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Abstract:

• Comparison of two treatments in matched pairs is a powerful general method for improving pre-
cision. When the outcome is binary the formulation in terms of logistic comparisons leads to an
analysis in which concordant pairs, that is pairs in which both members show the same outcome,
are discarded. The present paper discusses a number of conceptual aspects of this including a
comparison with a linear in probabilities formulation, the relation between logistic parameters in
different designs and in particular some new efficiency comparisons. Some emphasis is based on
new relations between estimated effects derived from different formulations and on comparative
calculations of asymptotic efficiency.
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1. INTRODUCTION

The comparison of two treatments, T0 and T1, using matched pairs of individuals is a
simple and often effective way of improving precision and is the basis for many generalizations.
When each outcome is binary, 0 or 1, say, there are four possible outcomes from a pair, (0, 0)
and (1, 1), called concordant pairs, and (1, 0) and (0, 1), called discordant pairs. The analysis
of such data has been extensively discussed, partly because of the broader implications for
approaching formalized statistical inference; see, for example, the wide-ranging review of
Agresti [1] (1990).

McNemar [10] (1947) suggested testing the null hypothesis of treatment equivalence by
discarding the concordant pairs and testing the discordant pairs for an equal split between the
two possibilities, using the binomial distribution with parameter 1/2. Cox [3, 4] (1958a, b)
formalized this within a systematic approach to the analysis of binary data using an expo-
nential family setting based on a linear logistic model. In the psychometric literature the
problem is considered in this way as a special case of the Rasch model (Rasch [12], 1960).

One approach, possibly closer in spirit to McNemar’s paper, is to treat the analysis as
a simple significance test (Fisher [8, Chapter II], 1935) in which the strong null hypothesis
is that the outcome on each individual is totally unaffected by the treatment allocations,
taken to be by design independent randomization for each pair between the two possible
assignments. With m pairs and two treatments there are thus 2m possible configurations that
might be observed, each with the same probability under the null hypothesis; McNemar’s test
follows from that. Here a stochastic model for the data is not needed; rather the stochastic
element comes from the randomization in design. This is a powerful argument but limited
in its implications because an estimation formulation attached to it is rather contrived. The
extensive literature on the matched pairs and related issues has tended not to follow that
route.

A general aspect that underlies the discussion of binary data goes back in particular to
earlier differences between Karl Pearson and Yule (Pearson [11], 1907; Yule [13], 1903). The
former treated the two binary variables in a simple 2× 2 contingency table as derived from
an underlying standardized bivariate Gaussian distribution whose correlation coefficient is to
be estimated, whereas Yule considered the binary variables as such.

In the logistic formulation, let Ys0, Ys1 be independent random variables representing
the observations on the sth pair and suppose that for m pairs

P (Ys0 = i) = Li(αs − θ/2), P (Ys1 = j) = Lj(αs + θ/2), i, j ∈ {0, 1},(1.1)

where αs, θ ∈ R are unknown parameters, L1(x) = ex/(1 + ex) is the unit logistic function
and s = 1, ...,m and we write L0(x) = 1− L1(x). Interest is typically focused on θ whereas
the αs specify inter-pair differences supposed to be of no direct interest. Here i, j take values
0 and 1 and the parameter space is unconstrained.

It follows from the existence of complete sufficient statistics that if study of θ is to be
made regarding the αs as totally arbitrary nuisance parameters, then to achieve a procedure
not formally depending on those parameters, inference is made conditionally on the pair totals,
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and therefore confined to the discordant pairs. In the nonnull case this leads to confidence
limits for θ based on the binomial distribution.

The discarding of concordant pairs has often been regarded with unease, especially if
there are many such pairs, this superficially pointing to treatment equivalence. If, though, it is
required to cover the possibility that many of the αs are large in absolute value the rejection
seems inevitable. If, however, implicit or explicit restrictions are placed on the variation
of these parameters some information may be recoverable from the concordant pairs. For
example, Lee [9] (2001) replaced the logistic model by a broadly equivalent Poisson model.
Because of the richer reference set somewhat improved estimates involving the concordant
pairs were obtained.

