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1. INTRODUCTION

Statistical distributions are important tools to model the characteristics of data sets
such as right or left skewness, bi-modality or multi-modality observed in different applied
sciences such as engineering, medicine and finance and among others. The well-known distri-
butions such as normal, Weibull, gamma, Lindley are extensively used because of theirs simple
forms and identifiability properties. However, in the last decade, researchers have focused
on the more complex and flexible distributions to increase the modeling ability of these dis-
tributions by adding one or more shape parameters. The well-known family of distributions
can be cited as follows: Marshall-Olkin-G (Marshall and Olkin [19], 1997), beta-G (Eugene
et al. [11], 2002), gamma-G (Zografos and Balakrishnan [33], 2009), type I half-logistic-G
(Cordeiro et al. [8], 2016), Burr X-G (Yousof et al. [32], 2016), generalized transmuted-G
(Nofal et al. [23], 2017) and exponentiated Weibull-H (Cordeiro et al. [7], 2017), among
others.

Recently, Sen et al. [29] (2016) proposed and studied the xgamma (XG) distribution
with cumulative distribution function (cdf) and probability density function (pdf) (for θ > 0)
given by

(1.1) G (x; θ) = 1−
1 + θ + θx + 1

2θ2x2

1 + θ
exp (−θx) , x > 0

and

(1.2) g (x; θ) =
θ2

1 + θ

(
1 +

θ

2
x2

)
exp (−θx) ,

respectively. During the recent years, the xgamma distribution has been shown great interest
by researchers. Altun and Hamedani [2] (2018) introduced a new bounded distribution using
the transformation Y = exp (−X) as an alternative to the beta distribution based on the
xgamma distribution. Biçer [4] (2019) introduced the transmuted-xgamma distribution and
studied its statistically properties comprehensively. The another generalization of xgamma
distribution was provided by Sen et al. [27] (2018a) on the basis of special mixture of expo-
nential and gamma distributions. Sen et al. [28] (2018b) studied the parameter estimation
of xgamma distribution under progressively type-II right censoring scheme by maximum
likelihood and Bayesian estimation methods. Sen and Chandra [25] (2017) introduced the
quasi-xgamma distribution by using the xgamma distribution as a baseline distribution. The
weighted generalization of xgamma distribution, using w (x) = xr as a weighting function,
was studied by Sen et al. [26] (2017).

In this paper, we introduce and study a new class of distributions called the xgamma-G
(XG-G) family. The idea is to incorporate any distribution into a larger family through an
application of the XG cdf. In fact, based on the T–X transform defined by Alzaatreh et

al. [3] (2013) and the XG cdf, we construct the XG-G family. The some of its mathematical
properties are provided comprehensively. The new family has flexible shapes to model various
lifetime data sets. Additionally, its special models produce better fits than other well-known
families.
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To this end, we define the cdf of the XG-G family with one extra shape parameter θ > 0
by

F (x; θ, ξ) =
θ2

1 + θ

∫ − log G(x;ξ)

0

(
1 +

θ

2
t2
)

exp (−θt) dt

= 1−
1 + θ − θ log G(x; ξ) + 1

2θ2
[
log G(x; ξ)

]2
1 + θ

G(x; ξ)θ,(1.3)

where G(x; ξ) = 1−G(x; ξ) and G (x; ξ) is a baseline cdf with a parameter vector ξ.

The pdf corresponding to (1.3) reduces to

(1.4) f(x; θ, ξ) =
θ

1 + θ
g(x; ξ)G(x; ξ)θ−1

{
θ +

1
2
θ2
[
log G(x; ξ)

]2}
,

where g(x; ξ) = dG(x; ξ)/dx. If the random variable (rv) T has the xgamma distribution
(1), then X = G−1 [1− exp (−T )] follows the XG-G family (4). Henceforth, we denote by
X ∼XG-G(θ, ξ) a rv having density (1.4). The hazard rate function (hrf) of X is given by

τ (x; θ, ξ) =
θr(x; ξ)

{
θ + 1

2θ2
[
log G(x; ξ)

]2}{
1 + θ − θ log G(x; ξ) + 1

2θ2
[
log G(x; ξ)

]2} .

The identifiability is an important property of the statistical distributions to satisfy the precise
inference for the model parameters. The following theorem is given to prove the identifiability
property of XG-G family.

Theorem 1.1. The cdf (1.3) is identifiable.

Proof: Assume that the baseline cdf G (x; ξ) is identifiable. The cdf (1.3) is identifiable
once F (x; θ1) = F (x; θ2) is valid if and only if θ1 = θ2. Using (1.3), we have

(1.5)
F (x; θ1) = F (x; θ2)
1−

(
1 + θ1 − θ1A + 1

2θ2
1A

2
)
(1 + θ1)

−1 exp (Aθ1)
= 1−

(
1 + θ2 − θ2A + 1

2θ2
2A

2
)
(1 + θ2)

−1 exp (Aθ2)

where A = log Ḡ (x). (1.5) can be simplified as follows[
exp (Aθ2)
(1 + θ2)

− exp (Aθ1)
(1 + θ1)

]
+
[
exp (Aθ2) θ2

(1 + θ2)
− exp (Aθ1) θ1

(1 + θ1)

]
−
[
exp (Aθ2) θ2A

(1 + θ2)
− exp (Aθ1) θ1

(1 + θ1)

]
+
[
exp (Aθ2) θ2

2A
2

2 (1 + θ2)
− exp (Aθ1) θ2

1A
2

2 (1 + θ1)

]
= 0(1.6)

The expression (1.6) is equal to zero for all x only when the parameters θ1 = θ2. Since the
parameter θ > 0, it is concluded that the model is identifiable: F (x; θ1) = F (x; θ2) ⇔ θ1 =
θ2.

