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Abstract:
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time and cost of tests. We consider the constant-stress partially ALT model when the lifetime
of units under normal conditions follow the generalized half-logistic lifetime distribution based on
progressive Type-II censored schemes. The likelihood functions of the parameters are derived and
solved to present the maximum likelihood estimators of the model parameters. The approximate
and two bootstrap confidence intervals are also proposed. The performance of the different methods
were measured and compared through Monte Carlo simulation study. Finally, the results of a
numerical example are discussed.
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1. INTRODUCTION

According to [22, 18, 3, 4], there are different methods of accelerated life testing (ALT):
the constant-stress ALT, in which the stress on the life test product remains at a constant
level, the progressive-stress ALT, in which the stress applied to the product units in the
test increases with time [7], and the step-stress ALT, in which the test condition changes
for a given time or a specified number of failures [21, 7]. For more recent research on the
constant-stress partially ALT, see [2, 1].

In product-life test experiments, censoring has played an important role. Different
types of censoring are available. Type-I and Type-II censoring schemes (CSs) are commonly
applied, both of which do not allow the removal of any units other than at the terminal point
of the test. General CSs that allow units to be removed at any point during the test are called
progressive Type-II right censoring. For important reviews of the literature on progressive
censoring, see [9].

Let n be the number of units tested in a product-life testing experiment and T1, T2, ...,
Tn, be the corresponding lifetimes. Assume that the Ti, i = 1, 2, ..., n are independent and
identically distributed (i.i.d.) with probability density function (PDF) f(.) and cumulative
distribution function (CDF) F (.). In the progressive Type-II CS prior to the experiment,
the effective sample size m and the corresponding CS R = {R1, R2, ..., Rm} are determined;
then TR

i;m,n, i = 1, 2, ..., m is the corresponding random variable of the progressive Type-II
censored sample.

The joint likelihood function of the observed progressive Type-II censored sample t =
(tR1;m,n, tR2;m,n, ..., tRm;m,n ) is given by

(1.1) f(t, θ) = Q

m∏
i=1

f(tRi;m,n)[1− F (tRi;m,n)]Ri,

where the observed progressive Type-II censored sample t satisfies 0 < t1;m,n < t2;m,n < ... <

tm;m,n < ∞ ,and

(1.2) Q =
m−1∏
i=0

n−
i∑

j=0

Rj − i

 , R0 = 0.

Balakrishnan [8] has considered the half-logistic distribution as the distribution of the abso-
lute standard logistic variate. Important properties of a generalized version of the logistic
distribution are discussed by Balakrishnan and Hossain [10]. The point estimation of the
stress–strength reliability of generalized half-logistic distribution (GHLD) is presented by
Ramakrishnan [23]. The shape parameter of the GHLD was estimated under Type-I progres-
sive censoring in Arora et al. [5]. The Bayesian approach with a GHLD was discussed in
Kim et al. [20]. Recently, testing procedures for the reliability functions of the GHLD were
considered in Chaturvedi et al. [14] and in a Type-I generalized half-logistic survival model
in Awodutire et al. [6].
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Let T be a random variable of a GHLD with shape parameter β; the PDF and CDF
are given respectively by

(1.3) f(t) =
β

1 + exp(−t)

(
2 exp(−t)

1 + exp(−t)

)β

, t > 0, β > 0,

and

(1.4) F (x)=1−
(

2 exp(−t)
1 + exp(−t)

)β

,

The reliability function S(t) and the hazard rate function H(t) are expressed as

(1.5) S(t) =
(

2 exp(−t)
1 + exp(−t)

)β

, t > 0, β > 0,

and

(1.6) H(t) =
β

1 + exp(−t)
.

This GHLD is considered as a special probability distribution with a location param-

eter and a scale parameter, defined by F (x)=1−
(

2 exp(−t
σ

)

1+exp(−t
σ

)

)β

with σ = 1. The best linear

unbiased estimator of the location and scale parameters as well as the values of the variance
and covariance of these estimators is presented in [11]. Ref. [13] discusses the estimator as
an approximation of the likelihood functions based on a Type-II censoring sample. The esti-
mation of the parameter of the half-logistic distribution under progressive Type-II censored
sample is presented in [19].