Another route is to replace the logistic function in the above formulation by some other
function, for example the linear or Gaussian functions. Such a change might give a better
fit or a more direct interpretation or accommodate several related studies more conformably.
Aranda-Ordaz [2] (1981) studied a parametric family of transformations as a basis for choosing
the best fitting model. Empirical discrimination betweeen different models typically requires
extensive data.

In essentially discrete problems “exact” significance testing involves reference to a dis-
crete distribution and hence for each data configuration to a limited set of achievable signifi-
cance levels. There is a very extensive literature on how the discrete test can be augmented
to achieve some pre-specified level, such as 0.05. For interpretative purposes such arbitrarily
defined levels are irrelevant. Repetitive binary decision problems such as routine screening
need to be treated as such.

2. OUTLINE ANALYSES OF TWO MODELS

For data from m independent pairs we write for pair s the likelihood contribution for
outcome (i, j) as

Li(αs − θ/2)Lj(αs + θ/2).

It follows that, if π̂ij is the proportion of pairs with Y0 = i, Y1 = j with corresponding prob-
abilities πij , then

πij = AvesLi(αs − θ/2)Lj(αs + θ/2),(2.1)

where s indexes the pairs and Aves is the average over the m pairs in the study or over
a population of pairs from which the observed pairs have been randomly chosen. For each
fixed θ the sufficient statistics for the αs are the pair totals. Conditioning on these leaves no
information in the concordant pairs and the contribution to the conditional log likelihood is
thus L1(θ) from each of the N01 pairs with outcome (0, 1) and L0(θ) from each of N10 pairs
(1, 0). It follows that θ̂ = log(N01/N10) and L1(θ̂) = N01/(N01 +N10), so that, in particular,
from the variance of a binomial distribution,

var{L1(θ̂)} = L0(θ)L1(θ)/(mπD),(2.2)
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and then by the formula for the asymptotic variance of nonlinear function

var(θ̂) = 1/{mL0(θ)L1(θ)πD},

where πD is the average probability that a pair is discordant so that mπD is the expected
number of discordant pairs.

Suppose now that we replace the logistic formulation by the linear representation

P (Ys0 = 1) = 1/2 + βs − φ/2, P (Ys1 = 1) = 1/2 + βs + φ/2,(2.3)

where βs specifies the impact of the sth pair and φ gives the difference of probabilities between
the two groups. The parameter space is constrained so that all probabilities are in [0, 1].
This places relatively complicated restrictions on the component parameters. If we write
µβ = Σβs/m, σ2

β = Σβ2
s/m− µ2

β, then the four cell probabilities for the expected outcome
proportions are in a symmetrized notation

π00 = 1/4− φ2/4− µβ + γβ,

π01 = 1/4 + φ/2 + φ2/4− γβ ,

π10 = 1/4− φ/2 + φ2/4− γβ ,

π11 = 1/4− φ2/4 + µβ + γβ,

where γβ = µ2
β + σ2

β. Here φ specifies the inter-treatment differences and βs characterizes the
sth pair. Explicit characterization of the parameter space, that is the non-negativity of pij

is not simple.

It follows that φ = π01 − π10 is estimated by

(2.4) φ̂ = π̂01 − π̂10 = (N01 −N10)/m.

The numerator is the sum of independent random variables taking the values (−1, 0, 1) and
it follows that

var(φ̂) =
1− φ2 − 4γβ

2m
= (πD − φ2)/m.(2.5)

This depends not only on the discordant pairs but, through the denominator, also on
the total number of concordant pairs.

The variance component σ2
β can be estimated through its equivalence to

1/4− (π0. − π1.)(π.0 − π.1)/4− πD/2.