The purpose of the generation of the XG-G family is to provide new opportunities to
model the different characteristics of the data sets such as left skewness, excess kurtosis and
bathtub failure rate. The well-known distributions are insufficient to model these kinds of
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data sets. The special members of the XG-G family can be used to model skewed and long-
tailed data sets to improve the modeling accuracy of interested data set with only one extra
shape parameter. Moreover, the proposed family is highly effective in modeling the censored
lifetimes of individuals with some covariates in a location-scale regression framework.

The remaining part of the paper is organized as follows. In Section 2, three special
cases of the XG-G family are given. In Section 3, a linear representation of the XG-G density
is provided. The comprehensive mathematical properties of the XG-G density are obtained
and reported in Section 4. Section 5 is devoted to the maximum likelihood estimation of
the model parameters for uncensored and censored data. In Section 6, we present a new
log-location-scale regression model based on the log XG-Weibull distribution. Section 7 deals
with simulation studies to evaluate the maximum likelihood estimators of the parameters of
proposed models. In Section 8, three applications to the real data sets are given to prove
empirically the importance of XG-G family. Section 9 contains the concluding remarks of the
study.

2. SOME SPECIAL XG-G MODELS

2.1. The XG-Lindley (XG-Li) model

Consider the cdf G(x) = 1− 1+a+ax
1+a exp (−ax) of the Li distribution with scale param-

eter a > 0. The XG-Li density (for x > 0) can be determined from (1.4). Some plots of the
XG-Li density and hazard functions for selected parameter values are displayed in Figure 1.
These plots reveal that the pdf of the XG-Li model can be reversed J-shape, right skewed or
unimodal. The hrf can be unimodal or bathtub.
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Figure 1: Plots of the XG-Li pdf (left) and hrf (right) for some parameter values.
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2.2. The XG-Weibull (XG-W) model

Consider the cdf G(x) = 1− exp[−(ax)b] of the W distribution with scale a > 0 and
shape b > 0. The pdf of the XG-W model (for x > 0) follows from (1.4). Some plots of the
XG-W pdf and hrf for selected parameter values are displayed in Figure 2. Figure 2 reveals
that the XG-W density can be concave down, left skewed or right skewed. The hrf of the
XG-W model can be increasing, decreasing, bathtub or unimodal.
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Figure 2: Plots of the XG-W pdf (left) and hrf (right) for some parameter values.

2.3. The XG-BurrXII (XG-BXII) model
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Figure 3: Plots of the XG-BXII pdf (left) and hrf (right) for some parameter values.



598 G.M. Cordeiro, E. Altun, M.Ç. Korkmaz, R.R. Pescim, A.Z. Afify and H.M. Yousof

Consider the cdf G(x) = 1− (1 + xa)−b of the BXII distribution with parameters a > 0
and b > 0. The pdf of the XG-BXII model (for x > 0) can be obtained from (1.4). Some plots
of the XG-BXII pdf and hrf for selected parameter values are displayed in Figure 3. These
plots reveal that the pdf of the XG-BXII model can be reversed J-shape, concave down or
right skewed. Its hrf can be increasing or unimodal.

3. USEFUL REPRESENTATION OF PDF AND CDF

The XG-G family density in (1.4) can be expressed as

f (x) =
θ2g(x)
1 + θ

G(x)θ−1 +
θ3g(x)

2 (1 + θ)
G(x)θ−1[log G(x)︸ ︷︷ ︸

A

]2.

Consider

(3.1) log(1− z) = −
∞∑
i=0

zi+1

i + 1
, |z| < 1,

and the power series raised to a positive integer n (Gradshteyn and Ryzhik [14, Section 0.314],
2002)

(3.2)

 ∞∑
j=0

aj uj

n

=
∞∑

j=0

cn,j uj ,

where the coefficients cn,j (for j = 1, 2, ...) can be easily determined from the recurrence
equation

cn,j = (ja0)
−1

j∑
m=1

[m (n + 1)− j] am cn,j−m and cn,0 = an
0 .

The coefficient cn,j can be calculated from cn,0, ..., cn,j−1 and hence from the quantities
a0, ..., aj . For |z| < 1 and b > 0, the power series holds

(3.3) (1− z)b−1 =
∞∑

k=0

(−1)k Γ(b)
k! Γ(b− k)

zk.

Applying (3.1) to the quantity A gives

f(x) =
θ2g(x)
1 + θ

G(x)θ−1 +
θ3g(x)

2(1 + θ)
G(x)θ−1G(x)2

[ ∞∑
i=0

G(x)i

i + 1

]2

︸ ︷︷ ︸
B

.

