θr+3
γ(r + 3, θt) +

1
θr+2

γ(r + 2, θt)
]

=
1

(1 + θ)2θr

[
1
6
γ(r + 4, θt) + θγ(r + 3, θt) + θ2γ(r + 2, θt)

]
.

This ends the proof of Proposition 2.2.

The incomplete mean given by µ∗1(t) deserves a particular focus, because it allows to
express several important quantities, as the mean deviation of Z about the mean given by
δ1 = E(|Z − µ|) = 2µF (µ)− 2µ∗1(µ), the mean residual life of Z given by m∗(t) = E(Z − t |
Z > t) = [1−µ∗1(t)]/[1−F (t)]− t and the mean waiting time of Z given by M∗(t) = E(t−Z |
Z < t) = t− µ∗1(t)/F (t), among others.

2.5. Characteristic function

The characteristic function of the 2S-Lindley distribution is provided in the following
result.

Proposition 2.3. Let Z be a random variable following the 2S-Lindley distribution

with parameter θ. Then, the characteristic function of Z is given by

ϕ(t) =
θ4(θ − it + 1)2

(1 + θ)2(θ − it)4
, t ∈ R.

Proof: Let us recall that, for any t ∈ R and a random variable X following the Lindley
distribution with parameter θ, the characteristic function of X is given by

ϕ∗(t) = E(eitX) =
θ2(θ − it + 1)

(1 + θ)(θ − it)2
.

Hence, using the representation Z = X + Y with X and Y independent and identically dis-
tributed, the characteristic function for Z is given by

ϕ(t) = [ϕ∗(t)]2 =
θ4(θ − it + 1)2

(1 + θ)2(θ − it)4
.

This ends the proof of Proposition 2.3.
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2.6. Stochastic ordering

A result on stochastic ordering related to the 2S-Lindley distribution is now presented.
Before that, some basics are recalled. Let X1 and X2 be two random variables having pdfs
given by f1(x) and f2(x), respectively. Then, X1 is said to be smaller than X2 in the
likelihood ratio order, denoted by X1 ≤lr X2, if f1(x)/f2(x) is decreasing in x. This property
has important consequence in terms of distribution comparisons. We refer to [23] for the
technical details.

Proposition 2.4. Let X1 be random variable following the 2S-Lindley distribution

with parameter θ1 and X2 be a random variable following the 2S-Lindley distribution with

parameter θ2. Then, if θ1 ≥ θ2, we have X1 ≤lr X2.

Proof: Let f1(x) and f2(x) be the pdfs of X1 and X2 given by (2.1) with θ = θ1 and
θ = θ2, respectively. Then, for x > 0, we have

f1(x)
f2(x)

=
θ4
1(1 + θ2)2

θ4
2(1 + θ1)2

e−(θ1−θ2)x,

which is clearly decreasing if θ1 ≥ θ2, implying the desired result. This ends the proof of
Proposition 2.4.

2.7. Extreme order statistics

Let us consider a random sample X1, ..., Xn of size n from the 2S-Lindley distri-
bution with parameter θ. Let X1:n = min(X1, ..., Xn) be the sample minima and Xn:n =
max(X1, ..., Xn) be the sample maxima. Then, we have the following limit results:

lim
t→0

F (xt)
F (t)

=

lim
t→0

1− 1
6(1+θ)2

[
θ3xt(x2t2 + 6xt + 6) + 3θ2(x2t2 + 4xt + 2) + 6θ(xt + 2) + 6

]
e−θxt

1− 1
6(1+θ)2

[θ3t(t2 + 6t + 6) + 3θ2(t2 + 4t + 2) + 6θ(t + 2) + 6] e−θt

= x.

Thus, [13, Theorem 1.6.2] ensures the existence of an and bn such that

lim
n→∞

P (an(X1:n − bn) ≤ x) = 1− e−x.

We recognize the cdf of the exponential distribution with parameter 1, showing that an(X1:n−
bn) can be approximated by this distribution.