The aim of this paper is to estimate the GHLD under constant-stress partially ALT
with progressive Type-II CS. The maximum likelihood estimator (MLE) and the bootstrap
estimator of each unknown GHLD parameter and the acceleration factor are presented. The
point estimates of the MLE and bootstrap estimator mainly assess and compare their biases
and mean-squared errors (MSE’s), as well as the approximate interval estimation and boot-
strap confidence intervals (CIs), with respect to coverage percentage and the mean of interval
lengths using extensive simulation studies.

In this article, the assumptions and model are described in Section 2. The MLEs
and the corresponding approximate confidence intervals (ACIs) are given in Section 3. Two
bootstrap CIs are discussed in Section 4. We assess and compare the results of Monte Carlo
studies in Section 5. A numerical example of a simulated data set is presented in Section 6.
Finally, some comments about the results of the simulation studies are presented in Section 7.
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2. ASSUMPTIONS AND MODEL

In the experiment design for the constant-stress partially ALTs, n1 units from n testing
units are randomly chosen to be tested under normal conditions; the remaining units n2= n−n1

are tested under accelerated conditions. The model for the progressive Type-II censoring with
constant-stress partially ALTs is described as follows. The subscript label j = 1, 2 signify
the two conditions, normal and accelerated; when the first failure TRj

j1;mj ,nj
is recorded, Rj1

units are randomly removed from the remaining nj − 1 surviving units. Also at the second
failure, TRj

j2;mj ,nj
is recorded and Rj2 units from the remaining nj − 2-Rj1 units are randomly

removed. The test continues until the mj -th TRj
jmj ;mj ,nj

failure and the remaining Rjmj = nj-

mj −
mj−1∑
k=1

Rjk units are removed, for j = 1, 2. In this model, each of the Rji and mj < nj are

fixed prior to beginning the test. If the times of failure of the nj units originally in the test
are from a continuous population with a distribution function Fj(t) and probability density
function fj(t), the joint probability density function for TRj

j1;mj ,nj
< TRj

j2;mj ,nj
< ... < TRj

jmj ;mj ,nj

and j = 1, 2 is given as follows.

The joint likelihood function for t = (TRj
j1;mj ,nj

, TRj
j2;mj ,nj

, ..., TRj
jmj ;mj ,nj

) for j = 1, 2, is
given by

(2.1) L(β, λ|t) =
2∏

j=1

Qj

{mj∏
i=1

fj(t
Rj
ji;mj ,nj

)
(
Sj(t

Rj
ji;mj ,nj

)
)Rji

}
,

where Qj =
mj−1∏
i=0

(
nj −

∑i
l=0 Rlj − i

)
, R0j = 0. In the accelerated lifetime model, assuming

that S2(t)= S1(λt). Let T be a random variable under normal conditions, then the lifetime
of the unit under accelerated conditions can be defined by Y = T

λ , where λ is the acceleration
factor. Hence, the probability density and cumulative distribution functions of the GHLD
with observed lifetime under the accelerated condition are given by

(2.2) f2(y) =
λβ

1 + exp(−λy)

(
2 exp(−λy)

1 + exp(−λy)

)β

, y > 0, β, λ > 0.

and

(2.3) F2(y) = 1−
(

2 exp(−λy)
1 + exp(−λy)

)β

.

Also, the reliability function S(y) and hazard rate function H(y) are given, respectively, by

(2.4) S2(y) =
(

2 exp(−λy)
1 + exp(−λy)

)β

,

and

(2.5) H2(y)=
λβ

1 + exp(−λy)
.
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3. MAXIMUM LIKELIHOOD ESTIMATION

3.1. Point estimation

Let T =
(
TRj

j1;mj ,nj
< TRj

j2;mj ,nj
< ... < TRj

jmj ;mj ,nj

)
, j = 1, 2 denote two progressively

Type-II censored samples from two populations for which the PDFs and CDFs are as given
in (1.3), (1.4), (2.2), and (2.3), with Rj = (Rj1, Rj2, ..., Rj1). The log-likelihood function
`(β, λ|t) = log L(β, λ|t) without normalized constant is then given by

(3.1)

`(β, λ|t) = (m1 + m2) log β + m2 log λ + nβ log 2−
m1∑
i=1

log [1 + exp(−t1i))]

−
m2∑
i=1

log [1 + exp(−λt2i))]− β
m1∑
i=1

(R1i + 1) log (1 + exp(t1i))

−β
m2∑
i=1

(R2i + 1) log (1 + exp(λt2i)) .