Next, the quantity B follows using (3.2) as

f(x) =
θ2g(x)
1 + θ

G(x)θ−1︸ ︷︷ ︸
C

+
θ3g(x)

2(1 + θ)

∞∑
i=0

c2,i G(x)i+2 G(x)θ−1︸ ︷︷ ︸
C

,

where ai = 1/(i + 1).
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Applying the power series (3.3) to the quantity C, we obtain

(3.4) f (x) =
∞∑

k=0

[
bk πk+1 (x) +

∞∑
i=0

bi,k πi+k+3 (x)

]
,

where

bk =
(−1)k θ2Γ(θ)

(k + 1) (1 + θ) Γ(θ − k)
, bi,k =

(−1)k θ3Γ(θ) c2,i

2(1 + θ)(i + k + 3) k! Γ(θ − k)
,

and πα(x) = α g(x) G(x)α−1 is the exponentiated-G (Exp-G) density function with power
parameter α > 0. So, the density of X is a linear combination of Exp-G densities.

The properties of Exp-G distributions have been studied by many authors in recent
years, see, for example, Mudholkar and Srivastava [20] (1993) and Mudholkar et al. [21]
(1995) for exponentiated Weibull (EW), Gupta and Kundu [16] (1999) for exponentiated
exponential and Nadarajah and Gupta [22] (2007) for exponentiated gamma, among others.

The cdf of X follows by integrating (3.4) as

(3.5) F (x) =
∞∑

k=0

[
bk Πk+1(x) +

∞∑
i=0

bi,k Πi+k+3(x)

]
,

where Πα(x) = G(x)α is the Exp-G cdf with power parameter α. Equations (3.4) and (3.5)
are the main results of this section.

4. PROPERTIES

In this section, we investigate some mathematical properties of the XG-G family.

4.1. Quantile function

The quantile function (qf) of X can be determined by inverting F (x) = u in (1.3). We
require numerical methods to obtain the quantiles. For given u, we solve numerically for
z = z(u) in the equation[

1 + θ − θ log(z) + 0.5 θ2 log2(z)
]

zθ = (1 + θ)(1− u),

and then x = Q(u) = G−1(1− z) is a variate from the XG-G family (1.4).

4.2. Moments

Let Yα be a rv having density πα(x). The r-th ordinary moment of X, say µ′r, follows
from (3.4) as

(4.1) µ′r = E (Xr) =
∞∑

k=0

[
bk E

(
Y r

k+1

)
+

∞∑
i=0

bi,k E
(
Y r

i+k+3

)]
,
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where E(Y r
α ) = α

∫∞
−∞ xr g(x) G(x)α−1 dx can be evaluated numerically in terms of the

baseline qf QG(u) = G−1(u) as E(Y n
α ) = α

∫ 1
0 QG(u)n uα−1du. Setting r = 1 in (4.1) gives

the mean of X. Table 1 lists the first three ordinary moments of XG-W distribution. The
results given in this table show that when the parameter θ increases, the ordinary moments
of XG-W decrease for fixed a and b parameters.

Table 1: Moments of XG-W distribution for several parameter values.

Parameters
µ

′
1 µ

′
2 µ

′
3

θ a b

2 2 2 1.619 3.333 7.990
2 2 1 0.809 0.833 0.999
2 2 0.5 0.405 0.208 0.125
2 1 0.5 0.417 0.333 0.375
2 0.5 0.5 0.667 2.125 14.035
1 0.5 0.5 3.500 48.000 1304.865

0.5 0.5 0.5 17.231 953.497 94367.230

4.3. Incomplete moments

The r-th incomplete moment of X is given by

(4.2) mr(y) =
∫ y

−∞
xr f(x)dx.

Using (3.4), the r-th incomplete moment of XG-G family is

mr(y) =
∞∑

k=0

[
bk mr,k+1(y) +

∞∑
i=0

bi,k mr,i+k+3(y)

]
,

where mr,α(y) =
∫ G(y)
0 Qr

G(u) uα−1 du. The mr,α(y) can be calculated numerically by using
the software such as Matlab, R, Mathematica etc. The incomplete moments of the XG-W
distribution are given in Table 2. As seen from the results given in Table 2, the incomplete
moments of XG-W distribution increases for fixed a and b parameters when the parameter θ

increases.
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Table 2: Incomplete moments of XG-W distribution for several parameter values.

Parameters
µ1(0.5) µ1(1) µ1(2)

θ a b

2 2 2 0.026 0.170 0.790
2 2 1 0.085 0.395 0.799
2 2 0.5 0.197 0.400 0.405
2 1 0.5 0.135 0.293 0.406
2 0.5 0.5 0.080 0.168 0.313
1 0.5 0.5 0.051 0.129 0.320

0.5 0.5 0.5 0.022 0.060 0.166

4.4. Moment generating function

The moment generating function (mgf) of X, say M(t) = E(et X), is obtained from
(3.4) as

M(t) =
∞∑

k=0

[
bk Mk+1 (t) +

∞∑
i=0

bi,k Mi+k+3 (t)

]
,

where Mα(t) is the generating function of Yα given by

Mα(t) = α

∫ ∞

−∞
et xG(x)g(x)α−1 dx = α

∫ 1

0
exp[t QG(u;α )]uα−1du.