Moreover, we have

lim
t→+∞

1− F (x + t)

1− F (t)
=

lim
t→+∞

θ3(x + t)((x + t)2 + 6(x + t) + 6) + 3θ2((x + t)2 + 4(x + t) + 2) + 6θ((x + t) + 2) + 6

θ3t(t2 + 6t + 6) + 3θ2(t2 + 4t + 2) + 6θ(t + 2) + 6
e−θx

= e−θx.
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Thus, [13, Theorem 1.6.2] ensures the existence of an and bn such that

lim
n→∞

P (an(Xn:n − bn) ≤ x) = exp
(
−e−θx

)
.

We recognize the cdf of the Gumbel distribution with parameters 1 and 1/θ, showing that
an(Xn:n − bn) can be approximated by this distribution.

The form of the norming constants can also be determined using [13, Corollary 1.6.3].

2.8. Maximum likelihood estimator

Let x1, ..., xn be n observations of a random variable Z following the 2S-Lindley distri-
bution with parameter θ. Then, the likelihood and log-likelihood functions are, respectively,
defined by

L(θ) =
n∏

i=1

f(xi) =
θ4n

(1 + θ)2n

[
n∏

i=1

xi

] [
n∏

i=1

(
x2

i

6
+ xi + 1

)]
e−θ
Pn

i=1 xi

and

`(θ) = log[L(θ)] = 4n log(θ)− 2n log(1 + θ)− θ
n∑

i=1

xi +
n∑

i=1

log(xi)

+
n∑

i=1

log
(

x2
i

6
+ xi + 1

)
.

The maximum likelihood estimator (MLE) of θ, denoted by θ̂, is defined by the θ maximizing
L(θ) or `(θ). Thus, it can be obtained by solving the following equation: ∂`(θ)/∂θ = 0, i.e.,

4n

θ
− 2n

1 + θ
−

n∑
i=1

xi = 0.

After some algebra, we have

θ̂ =

−
n∑

i=1
xi +

√(
2n−

n∑
i=1

xi

)2

+ 16n
n∑

i=1
xi + 2n

2
n∑

i=1
xi

.

Hence, θ̂ has a simple expression. As any MLE, it enjoys desirable properties of convergence,
guarantied by the well-established theory of the maximum likelihood method.

2.9. Simulation study

In this section, we present some simulation results to examine the finite sample be-
havior of the MLE proposed in previous section in the case of the 2S-Lindley distribution.
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The simulation study is repeated for N = 1000 iterations each with sample size n = 25, 50,
150 and 300 from the 2S-Lindley distribution. The 2S-Lindley random number generation
was performed using the sum of rlindley() function from LindleyR package [17] and the
parameters are estimated by using the method of MLE by using the package nlm in R. The
evaluation of the assessment is based on two quantities such as the bias and the mean squared
errors (MSE), as follows:

1) bias of the simulated N estimates of R:

1
N

N∑
i=1

(R̂i −R),

2) mean square error of the simulated N estimates of R:

1
N

N∑
i=1

(R̂i −R)2,

where R is the true value of parameters θ. The results of our simulation study are summarized
in Table 2. Based on the table, notice that the MLEs are close to the true parameter values
for the current sample sizes, which means that the maximum likelihood method can be used
effectively for estimating θ. Also, we can see that the bias and MSE of the MLEs converge
to zero when the sample size is increased, as expected.

Table 2: Bias and MSE of θ̂ for the 2S-Lindley distribution.

θ = 0.3 θ = 0.5 θ = 1.0 θ = 1.2

n Bias MSE Bias MSE Bias MSE Bias MSE

25 0.0031 0.0009 0.0055 0.0027 0.0166 0.0124 0.0145 0.0178

50 0.0023 0.0004 0.0032 0.0013 0.0075 0.0055 0.0077 0.0079

100 0.0011 0.0002 0.0010 0.0007 0.0053 0.0029 0.0027 0.0041

200 6.7e-05 0.0001 0.0006 0.0003 0.0034 0.0015 0.0027 0.0022

300 4.6e-05 7.7e-05 5.1e-05 0.0002 0.0014 0.0010 0.0020 0.0014

2.10. Applications

Here, we use four data sets to illustrate the power of the proposed 2S-Lindley distribu-
tion. We compare the proposed distribution with the Lindley and exponential distributions.
The first real data set corresponds to arose in tests on endurance of deep groove ball bearings
from [12] on the number of million revolutions before failure for each of the 23 ball bearings
in the life tests. The data are given below:

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84 51.96 54.12 55.56 67.80 68.44 68.64 68.88
84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40 .
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The second real data set is from [28]. It represents the strength of 1.5cm glass fibers measured
at the National Physical Laboratory, England. The data are given below:

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00 0.74 1.04 1.27 1.39 1.49 1.53
1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84
2.24 0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84 1.24 1.30 1.48 1.51 1.55
1.61 1.63 1.67 1.70 1.78 1.89

The third real data set is reported by [7]. It demonstrates the lifetime’s data relating to relief
times (in minutes) of 20 patients receiving an analgesic. The data are given below:

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7 4.1 1.8 1.5 1.2 1.4 3 1.7 2.3 1.6 2

The fourth data set is taken from [4]. it gives the strength data of glass of the aircraft window.
The data are given below:

18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.8 26.69 26.77 26.78 27.05 27.67 29.9
31.11 33.2 33.73 33.76 33.89 34.76 35.75 35.91 36.98 37.08 37.09 39.58 44.045 45.29 45.381.

For comparing the goodness of fit of the models, we found the unknown parameters (by the
maximum likelihood method), standard error (SE), −log likelihood (−logL), AIC (Akaike
Information Criterion), BIC (Bayesian Information Criterion), corrected Akaike Information
Criterion (AICc) and Kolmogorov-Smirnov (K-S) statistic, given by

−LogL = − log(L), AIC = −2LogL + 2k, BIC = −2LogL + k log(n),

AICc = AIC +
2k(k + 1)
n− k − 1

,

and

K-S = max{|F (xi)− F̂ (xi)|, |F (xi)− F̂ (xi−1)|},

where L is the maximum value of the corresponding likelihood function, k is the number of
parameters, n is the sample size, F (xi) denote the value of the cdf of the candidate distribution
at xi and F̂ (xi) denote the value of the empirical distribution function at xi.

Table 3, Table 4 Table 5 and Table 6 summarize the results of the fitted 2S-Lindley,
Lindley and exponential distributions for the four considered data sets.

Table 3: Estimated values, −logL, AIC, BIC, AICc and K-S statistics
for the first data set.

Distribution Estimates (SE) −logL AIC BIC AICc K-S

2S-Lindley 0.0570 (0.0028) 113.0799 228.1598 229.2953 228.2254 0.10606

Lindley 0.0273 (0.0040) 115.7356 233.4713 234.6068 233.66 0.19299

exponential 0.0138 (0.0029) 121.4365 244.8731 246.0086 245.06 0.30677
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Table 4: Estimated values, −logL, AIC, BIC, AICc and K-S statistics
for the second data set.

Distribution Estimates (SE) −logL AIC BIC AICc K-S

2S-Lindley 1.8011 (0.1274) 62.2742 126.5484 128.6916 126.614 0.32852

Lindley 0.9961 (0.0948) 81.27844 164.5569 166.7 164.6225 0.38643

exponential 0.6636 (0.0836) 88.83032 179.6606 181.8038 179.7262 0.418

Table 5: Estimated values, −logL, AIC, BIC, AICc and K-S statistics
for the third data set.

Distribution Estimates (SE) −logL AIC BIC AICc K-S

2S-Lindley 1.4775 (0.1822) 24.8511 51.70225 52.69799 51.92447 0.29271

Lindley 0.8161 (0.1361) 30.24955 62.4991 63.49483 62.72132 0.43951

exponential 0.5263 (0.1179) 32.83708 67.67416 68.66989 67.89638 0.43951

Table 6: Estimated values, −logL, AIC, BIC, AICc and K-S statistics
for the fourth data set.