In this discussion µβ and σ2
β are the mean and variance of the finite population of values

of βs. Alternatively if the βs correspond to independent and identically distributed random
variables and expectations are taken over their distribution the parameters µβ and σ2

β refer
to that distribution.
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3. SOME SIMPLE COMPARISONS

Comparison of logistic and linear in probability and indeed other models can be viewed
in a number of distinct ways. From the viewpoint of formal statistical theory the logistic
model has the major advantage of leading to a full exponential family form with the regression
coefficients as canonical parameters (Cox [3], 1958a) and associated “exact” methods. Fully
efficient estimation for the linear in probability models requires iterative calculation. However
the use of ordinary least squares, treating the binary (0, 1) outcomes as if quantitative, has
high efficiency so long as the probabilities are in a central range, say (0.2, 0.8) (Cox and
Wermuth [7], 1992). The direct subject-matter interpretation of differences in probabilities in
terms of expected numbers of individuals affected is an advantage of the linear in probabilities
model but the severe restrictions to specified regions of the parameter space are a major
disadvantage of that formulation.

There is, however, a further general consideration applying to all issues connected with
binary data and going back to the early work of Karl Pearson [11] (1907) and Yule [13] (1903)
on the simpler 2× 2 table. Pearson treated binary variables as formed from dichotomizing
unobserved continuous variables having a bivariate normal distribution whose correlation is
the focus of interest, whereas Yule treated binary variables directly in their own right. In
many contexts the distinction is nugatory, although for quantal bioassay the former approach
is directly relevant. Each study individual has a just critical dose above which, say, a lethal
response is observed; each individual can be tested only once. Treating the unobserved critical
dose levels as having a normal distribution, virtually indistinguishable from a continuous
logistic distribution, is often reasonable; treating it as uniform, the implication of the linear
in probabilities model, would typically not be.

The distinction between logistic and linear formulation disappears at the null hypothesis
θ = φ = 0 and locally the parameter estimated in the linear in probability model is φ =
Aves{L1(αs + θ/2)− L1(αs − θ/2)} = θAves{L′

1(αs)}, where L′
1(·) is the derivate of L1(·),

and this is approximately
φ̃ = θAves{L1(αs)L0(αs)} = θπD/2.

Here Aves(bs) is the unweighted average Σbs/m. The asymptotic relative efficiency of the
linear and logistic procedures is thus given by the ratio var(φ̃)/var(φ̂) evaluated at the null
hypothesis and this is one.

Both logistic and linear formulations have three free parameters and are therefore sat-
urated families for the distribution over the four possible outcomes. The linear in probability
model has for most purposes the more directly understandable interpretation, although if the
proportions of, say, 1’s are small, the interpretation of the logistic model in terms of propor-
tional effects is attractive and the positivity constraints on the linear model are severe. Often
the most appealing base for choosing between different formulations is stability of estimated
effects across replicate sets of data, that is relative constancy of either θ or of φ, potentially
favouring the logistic formulation.

Instead of matching in pairs it would be possible to randomize the allocation of in-
dividuals to the two groups, leading to a comparison of two binomially distributed random
variables. We study the consequences of this in Section 8.
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4. SOME APPROXIMATIONS

A number of aspects of the study of logistic models involve the evaluation of expecta-
tions typified in its simplest form by E{L1(µ+A)}, where A is a random variable of zero
mean and variance σ2. There are a number of approximations for small σ equivalent to order
σ2 but one that is likely to be better over a wider range of values. The simplest is based on
Taylor expansion of L1(µ+A) for small A and is

E{L1(µ+A)} = L1(µ) + σ2L′′
1(µ)/2,(4.1)

where

L′′
1(µ) = L1(µ)L0(µ) {L0(µ)− L1(µ)} .

The second approximation is based on absorbing the correction term in (4.1) into the first by
writing the approximation

L1

{
µ+ σ2{L0(µ)− L1(µ)}/2

}
,

differing from (4.1) by terms of order O(σ4).

A third approximation is obtained less directly but is more stable for larger values of
σ2. We approximate the logistic function L1(x) by the standardized normal integral Φ(kx)
for a suitable constant k; this gives a good approximation over a wide range of arguments.
Then the expectation of interest is approximately E{Φ(kµ+ kA)} and if also A is normally
distributed this expectation is itself a normal integral. On re-expressing this as a logistic
function we obtain the third approximation

L1

{
µ

(1 + k2σ2)1/2

}
.