The last two integrals can be computed numerically for most parent distributions.

5. ESTIMATION

This section deals with the maximum likelihood estimation of the unknown model
parameters.

5.1. Maximum likelihood estimation

Let x1, ···, xn be a random sample from the XG-G models with a parameter vector
Φ =(θ, ξᵀ)ᵀ. The log-likelihood function is given by

`n(Φ) = n log θ − n log (1 + θ) +
n∑

i=1

log g(xi; ξ) + (θ − 1)
n∑

i=1

log G(xi; ξ)

+
n∑

i=1

log
{

θ +
1
2
θ2
[
log G(xi; ξ)

]2}
.
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Taking the partial derivatives of the log-likelihood function concerning the parameters,
we obtain the score vectors. The simultaneous solution of these equations for zero gives the
maximum likelihood estimate of Φ. Since it is not possible to obtain closed-form expressions
of the maximum likelihood estimators of the parameters of XG-G family, direct maximization
of the log-likelihood is needed. In this study, the optim function of R software is used to
minimize the minus of the log-likelihood function which is equivalent to the maximization of
log-likelihood.

5.2. Multi-censored maximum likelihood estimation

Censored data are often encountered in survival analysis and reliability studies. Here,
the general case of multi-censored data is considered. Assume that m0 subjects of m are failed
at the times x1, ···, xm0 , m1 subjects of m are failed in (sj−1, sj) interval where j = 1, ...,m1

and m2 subjects of m survived until a time rj , j = 1, ...,m2. Note that m0 + m1 + m2 = m.
The log-likelihood function for Φ is

`m(Φ) = m0 log θ −m0 log (1 + θ) +
m0∑
i=1

log g(xi, ξ)

+ (θ − 1)
m0∑
i=1

log G(xi, ξ) +
m0∑
i=1

log
{

θ +
1
2
θ2
[
log G(xi, ξ)

]2}

+
m2∑
i=1

log

{
1

1 + θ

[
1 + θ − θ log tri +

(log tri)
2

2θ−2

]
tθri

}

+
m1∑
i=1

log

({
1− 1

1 + θ

[
1 + θ − θ log tsi +

(log tsi)
2

2θ−2

]
tθsi

}

−

{
1− 1

1 + θ

[
1 + θ − θ log tsi−1 +

(
log tsi−1

)2
2θ−2

]
tθsi−1

})
,

where tri = G(ri, ξ), tsi = G(si, ξ), tsi−1 = G(si−1, ξ) and the normal equations are available
before.

6. THE LXG-W REGRESSION MODEL FOR CENSORED DATA

Let X be a rv having the XG-W density function. The rv Y = log(X) defines the
log-xgamma Weibull (LXG-W) distribution. Let a = e−µ and b = σ−1. Then, the pdf of Y

(for y ∈ <) is given by

(6.1) f(y) =
θ

σ (1 + θ)
exp

[
(1− θ)

(
y − µ

σ

)] {
θ +

θ2

2

[
− exp

(
y − µ

σ

)]2
}

,

where µ ∈ <, σ > 0 and θ > 0. If Y is a rv having density function (6.1), we can write Y ∼
LXG-W(θ, µ, σ). For σ = 1, the LXG-W distribution reduces to the log-xgamma-exponential
(LXG-E) distribution. The survival function (sf) corresponding to (6.1) is given by

S(y) =
1

1 + θ

[
(1 + θ) +

(
θ − θ2

2

)
exp

(
y − µ

σ

)] {
exp

[
− exp

(
y − µ

σ

)]}θ

.
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We define the standardized rv Z = (Y − µ)/σ with pdf (for z ∈ <) given by

(6.2) f(z) =
θ

(1 + θ)
exp [(1− θ)z]

[
θ +

θ2

2
exp (2z)

]
.

Regression models are widely used to model dependent variable with some covariates.
The lifetimes of individuals are generally effected by some explanatory variables such as
gender, age, alcohol abuse or smoking. To model these kind of data sets, we propose a new
log-location-scale regression model based on the LXG-W density. Let yi be the response
variable and vT

i = (vi1, ..., vip) is the explanatory variable vector, we consider the following
regression model

(6.3) yi = vT
i β + σ zi, i = 1, ..., n.

where yi follows the LXG-W density with unknown parameters µi ∈ <, θ > 0, and σ > 0.
The location of yi, µi, is modeled by using the identity link function, µi = vT

i β. The vector
µ = (µ1, ..., µn)T is defined as µ = Vβ, where V = (v1, ...,vn)T is a known model matrix.