Distribution Estimates (SE) −logL AIC BIC AICc K-S

2S-Lindley 0.1227 (0.011) 117.8023 237.6046 239.0386 237.7425 0.26915

Lindley 0.0630 (0.008) 126.9942 255.9884 257.4224 256.1263 0.36548

exponential 0.0324 (0.0058) 137.2644 276.5289 277.9629 276.6668 0.4586

From these tables, it is obvious that the smallest −logL, AIC, BIC, AICc and K-S
statistic are acquired for the 2S-Lindley distribution. In summary, we can conclude that the
2S-Lindley model can be adequate for modeling these data.

3. ON THE DIFFERENCE OF TWO INDEPENDENT LINDLEY DISTRI-
BUTION

This section now focuses on the properties of the difference of two independent random
variables following the Lindley distribution with the same parameter.
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3.1. Definition

We now consider the pdf given by

f(x) =
θ

4(1 + θ)2
[
θ(2θ + 1)|x|+ 2θ2 + 2θ + 1

]
e−θ|x|, x ∈ R, θ > 0.(3.1)

The feature of this pdf is described in the result below.

Proposition 3.1. Let X and Y be two independent random variables both following

the Lindley distribution with parameter θ. Then, the random variable Z = X − Y has the

pdf given by (3.1).

Proof: First of all, since the support of X and Y is (0,+∞), the support of Z is R.
Now, let us notice that the cdf and pdf of −Y are, respectively, given by

F∗∗(x) =
[
1− θ

1 + θ
x

]
eθx, f∗∗(x) =

θ2

1 + θ
(1− x)eθx, x < 0.

Since X and −Y are independent, the pdf of Z is given by the convolution product:

f(x) = (f∗ ? f∗∗)(x) =
∫ +∞

−∞
f∗(x− t)f∗∗(t)dt

=
∫ inf(x,0)

−∞

θ2

1 + θ
[1 + (x− t)]e−θ(x−t) θ2

1 + θ
(1− t)eθtdt

=
θ4

(1 + θ)2
e−θx

{∫ inf(x,0)

−∞
(1− t)2e2θtdt + x

∫ inf(x,0)

−∞
(1− t)e2θtdt

}

=
θ

4(1 + θ)2
e−θ[x−2 inf(x,0)]

[
2θ2 inf(x, 0)2 − 2θ2 inf(x, 0)x− 4θ2 inf(x, 0) + 2θ2x

+ 2θ2 − 2θ inf(x, 0) + θx + 2θ + 1
]
.

When x ≥ 0, we have inf(x, 0) = 0 implying that

f(x) =
θ

4(1 + θ)2
[
θ(2θ + 1)x + 2θ2 + 2θ + 1

]
e−θx.

When x < 0, we have inf(x, 0) = x, implying that

f(x) =
θ

4(1 + θ)2
[
−θ(2θ + 1)x + 2θ2 + 2θ + 1

]
eθx.

By putting the above results together, we obtain the desired result. This ends the proof of
Proposition 3.1.

For the purpose of this study, the corresponding distribution is called the 2D-Lindley
distribution (2D for Difference of 2 random variables). To the best of our knowledge, there is
no work on the theoretical and practical aspect of this distribution, which motivates a part
of this study. Figure 3 shows the behavior the pdf of the 2D-Lindley distribution for selected
values of parameter θ.
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Figure 3: The pdf of the 2D-Lindley distribution for different values of θ.

3.2. Probability functions

The cdf of the 2D-Lindley distribution is presented in the proposition below.

Proposition 3.2. The cdf of the 2D-Lindley distribution is given by

F (x) =


1

4(1 + θ)2
[
−θ(2θ + 1)x + 2(1 + θ)2

]
eθx if x < 0,

1− 1
4(1 + θ)2

[
θ(2θ + 1)x + 2(1 + θ)2

]
e−θx if x ≥ 0.