Suitable values of k are suggested by Cox and Snell [6, p. 21–22] (1989); a compromise value
over the central part of the range is k = 0.607. A major advantage of this third approximation
is that, unlike the other two, it gives qualitatively sensible answers even for large values of
σ2.

To aid interpretation, suppose for instance that the probabilities varied with roughly
95% of values being between 0.6 and 0.9. Then the corresponding logistic function varies
between 0.4 and 2.2 suggesting a σ of roughly 0.45. Then the correction factor

√
{1+(0.6072 ·

0.452)} would be about 1.04, implying a quite modest adjustment.

For more detailed comparisons more explicit information about the probability that a
pair is discordant is needed. We treat αs as a random variable A, so that

(4.2) πD = EA {L0(µ+A− θ/2)L1(µ+A+ θ/2) + L1(µ+A− θ/2)L0(µ+A+ θ/2)} .

This can be expanded in terms of σ by the methods outlined above. The complex details will
not be given.

Table 1 shows πD against θ, µ and σ. The calculated values of πD were confirmed by
simulation. The proportion of discordant pairs decreases rather slowly with σ.
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Table 1: Probability of a pair being discordant, πD, against θ, µ and σ.

πD(0)

θ 0 0.5 1 1.5 2

σ µ
0 0.500 0.530 0.607 0.702 0.790
0.5 0.470 0.500 0.578 0.676 0.769
1 0.393 0.422 0.500 0.604 0.709
1.5 0.298 0.324 0.396 0.500 0.615

πD(σ) / πD(0)

0.5 0 0.94 0.94 0.95 0.96 0.97
0.5 0.95 0.95 0.96 0.97 0.97
1 0.98 0.98 0.97 0.97 0.98
1.5 1.01 1.01 1.00 0.99 0.98
2 1.05 1.04 1.03 1.01 1.00

1 0 0.75 0.76 0.80 0.85 0.90
0.5 0.79 0.80 0.83 0.86 0.90
1 0.91 0.90 0.90 0.89 0.90
1.5 1.05 1.04 1.00 0.95 0.93
2 1.19 1.17 1.11 1.04 0.98

1.5 0 0.44 0.47 0.56 0.66 0.76
0.5 0.54 0.56 0.61 0.69 0.77
1 0.80 0.79 0.76 0.76 0.78
1.5 1.12 1.08 0.99 0.90 0.84
2 1.42 1.37 1.25 1.10 0.96

Estimation of σ is in principle possible by first estimating θ and µ and then comparing
the proportion of discordant observations with that to be expected in the homogenous case,
σ = 0. Table 1 shows that it is only for rather large value of σ and even then for certain
ranges of the other parameters that such estimation is likely to be effective.

5. UNCONDITIONAL ANALYSIS

Suppose that instead of pairing, individuals are randomized to two groups, 0 and 1,
therefore with probabilities of success

P (Y0 = 1) = E {L1(µ+A− θ/2)} , P (Y1 = 1) = E {L1(µ+A+ θ/2)} ,

respectively. The resulting unconditional analysis uses all pairs.

Thus, for example, the probability of success for an individual in group 0 is approxi-
mately

(5.1) ψ0 ' L1

(
µ− θ/2√
(1 + k2σ2)

)
and that for an individual in group 1 is

(5.2) ψ1 ' L1

(
µ+ θ/2√
(1 + k2σ2)

)
.
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To estimate the marginal log odds ratio, we calculate

logit(ψ1)− logit(ψ0) =
θ√

(1 + k2σ2)
.

Thus the sample proportions can be used to obtain an unconditional estimate of θ

θ̂U =
√

(1 + k2σ2)

{
log

ψ̂1

1− ψ̂1

− log
ψ̂0

1− ψ̂0

}
,

where in this discussion we shall treat σ as known or, more realistically, treated by sensitivity
analysis.