Let the random sample (y1,v1), ..., (yn,vn) are independent and the response variable
is defined as yi = min{log(ti), log(ci)}. Assume that the lifetimes and censoring times are
independent. F and C represent the sets of individuals for the log-lifetime and log-censoring,
respectively. The log-likelihood function for the vector of parameters η = (βT , θ, σ)T is given
by

l(η) = r log
[

θ

σ (1 + θ)

]
+ (1− θ)

∑
i∈F

yi − vT
i β

σ

+
∑
i∈F

log

{
θ +

θ2

2

[
− exp

(
yi − vT

i β

σ

)]2
}

+c log
(

1
1 + θ

)
− θ

∑
i∈C

exp
(

yi − vT
i β

σ

)

+
∑
i∈C

log
[
(1 + θ) +

(
θ − θ2

2

)
exp

(
yi − vT

i β

σ

)]
,(6.4)

where r and c are the number of uncensored (failures) and censored observations. The
parameter vector, η, of the LXG-W regression model is estimated by minimizing the minus of
log-likelihood function, given in (6.4). To do this, the optim function of R software is used.
The inverse of the observed information matrix is used to obtain corresponding standard
errors and construct 95% asymptotic confidence intervals of the parameters. The observed
information matrix is evaluated numerically at η̂ by hessian function of R software.

7. SIMULATION STUDIES

In this section, three simulation studies are given to evaluate the finite sample perfor-
mance of the parameters of proposed models.
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7.1. Simulations of XG-W and XG-N distributions

Here, we perform two simulation studies using the XG-W and XG-normal (XG-N)
distributions. To verify the performance of the MLEs for these distributions, we generate
1,000 samples of sizes 20, 50 and 100 from their qfs by inverting the cdfs. The simulation
results are reported in Tables 3 and 4. These results reveal that the mean estimates become
closer to the true parameter values when the sample size increases, whereas the standard
errors of the estimates decrease.

The cdfs of the XG-W and XG-N distributions are given here for convenience

F (x) = 1−
1 + θ + θ (ax) b + θ2

2 (ax)2b

1 + θ
exp

[
−θ(ax)b

]

and

F (x) = 1−
1 + θ − θ log

[
1−Φ

(x−µ
σ

)]
+ 1

2θ2
{
log
[
1−Φ

(x−µ
σ

)]}2

1 + θ

×
[
1−Φ

(
x− µ

σ

)]θ

,

respectively, where x , µ ∈ <, θ, σ > 0.

Table 3: Empirical means and standard errors (in parentheses)
for different values of the XG-W parameters.

Parameters n = 20 n = 50 n = 100

a, b, θ ba bb bθ ba bb bθ ba bb bθ

5, 5, 5 5.3196 5.2006 4.7679 5.2329 4.8741 4.9432 5.0876 4.9086 5.0471
(0.5927) (0.9124) (1.5578) (0.5339) (0.5449) (1.5381) (0.1677) (0.3679) (0.3703)

50,3,3 50.6839 3.0894 3.2746 49.5001 2.9022 3.1821 49.9190 2.9504 3.1318
(1.9717) (0.6324) (5.0238) (1.9357) (0.3407) (0.5332) (1.8658) (0.2525) (0.4192)

3,3,50 3.3019 3.2521 50.0152 3.0971 3.0684 50.0124 3.0622 3.0433 49.9866
(0.7011) (0.6395) (0.1291) (0.4194) (0.3396) (0.1232) (0.2885) (0.2412) (0.3244)

3,10,3 3.0714 10.3185 2.9319 3.0328 9.8262 3.0470 3.0203 9.8692 3.0153
(0.1308) (1.3464) (0.6916) (0.0526) (0.6161) (0.1897) (0.0460) (0.5184) (0.1689)

50,10,50 51.0354 10.6994 50.1005 50.4395 10.2804 50.0442 50.3066 10.1571 50.0298
(3.2573) (2.0583) (0.3469) (2.0441) (1.1738) (0.2420) (1.4197) (0.7910) (0.1551)

0.01,2,5 0.0107 1.9949 4.9998 0.0106 1.9961 4.9999 0.0105 1.9970 5.0001
(0.0013) (0.1175) (0.0013) (0.0008) (0.0391) (0.0003) (0.0005) (0.0264) (0.0004)

1,1,1 0.9338 1.1141 1.2913 0.9526 1.0424 1.1839 1.0430 1.0327 1.0584
(0.5201) (0.2313) (0.5837) (0.3619) (0.1177) (0.4090) (0.3041) (0.1023) (0.3542)

1,2,3 1.1736 2.0477 2.9188 1.1361 1.9665 3.0585 1.0643 1.9385 3.0133
(0.4524) (0.3743) (0.7855) (0.3183) (0.2056) (0.7672) (0.1287) (0.1538) (0.3812)

2,2,2 2.2538 1.9168 2.4294 2.0430 1.9369 2.3574 1.9826 1.9603 2.3360
(0.8596) (0.3450) (1.2688) (0.5113) (0.2314) (0.7653) (0.4837) (0.1494) (0.7579)

5,0.9,5 5.6190 0.9244 5.5789 5.2117 0.8744 5.2745 5.1839 0.9059 5.1761
(0.8374) (0.1629) (1.0001) (0.5833) (0.0824) (0.5583) (0.4753) (0.0792) (0.4106)

0.025,0.9,1 0.0271 0.9142 1.0044 0.0254 0.9081 0.9965 0.0253 0.8999 0.9968
(0.0131) (0.1036) (0.0730) (0.0041) (0.0767) (0.0365) (0.0040) (0.0485) (0.0540)



The xgamma Family: Censored Regression Modelling and Applications 605

Table 4: Empirical means and standard errors (in parentheses)
for different values of the XG-N parameters.