(3.2)

Proof: For x < 0, by using (3.1), we have

F (x) = P (Z ≤ x) =
∫ x

−∞
f(t)dt

=
θ

4(1 + θ)2

[
−θ(2θ + 1)

∫ x

−∞
teθtdt + (2θ2 + 2θ + 1)

∫ x

−∞
eθtdt

]
=

1
4(1 + θ)2

[
−θ(2θ + 1)x + 2(1 + θ)2

]
eθx.

Since the distribution of Z is symmetric around 0, for x ≥ 0, we have

F (x) = 1− F (−x) = 1− 1
4(1 + θ)2

[
θ(2θ + 1)x + 2(1 + θ)2

]
e−θx.

We obtain the desired result by putting the above equalities together. This completes the
proof of Proposition 3.2.

By using Proposition 3.2, the corresponding survival function is given by

S(x) =


1− 1

4(1 + θ)2
[
−θ(2θ + 1)x + 2(1 + θ)2

]
eθx if x < 0,

1
4(1 + θ)2

[
θ(2θ + 1)x + 2(1 + θ)2

]
e−θx if x ≥ 0.
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The corresponding hrf is given by

h(x) =


θ
[
θ(2θ + 1)|x|+ 2θ2 + 2θ + 1

]
4(1 + θ)2e−θx + θ(2θ + 1)x− 2(1 + θ)2

if x < 0,

θ
[
θ(2θ + 1)x + 2θ2 + 2θ + 1

]
θ(2θ + 1)x + 2(1 + θ)2

if x ≥ 0.

Also, the corresponding chrf is given by

Ω(x) =

 − log
[
1− 1

4(1 + θ)2
[
−θ(2θ + 1)x + 2(1 + θ)2

]
eθx

]
if x < 0,

log(4) + 2 log(1 + θ) + θx− log
[
θ(2θ + 1)x + 2(1 + θ)2

]
if x ≥ 0.

The corresponding qf, say Q(u), can be obtained by solving the following equation: F (Q(u)) =
Q(F (u)), u ∈ (0, 1). It can not be presented analytically but can be determined numerically
for a given θ. Further, Figure 4 depicts the behavior the hrf of the 2D-Lindley distribution
for selected values of parameter θ.
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Figure 4: The hrf of the 2D-Lindley distribution for different values of θ.

3.3. Mixture

The 2D-Lindley distribution can be viewed as a particular mixture of distributions, as
described below.

Proposition 3.3. Let U , V and W be three random variables following the Laplace

distribution with parameter θ and A a random variable following the Bernoulli distribution

with parameter θ2/(1 + θ)2, all these random variables are independent. Let Z be a random

variable following the 2D-Lindley distribution with parameter θ. Then, we have the following

stochastic representation:

Z
(d)
= AU + (1−A)(V + W ).
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Proof: It is enough to remark that we can write f(x) given by (3.1) as

f(x) =
θ2

(1 + θ)2

[
θ

2
e−θ|x|

]
+

1 + 2θ

(1 + θ)2

[
θ

4
(1 + θ|x|)e−θ|x|

]
= pf1(x) + (1− p)f2(x),

where

p =
θ2

(1 + θ)2
, f1(x) =

θ

2
e−θ|x|, f2(x) =

θ

4
(1 + θ|x|)e−θ|x|.

One can notice that f1(x) is the pdf of the Laplace distribution with parameter θ and f2(x)
is the pdf of the sum of two independent random variables both following the Laplace distri-
bution with parameter θ as common distribution, see, [9, Section 2.3]. This ends the proof
of Proposition 3.3.

3.4. Moments

The moments of the 2D-Lindley distribution are described below.

Proposition 3.4. Let r ∈ N and Z a random variable following the 2D-Lindley dis-

tribution with parameter θ. Then, the r-th moment of Z is given by

µ∗r = E(Zr) = [1 + (−1)r]
1

2θr
r!

[
1 +

1 + 2θ

2(1 + θ)2
r

]
.