The asymptotic variance of the estimate of the treatment effect θ in the unconditional
analysis is then

(5.3) var(θ̂U ) ' (1 + k2σ2)
{

1
mψ0(1− ψ0)

+
1

nψ1(1− ψ1)

}
,

which can be expressed in terms of the functions Li. The parameter σ2 might possibly be
estimated from the proportion of discordant pairs, although the resulting precision is likely
to be low.

Table 2 shows var(θ̂U ) against θ, µ and σ. The variance of the estimate of θ from
the unconditional analysis increases with µ. The relation between σ and the variance of the
estimate of the treatment effect from the unconditional analysis is rather weak.

Table 2: var(θ̂U ) against θ, µ and σ.

var(θ̂U )

θ
0 2 4

µ µ µ

0 1 2 0 1 2 0 1 2

0 0.020 0.025 0.048 0.025 0.034 0.068 0.048 0.068 0.152
σ 0.5 0.022 0.027 0.049 0.027 0.035 0.067 0.049 0.067 0.142

1 0.027 0.033 0.053 0.033 0.040 0.068 0.053 0.068 0.125

6. COMPARISON OF THE EFFICIENCY OF THE CONDITIONAL AND
UNCONDITIONAL ANALYSES

The variances of θ̂C and θ̂U , the estimates from the conditional and unconditional anal-
ysis respectively, are next compared. The parameter θ is defined in terms of the conditional
formulation so that naive estimates of the log odds ratio are not directly comparable. Of the
values in Table 3, θ = 4 corresponds to a quite extreme odds ratio.
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Table 3: var(θ̂C)/var(θ̂U ) against θ, µ and σ.

var(θ̂C)/var(θ̂U )

θ
0 2 4

µ µ µ

0 1 2 0 1 2 0 1 2

0 1 1 1 1.54 1.41 1.20 3.76 2.93 1.87
σ 0.5 0.98 0.96 0.93 1.52 1.39 1.18 3.77 3.03 2.00

1 0.97 0.85 0.76 1.49 1.33 1.08 3.80 3.25 2.30

Table 3 shows the ratio of the variance of the estimate of θC to the variance of the
estimate of θU against θ, µ and σ. The ratio var(θ̂C)/var(θ̂U ) is equal to one when θ = σ = 0,
that is for the null hypothesis with effectively random pairing. As to be expected from the
matching, near θ = 0 the gain from using the conditional estimate increases with σ. Especially
for larger values of µ and θ, however, the unconditional estimate using the concordant pairs
is to be preferred.

The values of the variances as a function of µ, σ and θ were checked by simulation.
For θC there was good agreement and also for θU for small values of σ, but for large σ the
calculated variance was larger than the simulated variance.

We now return to testing the hypothesis of no difference between the two groups. In
comparing the conditional and unconditional analyses, it is important that the parameters
used to specify departures from the null hypothesis have broadly comparable interpretations
in the different formulations.

For the conditional analysis, described in Section 6, we take the test statistic to be
TC = log(N01/N10) and in the discussion to follow of the unconditional analysis we take
TU = log{(N.1N0.)/(N1.N.0)}.

Then TC , interpreted as the logit difference between the two individuals in an arbi-
trary pair, has asymptotic expected value E(TC) = θ. At the null hypothesis we have that,
asymptotically,

var(TC) =

{
1

1
2mD

+
1

1
2mD

}
=

4
mD

=
4

mπD
,

where m is the number of pairs, mD the number of discordant pairs and πD the probability
of a pair being discordant. The Pitman efficacy (Cox and Hinkley [5, p. 337–338], 1974) for
testing the hypothesis that θ = 0 is thus

EC =

{
∂E(TC)/∂θ

∣∣
θ=0

}2

mvar(TC)
∣∣
θ=0

= πD.