Parameters n = 20 n = 50 n = 100

θ, µ, σ bθ bµ bσ bθ bµ bσ bθ bµ bσ

5,0,1 4.9748 -0.0626 0.9531 5.0029 -0.0163 0.9829 5.0023 -0.0111 0.9918
(0.7832) (0.2480) (0.1611) (0.4507) (0.1539) (0.0968) (0.2156) (0.0966) (0.0674)

1,0,1 0.9254 0.0846 0.9605 1.0915 0.0519 0.9791 1.0126 0.1369 1.0126
(0.3459) (0.6632) (0.1990) (0.5446) (0.5433) (0.1819) (0.1570) (0.4313) (0.1570)

5,-1,1 4.8906 -1.0657 0.9416 5.0272 -1.0172 0.9850 4.9931 -1.0043 0.9922
(0.7691) (0.2425) (0.1598) (1.0933) (0.1696) (0.1023) (0.1220) (0.0951) (0.0685)

5,-1,2 4.5540 -1.4028 1.8114 4.8770 -1.1455 1.9313 5.0085 -1.0687 1.9668
(1.5270) (0.7732) (0.3485) (1.1746) (0.5544) (0.2326) (1.2758) (0.5046) (0.1903)

1,0,2 1.1759 0.2696 1.9480 1.0623 0.0886 1.9207 1.0115 0.0078 2.0198
(0.6231)) (1.0898) (0.4291) (0.5966) (1.0551) (0.3179) (0.3250) (0.1924) (0.2135)

5,0.25,0.5 4.9820 0.2220 0.4792 5.0115 0.2426 0.4914 4.9943 0.2457 0.4948
(0.2254) (0.0996) (0.0719) (0.2712) (0.0716) (0.0476) (0.0751) (0.0444) (0.0340)

1,1,1 1.2206 1.1946 0.9452 1.1730 1.1117 0.9606 0.9647 1.0068 0.9741
(0.5303) (0.5923) (0.1978) (0.6568) (0.6751) (0.1619) (0.1463) (0.0056) (0.1575)

50,5,5 50.0425 4.5608 4.8112 49.9274 4.7581 4.9854 49.9130 4.9392 4.9764
(0.5333) (1.6910) (0.8088) (0.9864) (1.0880) 4.9854 49.9130 4.9392 4.9764

4,-50,10 4.2033 -50.6667 9.4225 4.0616 -50.5333 9.6902 4.0208 -49.8745 10.0017
(1.4918) (2.5538) (1.4512) (1.5078) (2.4856) (1.1384) (1.0730) (2.2228) (0.8002)

0.9,0,0.01 0.8998 0.00042 0.009603 0.9001 0.0001 0.0098 0.9000 0.0000 0.0099
(0.0000) (0.0032) (0.0014) (0.0000) (0.0019) (0.0009) (0.0000) (0.0014) (0.0006)

0.9,50,10 0.9594 50.2913 10.2145 0.9038 50.0927 9.8318 0.9012 50.0459 9.9480
(0.3181) (1.5910) (1.3660) (0.1473) (1.1424) (1.2016) (0.1046) (0.9813) (0.7806)

7.2. Simulation of the LXG-W regression model

Table 5: Simulation results of LXG-W regression model.

Censoring rate=0.10 n=50 n=200 n=500

Parameters AE Bias MSE AE Bias MSE AE Bias MSE

θ 2.4958 0.4958 0.7937 2.2815 0.2815 0.4029 2.0743 0.0743 0.1866
σ 0.5077 0.0077 0.0061 0.5090 0.0090 0.0028 0.5048 0.0048 0.0010
β0 1.9266 -0.0734 0.4430 1.9563 -0.0437 0.2712 1.9870 -0.0130 0.1184
β1 1.9992 -0.0008 0.0215 1.9997 -0.0003 0.0054 2.0010 0.0010 0.0020

Censoring rate=0.20 n=50 n=200 n=500

Parameters AE Bias MSE AE Bias MSE AE Bias MSE

θ 2.3648 0.3648 0.4329 2.1059 0.1059 0.3109 2.0528 0.0528 0.0722
σ 0.5059 0.0059 0.0030 0.5120 0.0120 0.0008 0.5147 0.0147 0.0001
β0 1.9669 -0.0331 0.2197 1.9776 -0.0224 0.0840 1.8440 -0.1560 0.0080
β1 2.0047 0.0047 0.0135 2.0037 0.0037 0.0020 1.9994 -0.0006 0.0001