Proof: Since the distribution of Z is symmetric around 0 and the integral is well
defined, for any m ∈ N, we have µ∗2m+1 = 0. By the use of the gamma function, for any
m ∈ N, we have

µ∗2m = E(Z2m) =
∫ +∞

−∞
x2mf(x)dx

=
θ2

(1 + θ)2

∫ +∞

−∞
x2m θ

2
e−θ|x|dx +

1 + 2θ

(1 + θ)2

∫ +∞

−∞
x2m θ

4
(1 + θ|x|)e−θ|x|dx

=
θ2

(1 + θ)2
1

θ2m
Γ(2m + 1) +

1 + 2θ

(1 + θ)2
1
2

1
θ2m

[Γ(2m + 1) + Γ(2m + 2)]

=
1

θ2m
(2m)!

[
1 +

1 + 2θ

(1 + θ)2
m

]
.

By distinguishing the odd and even integer, we prove the desired result, ending the proof of
Proposition 3.4.

Owing to Proposition 3.4, we have

µ∗1 = 0, µ∗2 =
2(θ2 + 4θ + 2)

θ2(1 + θ)2
, µ∗3 = 0, µ∗4 =

24[θ(θ + 6) + 3]
θ4(1 + θ)2

.

In particular, the mean of Z is given by µ = 0 and the variance of Z is given by

σ2 = µ∗2 =
2(θ2 + 4θ + 2)

θ2(1 + θ)2
.
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Without surprise, the variance of the 2S and 2D Lindley distributions are the same.

The skewness of Z is equal to 0 and the kurtosis of Z is given by

β2 =
1
σ4

E
[
(Z − µ)4

]
=

6(θ2 + 6θ + 3)(1 + θ)2

(θ2 + 4θ + 2)2
.

Table 7 indicates numerical values for the quantities above, that is, µ∗2, µ∗4, σ2 and β2, for
selected values for θ.

Table 7: Numerical values of some measures of the 2D-Lindley distribution for
selected values of parameter θ.

θ µ∗2 µ∗4 σ2 β2

0.02 9998.078 449884660 9998.078 4.5006

0.01 39998.04 7199529458 39998.04 4.5001

0.1 398.3471 716033.1 398.3471 4.5124

1 3.500 60.00 3.5000 4.8980

2 0.7778 3.1667 0.7778 5.2347

5 0.1044 0.0619 0.1044 5.6713

10 0.0235 0.0032 0.0235 5.8688

20 0.0055 0.0002 0.0055 5.9565

100 0.0002 2.494e-07 0.0002 5.9978

3.5. Characteristic function

The characteristic function of the 2D-Lindley distribution is presented below.

Proposition 3.5. Let Z be a random variable following the 2D-Lindley distribution

with parameter θ. Then, the characteristic function of Z is given by

ϕ(t) =
θ4[(1 + θ)2 + t2]
(1 + θ)2(θ2 + t2)2

, t ∈ R.

Proof: Let us recall that, for any t ∈ R and a random variable X following the Lindley
distribution with parameter θ, the characteristic function of X is given by

ϕ∗(t) = E(eitX) =
θ2(θ − it + 1)

(1 + θ)(θ − it)2
.

Hence, using the representation Z = X − Y with X and Y independent and identically dis-
tributed, the characteristic function for Z is given by

ϕ(t) = ϕ∗(t)ϕ∗(−t) =
θ2(θ − it + 1)

(1 + θ)(θ − it)2
× θ2(θ + it + 1)

(1 + θ)(θ + it)2
=

θ4[(1 + θ)2 + t2]
(1 + θ)2(θ2 + t2)2

.

This ends the proof of Proposition 3.5.
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Let us mention that can prove Proposition 3.3 by using the characteristic function.
It is enough to observe that we can write ϕ(t) as

ϕ(t) =
θ2

(1 + θ)2
θ2

θ2 + t2
+

(
1− θ2

(1 + θ)2

) [
θ2

θ2 + t2

]2

,

which is exactly the characteristic function of AU + (1−A)(V + W ), implying the desired
result.