The likelihood equation is obtained by calculating the first partial derivatives of (3.1)
with respect to β and λ, and then equating each to zero:

(3.2)

∂`(β,λ|t)
∂β = m1+m2

β + n log 2−
m1∑
i=1

(R1i + 1) log (1 + exp(t1i))

−
m2∑
i=1

(R2i + 1) log (1 + exp(λt2i)) = 0,

giving

(3.3)
β(λ) = −(m1 + m2)

[
m1∑
i=1

(R1i + 1) log (1 + exp(t1i))

+
m2∑
i=1

(R2i + 1) log (1 + exp(λt2i))− n log 2
]−1

,

and

(3.4)
∂`(β,λ|t)

∂λ = m2
λ +

m2∑
i=1

t2i (1 + exp(λt2i))
−1 + β

m2∑
i=1

(R2i + 1)

×t2i (1 + exp(−λt2i))
−1 = 0,

giving

(3.5)
m2

λ
+

m2∑
i=1

t2i (1 + exp(−λt2i))
−1 + β

m2∑
i=1

(R2i + 1)t2i (1 + exp(−λt2i))
−1 = 0 .

The likelihood equation reduce to the single nonlinear equation (3.5), which can be solved
numerically using the fixed point method or the quasi-Newton Raphson to obtain the MLE
of λ say λ̂, and hence β̂ using (3.3).
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3.2. Approximate interval estimation

The asymptotic normality theory is applied to construct asymptotic CIs of the MLEs.
The Fisher information matrix requires the second partial derivatives of (3.1) with respect
to β and λ:

(3.6)
∂2`(α, β, λ|t)

∂β2
=
−(m1 + m2)

β
,

(3.7)
∂2`(β, λ|t)

∂β∂λ
=

∂2`(β, λ|t)
∂λ∂β

= −β

m2∑
i=1

(R2i + 1)t2i (1 + exp(−λt2i))
−1 ,

and

(3.8)
∂2`(β,λ|t)

∂λ2 = −m2
λ2 −

m2∑
i=1

t22i (1 + exp(−λt2i))
−2 + β

m2∑
i=1

(R2i + 1)t22i exp(λt2i)

× (1 + exp(λt2i))
−2 .

Then, the expectation of the difference of equations (3.6) and (3.8) is defined as the Fisher
information matrix I (β, λ). The MLEs (β̂, λ̂ ) with some mild regularity conditions fol-
lows the approximately bivariate normal distribution with mean (β, λ) and covariance ma-

trix [I (β, λ)]−1. Usually, in practice, the estimate of [I (β, λ)]−1 is used by
[
I0

(
β̂, λ̂

)]−1
.

A simpler and equally valid procedure is to use the approximation

(3.9) (β̂, λ̂) ∼ N

(
(β, λ) ,

[
I0(β̂, λ̂)

]−1
)

,

where I0 (β, λ) is the observed information matrix

(3.10)

[
−∂2`(β,λ|x)

∂β2 − ∂2`(β,λ|x)
∂β∂λ

−∂2`(β,λ|x)
∂λ∂β − ∂2`(β,λ|x)

∂λ2

]−1

(β̂,λ̂)

.

The approximate CIs for the parameters β and λ are obtained from the bivariate normal

distribution with mean (β, λ) and covariance matrix
[
I0(β̂, λ̂)

]−1
. Thus, the 100(1− 2α)%

ACIs for β and λ are

(3.11) β̂ ∓ zα
√

v11 and λ̂∓ zα
√

v22,

respectively, where v11 and v22 are the elements on the diagonal of the covariance matrix
I−1
0 (β̂, λ̂) and zα is the percentile of the standard normal distribution with the right-tail

probability α.
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4. BOOTSTRAP CONFIDENCE INTERVALS

In some cases, if the objective of the study is to determine the estimators, CIs, bias, and
variance of an estimator or to calibrate hypothesis tests, then the bootstrap technique plays
an important role. Different types of bootstrap techniques are available, such as those called
parametric [15] and nonparametric [17]. In this section the parametric bootstrap technique
is adopted to construct the percentile bootstrap CI (PBCI) (see [16] for more details) and
the bootstrap-t CI (BTCI) (see [15]). The following algorithm is used to differentiate the two
types of bootstrap techniques:

1. Based on the observed original progressively Type-II sample, (tj1;mj ,nj < tj2;mj ,nj <

... < tjmj ;mj ,nj ), obtain β̂, and λ̂, j = 1, 2.