Censoring rate=0.30 n=50 n=200 n=500

Parameters AE Bias MSE AE Bias MSE AE Bias MSE

θ 2.2911 0.2911 0.6217 2.1508 0.1508 0.1559 1.9377 -0.0623 0.0262
σ 0.5011 0.0011 0.0018 0.5077 0.0077 0.0026 0.5084 0.0084 0.0014
β0 2.0236 0.0236 0.1682 2.0620 0.0620 0.3145 1.9769 -0.0231 0.1693
β1 2.0030 0.0030 0.0100 1.9962 -0.0038 0.0061 2.0009 0.0009 0.0027
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The simulation study is given to evaluate the MLEs of the parameters of LXG-W regres-
sion model. The three censoring rates (10%, 20%, 30%) and sample sizes (n = 50, 200, 500)
are used. The simulation replication is N = 1, 000. The lifetimes are generated by using
the quantile function of the LXG-W distribution. The following parameter vector is used:
(θ = 2, σ = 0.5, β0 = 2, β1 = 2). For each generated sample sizes, the biases, average of esti-
mates (AEs) and MSEs are calculated. The simulation results are reported in Table 5. As
seen from the results, the estimated biases and MSEs are near the desired value, zero. More-
over, the estimated AEs are closer the nominal values which indicates that the estimates are
stable. The similar results can be also obtained for different parameter vector.

8. DATA ANALYSIS

In this section, we provide three applications to real data to illustrate the importance
and flexibility of the XG-W, XG-N and LXG-W distributions. The Akaike Information Crite-
ria (AIC), Bayesian information criterion (BIC) and Kolmogorov-Smirnov (K-S) statistic are
used to compare the fitted distributions. All computations are performed using the maxLik
routine in the R software.

8.1. Application 1: Glass fibres data

The first data set represents the strength of 1.5 cm glass fibres measured at National
physical laboratory, England (Smith and Naylor [30], 1987). These data have been analyzed
by Korkmaz and Genç [18] (2017). We shall compare the fits of the XG-W, Kumaraswamy-
Weibull (Kw-W) (Cordeiro and de Castro [9], 2011), beta-Weibull (BW) (Famoye et al.

[12], 2005), Lindley-Weibull (LW) (Cakmakyapan and Ozel [6], 2016), EW (Mudholkar and
Srivastava [20], 1993) and odd log-logistic-Weibull (OLL-W) (Gleaton and Lynch [13], 2010;
da Cruz et al. [10], 2016) distributions to the glass fibres data. The cdfs of the Kw-W, BW,
LW, EW and OLL-W models (for x > 0) are given by

F (x) = 1−
(
1−

{
1− exp

[
−(ax)b

]}γ)η
,

F (x) =
1

B (γ, η)
B
(
1− exp

[
−(ax)b

]
, γ, η

)
,

F (x) = 1− exp
[
−θ (ax)β

] [
1 +

θ

θ + 1
(ax)β

]
,

F (x) =
{

1− exp
[
−(αx)β

]}θ
,

F (x) =

{
1− exp

[
−(ax)b

]}θ

{
1− exp

[
−(ax)b

]}θ
+ exp

[
−θ(ax)b

] ,
respectively, where B(γ, η) is the complete beta function and the parameters of the above
densities are all positive real numbers. The MLEs (and their corresponding standard errors
in parentheses) of the parameters, AIC, BIC and K-S statistics for the above fitted models
are displayed in Table 6. The values in this table indicate that the XG-W model provides a
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better fit than the other fitted models because proposed model has the smallest values of the
AIC, BIC and K-S statistics and has the largest p-value of the K-S statistic.

Table 6: The MLEs (standard errors in parentheses), AIC, BIC and K-S
(with p-values in {·}) statistics for glass fibres data.

Model bγ bη bθ ba bb AIC BIC K-S
XG-W - - 0.4392 0.8952 4.6911 31.4342 37.8636 0.1210

- - (0.0421) (0.0250) (0.1330) {0.3151}
Kw-W 0.7910 112.6514 - 0.2702 7.2790 38.3943 46.9669 0.1524

(0.1088) (15.9962) - (0.0226) (0.5671) {0.1073}
BW 0.6207 120.6149 - 0.3051 7.7653 37.1752 45.7477 0.1455

(0.0947) (0.3733) - (0.0088) (0.1522) {0.1388}
LW - - 117.0336 0.2698 5.7804 36.4135 42.8429 0.1522

- - (9.4031) (0.0215) (0.5800) {0.1078}
EW - - 0.6713 0.5821 7.2841 35.3510 41.7804 0.1462

- - (0.2876) (0.0332) (2.0252) {0.1351}
OLL-W - - 0.9438 0.6159 6.0252 36.3736 42.8030 0.1537

- - (0.2655) (0.0163) (1.3273) {0.1018}

8.2. Application 2: Leukemia data

The second data set represents the lifetimes in days of 40 patients suffering from
leukemia from one of the Ministry of Health Hospitals in Saudi Arabia (Abouammoh et

al. [1], 1994). The data have been analyzed by Sarhan et al. [24] (2013). We compare
the XG-N distribution with the Kumaraswamy-normal (Kw-N) (Cordeiro and de Castro [9],
2011), power-normal (PN) (Gupta and Gupta [15], 2008), logistic-normal (L-N) (Tahir et al.