3.6. Maximum likelihood estimator

Let x1, ..., xn be n observations of a random variable Z following the 2D-Lindley distri-
bution with parameter θ. Then, the likelihood and log-likelihood functions are, respectively,
defined by

L(θ) =
n∏

i=1

f(xi) =
θn

4n(1 + θ)2n

{
n∏

i=1

[
θ(2θ + 1)|xi|+ 2θ2 + 2θ + 1

]}
e−θ
Pn

i=1 |xi|

and

`(θ) = log[L(θ)]

= n log(θ)− n log(4)− 2n log(1 + θ)− θ
n∑

i=1

|xi|

+
n∑

i=1

log
[
θ(2θ + 1)|xi|+ 2θ2 + 2θ + 1

]
.

The MLE of θ can be obtained by solving the following equation: ∂`(θ)/∂θ = 0, i.e.,

n

θ
− 2n

1 + θ
−

n∑
i=1

|xi|+
n∑

i=1

(4θ + 1)|xi|+ 4θ + 2
θ(2θ + 1)|xi|+ 2θ2 + 2θ + 1

= 0.

This equation can not be solved analytically. However, some numerical algorithm allows to
approach the solution in a precise way.

3.7. Simulation study

In this section, the simulation study is repeated for N = 1000 iterations from the 2D-
Lindley distribution. For each replication, a random sample of size n = 25, 50, 100, 200 and
300 is drawn from the 2D-Lindley distribution. The 2D-Lindley random number generation
was performed using difference of rlindley() function from LindleyR package [17] and the
parameters are estimated by using the method of MLE by using the package nlm in R. The
initial values of parameter are θ = 0.3, 0.5, 1.0 and 1.5. The bias and MSE are presented in
Table 8. From the table, we can observe that the bias and MSE of the MLEs converge to zero
when the sample size is increased. This shows that the estimates are precise and accurate,
hence, consistent and (asymptotically) unbiased.
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Table 8: Bias and MSE of θ̂ for the 2D-Lindley distribution.

θ = 0.3 θ = 0.5 θ = 1 θ = 1.2

n Bias MSE Bias MSE Bias MSE Bias MSE

25 0.0066 0.0029 0.0055 0.0107 0.0288 0.0291 0.0307 0.0358

50 0.0048 0.0012 0.0090 0.0042 0.0133 0.0154 0.0154 0.0156

100 0.0020 0.0007 0.0027 0.0020 0.0057 0.0070 0.0074 0.0077

200 0.0012 0.0003 0.0010 0.0010 0.0017 0.0037 0.0040 0.0040

300 0.0008 0.0002 0.0007 0.0006 0.0016 0.0024 0.0022 0.0022

3.8. Applications

In this section, we analyze three data sets in order to illustrate the good performance
of the 2D-Lindley distribution to compare with the Laplace and normal distributions, both
with parameters standardly denoted by µ and σ. Here, we consider an extended form of
the 2D-Lindley distribution by adding the location parameter µ in the pdf of the 2D-Lindley
distribution. Thus, the related pdf is given by

f(x) =
θ

4(1 + θ)2
[
θ(2θ + 1)|x− µ|+ 2θ2 + 2θ + 1

]
e−θ|x−µ| x, µ ∈ R, θ > 0.

3.8.1. Comparison with the Laplace distribution

The first two data sets correspond to the age of the propellant and the tensile strength
of kraft paper, respectively, reported in [21]. The data of the first set are given below:

15.5 23.75 8.0 17.0 5.5 19.0 24.0 2.5 7.5 11.0 13.0 3.75 25.0 9.75 22.0 18.0 6.0 12.5 2.0 21.5

The data of the second set are given below:

6.3 11.1 20.0 24.0 26.1 30.0 33.8 34.0 38.1 39.9 42.0 46.1 53.1 52.0 52.5 48.0 42.8 27.8 21.9

The third data set representing lung cancer rates data for 44 US states is given by
www.calvin.edu/stob/data/cigs.csv . The data are given below:

17.05 19.8 15.98 22.07 22.83 24.55 27.27 23.57 13.58 22.8 20.3 16.59 16.84 17.71 25.45 20.94
26.48 22.04 22.72 14.2 15.6 20.98 19.5 16.7 23.03 25.95 14.59 25.02 12.12 21.89 19.45 12.11
23.68 17.45 14.11 17.6 20.74 12.01 21.22 20.34 20.55 15.53 15.92 25.88.