2. Based on the values of nj and mj (1 < mj < nj) with the same values of Rji, (i = 1,

2, ..., mj), j = 1, 2, generate two independent random samples of sizes m1 and m2

from the GHLD, t∗ = (t∗j1;mj ,nj
< t∗j2;mj ,nj

< ... < t∗jmj ;mj ,nj
) using the algorithm

described in [12].

3. As in step 1 based on t∗ compute the bootstrap sample estimates of β̂, and λ̂

denoted here as β̂∗ and λ̂∗.

4. Steps 2 and 3 are repeated N times, thereby N different bootstrap samples are
represented. The value of N may be taken as 1000.

5. The values of β̂∗ and λ̂∗ are arranged all in ascending order to obtain the bootstrap
sample (θ̂∗[1]

l , θ̂
∗[2]
l , ..., θ̂

∗[N ]
l ), l = 1, 2 where (θ∗1 = β∗, θ∗2 = λ∗).

Percentile bootstrap CIs

For given H(y) = P (θ̂∗k 6 y) the cumulative distribution function of θ̂∗k. Define θ̂∗kboot =
H−1(y) for given y. The approximate bootstrap 100(1− 2α)% CI of θ̂∗l is given by

(4.1)
[
θ̂∗lboot(α), θ̂∗lboot(1− α)

]
.

Bootstrap-t CIs

First, we present the order statistics ω
∗[1]
k < ω

∗[2]
k < ... < ω

∗[N ]
k ,

(4.2) ω
∗[j]
k =

θ̂
∗[j]
l − θ̂l√

var
(
θ̂
∗[j]
l

) , j = 1, 2, ..., N, l = 1, 2,

where θ̂1 = β̂, θ̂2 = λ̂.

For given H(y) = P (ω∗
l < y) the cumulative distribution function of ω∗

l , and given y,
is defined as

(4.3) θ̂lboot−t = θ̂l +
√

Var(θ̂l)H−1(y).

The approximate 100(1− 2α)% CIs of θ̂k is given by

(4.4)
(
θ̂lboot−t(α), θ̂lboot−t(1− α)

)
.
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5. SIMULATION STUDIES

We now adopted undertake simulation studies with the help of the Mathematica pro-
gram Ver. 8.0 to illustrate the theoretical results of the estimation problem. The performance
of the different point estimators of the shape parameter of the GHLD and the acceleration
factor are measured and compared with the average of the estimates (AVG), absolute relative
bias (RAB), and mean square error (MSE); specifically,

(5.1) AVG(θ̂l) =
1
M

M∑
i=1

θ̂
(i)
l , (θ1 = β, θ2 = λ),

(5.2) RAB(θ̂l)=
|θ̂l − θl|

θl
,

and

(5.3) MSE(θ̂l) =
1
M

M∑
i=1

(
θ̂
(i)
l − θl

)2
.

For each of the CIs, the ACIs and the different bootstrap CIs can be measured and compared
using the average confidence lengths (AC) as well as the coverage percentages (CP). For the
generated sample, we computed the 90% CIs, recorded AC, and checked whether the true
value lay within the interval (CP). In simulation studies, this step is repeated 1000 times.
The estimated CP was computed as the number of CIs that covered the true values divided
by 1000 whereas the estimated expected width of the CI was computed as the sum of the
lengths for all intervals divided by 1000. Now, we present the definitions of the different CSs
that are used in our simulation studies:

CS I : Rji = 0 for i < m and Rjm = n−m,

CS II : Rji = 0 for i > 1 and Rj1 = n−m,

CS III : for odd m, Rji = 0 for i > m+1
2 or i < m+1

2 and Rj m+1
2

= n−m.

Also, for even m, Rji = 0 for i > m
2 or i < m

2 and Rj m
2

= n−m:

CS IV: Rj 2m−n
2

+1 = ... = Rj n
2

= 1, other Rji = 0.