[31], 2016) and odd log-logistic-normal (OLL-N) (Braga et al. [5], 2016) distributions. The
cdfs of the Kw-N, PN, L-N, and OLL-N models are given by

F (x) = 1−
{

1−
[
Φ
(

x− µ

σ

)]γ}η

,

F (x) =
[
Φ
(

x− µ

σ

)]θ

,

F (x) =

{
1 +

[
1−Φ

(
x− µ

σ

)]−θ
}−1

,

F (x) =

[
Φ
(x−µ

σ

)]θ[
Φ
(x−µ

σ

)]θ +
[
1−Φ

(x−µ
σ

)]θ ,

respectively, where x , µ ∈ <, γ, η, σ > 0 and Φ(·) is the cdf of the standard normal distribu-
tion.

Table 7 lists the MLEs (and their standard errors) of the parameters and the K-S
statistic for the fitted models. The figures in this table reveal that the XG-N distribution
has the smallest values of the AIC, BIC and K-S statistics and has the largest p-value of the
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K-S statistic. Therefore, we can conclude that the XG-N distribution could be chosen as the
most adequate model for this data set.

Table 7: The MLEs (standard errors in parentheses) AIC, BIC and K-S
(with p-values in {·}) statistic for leukemia data.

Model bγ bη bθ bµ bσ AIC BIC K-S
XG-N - - 0.6892 662.6324 609.7157 609.7157 614.7824 0.0825

- - (0.0717) (0.9018) (1.5488) {0.9484}
Kw-N 0.8320 0.2217 - 614.6680 294.0911 616.3179 623.0734 0.1314

(1.0023) (0.2217) - (0.5583) (1.7209) {0.4942}
PN - - 5.5078 189.8173 776.1012 615.2070 620.2736 0.1196

- - (0.8745) (4.2845) (0.8745) {0.6163}
L-N - - 4.4833 719.6505 1329.4302 617.0567 622.1234 0.1022

- - (0.5873) (0.5873) (4.1943) {0.7976}
OLL-N - - 36.6070 1169.5520 16331.9508 614.8475 619.9142 0.0869

- - (5.9316) (4.1943) (7.2647) {0.9228}

The histogram of both data sets and the estimated pdfs and cdfs of the XG-W and
XG-N models and their competitive models are displayed in Figures 4 and 5, respectively. It
is clear from these plots that the XG-W and XG-N models provide the best fits to both data
sets.
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(a) Fitted pdfs for data set I. (b) Fitted cdfs for data set I.

Figure 4: Plots of the estimated pdfs and cdfs of the XG-W distribution
and other competitive models.
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Figure 5: Plots of the estimated pdfs and cdfs of the XG-N distribution
and other competitive models.

8.3. Application 3: Diabetic retinopathy study

We consider a data set analyzed by Huster et al. [17] (1989) which represents patients
with diabetic retinopathy in both eyes and 20/100 or better visual acuity for both eyes
were eligible for the study. The patients were followed for two consecutively completed 4
month follow-ups and the endpoint was the occurrence of visual acuity less than 5/200. We
choose only the treatment time. A 50% sample of the high-risk patients defined by diabetic
retinopathy criteria was taken for the data set (n =197) and the percentage of censored
observations was 72.4%. The variables involved in the study are: ti – failure time for the
treatment (in min); censoring indicator (0 = censoring, 1 = lifetime observed); xi1 – age (0 =
patient is an adult diabetic, 1 = patient is a juvenile diabetic). The below regression structure
is fitted by LXG-W regression model

yi = β0 + β1xi1 + σ zi,

where the rv Yi has the LXG-W distribution (6.1) for i = 1, ..., 197. The statistical soft-
ware R is used to estimate the unknown model parameters by MLE approach. The op-
tim function of R software is used to minimize the minus of log-likelihood function, given
in (6.4). The initial values of the parameters are taken from the fitted LXG-E regression
model (with σ = 1). The MLEs of the parameters of LXG-W regression model (approximate
standard errors and p-values in parentheses) are: θ̂ = 1.7187 (1.8739), σ̂ = 1.2085 (0.1518),
β̂0 = 4.2902 (1.9308) (0.0068) and β̂1 = 0.6474 (0.3755) (0.0215). The explanatory variable x1

is found statistically significant at the 5% significance level. In order to assess the validity of
the fitted regression model, the estimated survival functions of the LXG-W regression model
and empirical one are displayed in Figure 6. As seen from this figure, the LXG-W regression
model provides substantial fit to these data.
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Figure 6: Estimated survival function by fitting the LXG-W regression model and
the empirical survival for each level of the diabetic retinopathy study.

9. CONCLUSIONS

A new class of distributions called the xgamma-G family with one extra positive param-
eter is introduced and studied. We provide some mathematical properties of the new family
including ordinary and incomplete moments, quantile and generating functions and mean
deviations. The maximum likelihood method is used for estimating the model parameters.
We assess of the performance of the maximum likelihood estimators in terms of biases and
mean squared errors by means of two simulation studies. We also introduced a new linear
regression model based on the logarithm of the xgamma random variable for uncensored and
censored data. We prove that the special models of the proposed family provide consistently
better fits than other competitive models by means of three real data sets.
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