Table 9, Table 10 and Table 11 list the values of estimate, −logL, AIC, BIC and AICc,
for the considered data sets.

www.calvin.edu/stob/data/cigs.csv
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Table 9: Estimated values, −logL, AIC, BIC and AICc for the first data set.

Distribution Estimates (SE) −logL AIC BIC AICc

2D-Lindley θ̂ = 0.2335 (0.0447) 70.13335 144.2667 146.2582 144.9726

µ̂ = 13.0205 (2.0049)

Laplace µ̂ = 12.8350 (0.60) 71.33741 146.6748 148.6663 147.3807

σ̂ = 6.512916 (0.002)

Table 10: Estimated values, −logL, AIC, BIC and AICc for the second data set.

Distribution Estimates (SE) −logL AIC BIC AICc

2D-Lindley θ̂ = 0.1355 (0.0268) 77.22743 146.6748 148.6663 147.3807

µ̂ = 34.7542 (3.4269)

Laplace µ̂ = 34.00 (0.1062) 78.13456 160.2691 162.158 161.0191

σ̂ = 11.2337 (2.5791)

Table 11: Estimated values, −logL, AIC, BIC and AICc for the third data set.

Distribution Estimates (SE) −logL AIC BIC AICc

2D-Lindley θ̂ = 0.4182 (0.0536) 128.1709 260.3419 263.9103 260.6496

µ̂ = 19.9190 (0.7894)

Laplace µ̂ =20.3182 (0.27) 129.9786 263.9572 267.5255 264.2649

σ̂ = 3.5289 (0.03)

From the tables, it may be noticed that the proposed 2D-Lindley model present the
smallest values of the −logL, AIC, BIC and AICc and hence should be chosen as the best
model for these datasets.

3.8.2. Comparison with the Normal distribution

Here we consider the data set artificially created from the standard Laplace distribution
(with parameters 0 and 1) and truncated at the second decimal places which has been studied
by [11]. The fourth data are given below:

-1.28 0.36 -1.29 -0.80 0.28 -0.06 -1.53 0.28 -0.54 0.17 0.59 6.22 2.41 0.33 -1.51 0.25 2.33 2.81
-0.92 2.12 -1.01 1.35 -0.37 -0.39 -4.39 -2.39 0.97 -0.58 -2.24 -0.05.
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Table 12 shows the values of estimate, −logL, AIC, BIC and AICc, for the data set above.

Table 12: Estimated values, −logL, AIC, BIC and AICc for the fourth data set.

Distribution Estimates (SE) −logL AIC BIC AICc

2D-Lindley θ̂ =1.0299 (0.1593) 59.4520 122.9040 125.7064 123.3484

µ̂ = 0.0295 (0.4476)

Normal µ̂ = 0.1228 (0.3445) 61.61703 127.2341 130.0365 127.6785

σ̂ = 1.8870 (0.2436)

From the Table 12, we can see that the 2D-Lindley model present the smallest values
of the −logL, AIC, BIC and AICc, which confirm the suitability behavior of the 2D-Lindley
distribution.

4. CONCLUDING REMARKS

In this paper, we have derived single representations for the exact distribution of the
sum and difference of independent Lindley random variables. We referred to the distribu-
tions of sum and difference of two independent Lindley random variables as the 2S-Lindley
and 2D-Lindley distributions, respectively. Statistical properties such as moments, incom-
plete moments, characteristic function, stochastic ordering and extreme order statistics of
the 2S-Lindley distribution have been provided. At the same time, a comprehensive study
of statistical properties of the 2D-Lindley distribution also has been discussed. The model
parameters are estimated by maximum likelihood method for both cases. From simulation
studies, the performance of the maximum likelihood estimators has been assessed. The new
models provide consistently better fit than some classical models available in the literature.
In conclusion, proposed model with their attracting properties should have a promising future
in distribution theory.
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