In our simulation studies, we consider two separate cases:

(1) The model parameter values (β = 0.5, λ = 2.0), the sample sizes (n1 = n2 = n)
and observed failure times (m1 = m2 = m); results are listed in Tables 1 and 2.

(2) The model parameter values (β = 2.5, λ = 1.5), the sample sizes (n2 = 2n1 = 2n)
and observed failure times (m2 = 2m1 = 2m); results are listed in Tables 3 and 4.



Parameters Estimation for Constant-Stress Partially Accelerated Life Tests... 445

Table 1: AVG and RABs (MSEs) of ML and Bootstrap estimates
for the parameters (β = 0.5 and λ = 2.0).

(n,m) CS
MLE Bootstrap

β λ β λ

(30,15)

I
0.5370 1.8242 0.5410 1.8109

0.0507 (0.147) 0.098 (0.471) 0.055 (0.248) 0.145 (0.645)

II
0.5300 1.8950 0.5312 1.8229

0.0481 (0.126) 0.079 (0.410) 0.049 (0.210) 0.140 (0.584)

III
0.5361 1.8720 0.5347 1.8198

0.0497 (0.133) 0.090 (0.425) 0.053 (0.229) 0.142 (0.609)

IV
0.5457 1.8889 0.5317 1.8301

0.0487 (0.123) 0.087 (0.419) 0.049 (0.219) 0.142 (0.601)

(30,25)

I
0.5204 1.889 0.5229 1.8740

0.0413 (0.101) 0.052 (0.394) 0.043 (0.131) 0.085 (0.451)

II
0.5154 1.9241 0.5201 1.8654

0.039 (0.099) 0.048 (0.289) 0.040 (0.120) 0.074 (0.325)

III
0.5224 1.9094 0.5244 1.8741

0.042 (0.102) 0.049 (0.317) 0.041 (0.135) 0.081 (0.377)

IV
0.5208 1.9107 0.5232 1.8841

0.041 (0.100) 0.050 (0.314) 0.040 (0.124) 0.080 (0.364)

(50,25)

I
0.5215 1.920 0.5240 1.9014

0.041 (0.098) 0.050 (0.378) 0.045 (0.128) 0.083 (0.440)

II
0.5109 1.951 0.5217 1.9241

0.031 (0.081) 0.045 (0.326) 0.041 (0.119) 0.079 (0.420)

III
0.5122 1.936 0.5217 1.9288

0.035 (0.093) 0.044 (0.331) 0.040 (0.131) 0.074 (0.426)

IV
0.5220 1.944 0.5200 1.9233

0.034 (0.090) 0.043 (0.338) 0.039 (0.130) 0.071 (0.415)

(50,40)

I
0.5100 1.9821 0.5107 1.9621

0.022 (0.052) 0.033 (0.208) 0.031 (0.101) 0.036 (0.401)

II
0.5102 1.9800 0.5099 1.9751

0.020 (0.040) 0.022 (0.109) 0.022 (0.081) 0.027 (0.265)

III
0.5133 1.9741 0.5118 1.9751

0.022 (0.042) 0.025 (0.119) 0.024 (0.094) 0.029 (0.377)

IV
0.5201 1.9788 0.5122 1.9788

0.023 (0.041) 0.024 (0.112) 0.021 (0.090) 0.030 (0.372)
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Table 2: The (AC) and (CP) of 90% CIs (β, λ) at (0.5, 2.0).

(n,m) CS
MLE Boot-P Boot-t

β λ β λ β λ

(30,15)

I
2.1214 3.2145 3.1354 5.2336 2.1019 3.2100
(0.88) (0.87) (0.87) (0.86) (0.89) (0.88)

II
2.1110 3.1177 3.1123 5.2210 2.1007 3.2006
(0.88) (0.89) (0.93) (0.88) (0.89) (0.91)

III
2.1133 3.1224 3.1209 5.2319 2.1016 3.2055
(0.87) (0.88) (0.92) (0.88) (0.89) (0.90)

IV
2.1125 3.1233 3.1212 5.2400 2.1109 3.2107
(0.88) (0.88) (0.88) (0.87) (0.89) (0.91)

(30,25)

I
2.1009 3.2010 3.1210 5.2221 2.1000 3.2009
(0.89) (0.88) (0.87) (0.88) (0.89) (0.90)

II
2.0789 3.0166 3.1000 4.6215 1.9524 3.1612
(0.92) (0.91) (0.92) (0.93) (0.91) (0.89)