Under the null hypothesis, the probability of a pair being discordant, and hence also EC , is

(6.1) πD ' 2L0(µ)L1(µ)
{

1 +
1
2
σ2 (1− 6L0(µ)L1(µ))

}
.
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In the unmatched analysis of Section 7 we have, for instance, that P (Y0 = 1) =
E {L1(A− θ)}. Such probabilities can be calculated approximately by using a Taylor ex-
pansion or by approximating L1(·) by Φ(·), the standard normal cumulative distribution
function. For group 0 this gives

P (Y0 = 1) ' L1(µ− θ/2) +
1
2
σ2L1(µ− θ/2)L0(µ− θ/2) {L0(µ− θ/2)− L1(µ− θ/2)} .

For group 1 an analogous expression holds, with µ− θ/2 replaced by µ+ θ/2. By a further
approximation,

logit {P (Y0 = 1)} ' µ+
1
2
σ2 {L0(µ− θ/2)− L1(µ− θ/2)} ,

so that TU , the log odds contrast in the unconditional analysis, has asymptotic expected value

E(TU ) =
1
4
θ +

1
4
σ2 {L0(µ+ θ/2)− L1(µ+ θ/2)− L0(µ− θ/2) + L1(µ− θ/2)} .

Then
∂E(TU )
∂θ

' 1
2
{1− σ2L0(µ+ θ/2)L1(µ+ θ/2)}

which under the null hypothesis is {1− σ2L0(µ)L1(µ)}/2. The variance under the null hy-
pothesis is that of the comparison of two independent logits, each based on m observations
and thus is

var(TU ) =
1

2mL0(µ)L1(µ)

{
1− 1

2
σ2 (L0(µ)− L1(µ))2

}
,

assuming σ4 is negligible. Therefore the Pitman efficacy for TU is after some simplification

(6.2) EU ' L0(µ)L1(µ)
2

{
1 +

1
2
σ2 (1− 8L0(µ)L1(µ))

}
,

ignoring terms of order σ4 and above.

Therefore to assess the relative efficiency for θ = 0, we compare EU and RC . Since in
this special case EU is smaller than EC , near the null hypothesis of zero treatment effect the
matched design tends to be slightly more efficient than the unmatched one, as is confirmed
by the comparison of the variances.

Often L0(µ)L1(µ) ' 1/4 and then

EC ' 1
2

(
1− 1

4
σ2

)
and for comparison

EU ' 1
2

(
1− 1

2
σ2

)
.

Thus for testing the hypothesis of no treatment effect the conditional analysis is asymptoti-
cally slightly better than the unconditional analysis, depending on the amount of variability
between pairs.
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7. DISCUSSION

The main qualitative aspects in this discussion, some with broader implications, are
as follows. Most importantly, should conclusions be formulated in terms of differences of
probabilities or as logistic differences or possibly on some other scale? For any specific set of
data the choice is likely to be numerically unimportant if all probabilities are in the central
range, say between 0.2 and 0.8 (Cox and Wermuth [7], 1992). The choice becomes important
if several sets of data are considered together, when stability of contrasts across data sets, if
achievable, is desirable. The direct interpretation of differences of probabilities in terms of
the numbers of individuals notionally affected by a change in treatment is attractive but in
general decreasingly so at the extremes of the scale, where the logistic comparisons, essentially
log ratios at the two ends of the scale, become more appealing, especially so for case-control
studies, where there are quite strong specific arguments for the use of logistic differences.

The second general issue applying to the logistic analysis of matched pairs is that the
parameter of interest, a difference of log odds, is notionally specific to each pair. This implies,
in particular, that it is not directly comparable with the same difference calculated from an
unmatched randomized comparison of the same two treatments from the same population.
The exception is when the variation between pairs is small. Otherwise some correction based
on the inter-pair variability can be made, essentially using the relation between that variability
and the proportion of discordant pairs, but such adjustments are likely to be quite fragile.

The third issue is that detailed comparison of the conclusions from different studies,
some matched and some totally randomized, requires recognition that different ways of ex-
pressing the comparisons of interest by an unknown parameter may be involved.

Finally our detailed results show when the gain in sensitivity from matching is likely
to be appreciable.
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