III
2.1087 3.0198 3.1017 5.1017 2.0041 3.2008
(0.89) (0.89) (0.89) (0.92) (0.90) (0.89)

IV
2.1108 3.1010 3.1205 5.1003 2.0000 3.2107
(0.91) (0.90) (0.92) (0.89) (0.90) (0.919)

(50,25)

I
2.1023 3.1077 3.1187 5.2119 2.0139 3.1748
(0.89) (0.88) (0.89) (0.88) (0.88) (0.90)

II
2.0742 3.0142 2.9811 4.7217 1.9541 3.1752
(0.93) (0.89) (0.92) (0.88) (0.90) (0.92)

III
2.1102 3.1100 3.1107 5.1009 2.0051 3.2012
(0.88) (0.89) (0.91) (0.89) (0.91) (0.89)

IV
2.1111 3.1009 3.1217 5.1014 2.0021 3.2112
(0.88) (0.91) (0.91) (0.89) (0.90) (0.89)

(50,40)

I
1.9821 3.0087 3.0584 5.0472 1.7742 3.1010
(0.89) (0.89) (0.92) (0.88) (0.89) (0.910)

II
1.7490 2.9874 2.6511 4.1145 1.7120 3.0770
(0.88) (0.89) (0.89) (0.93) (0.89) (0.91)

III
1.8890 3.1120 2.6742 4.1246 1.7331 3.1070
(0.89) (0.89) (0.89) (0.92) (0.90) (0.90)

IV
1.8741 3.10820 2.6662 4.1195 1.7320 3.1040
(0.91) (0.92) (0.89) (0.92) (0.91) (0.89)
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Table 3: AVG and RABs (MSEs) of ML and Bootstrap estimates
for the parameters (β = 2.5 and λ = 1.5).

(n,m) CS
MLE Bootstrap

β λ β λ

(20,10)

I
2.5390 1.4522 2.5561 1.4522

0.120 (0.521) 0.109 (0.471) 0.1324 (0.641) 0.111 (0.499)

II
2.5211 1.4745 2.5423 1.4642

0.115 (0.446) 0.087 (0.406) 0.125 (0.549) 0.099 (0.408)

III
2.5341 1.4624 2.5450 1.4602

0.120 (0.498) 0.109 (0.450) 0.129 (0.587) 0.101 (0.470)

IV
2.5327 1.4631 2.5462 1.4611

0.118 (0.487) 0.105 (0.450) 0.131 (0.591) 0.105 (0.465)

(20,15)

I
2.5220 1.4842 2.5325 1.4740

0.101 (0.521) 0.087 (0.328) 0.101 (0.554) 0.084 (0.332)

II
2.5201 1.4892 2.5288 1.4884

0.087 (0.421) 0.060 (0.301) 0.099 (0.511) 0.050 (0.311)

III
2.5213 1.4811 2.5485 1.4811

0.099 (0.460) 0.080 (0.317) 0.110 (0.522) 0.070 (0.328)

IV
2.5217 1.4804 2.5477 1.4814

0.097 (0.455) 0.082 (0.322) 0.108 (0.518) 0.069 (0.331)

(30,20)

I
2.5198 1.4811 2.5311 1.4720

0.100 (0.515) 0.086 (0.312) 0.099 (0.44) 0.081 (0.311)

II
2.5190 1.4893 2.5288 1.4870

0.060 (0.400) 0.055 (0.280) 0.070 (0.500) 0.046 (0.287)

III
2.5196 1.4814 2.5462 1.4900

0.090 (0.454) 0.076 (0.312) 0.101 (0.511) 0.065 (0.314)

IV
2.5211 1.4774 2.5477 1.4855

0.097 (0.455) 0.079 (0.318) 0.106 (0.519) 0.062 (0.325)

(30,25)

I
2.5101 1.4954 2.5210 1.4894

0.089 (0.256) 0.050 (0.214) 0.060 (0.265) 0.042 (0.266)

II
2.5121 1.4998 2.5109 1.4899

0.051 (0.202) 0.020 (0.148) 0.052 (0.215) 0.040 (0.200)

III
2.5111 1.4974 2.5109 1.4864

0.060 (0.215) 0.023 (0.201) 0.069 (0.261) 0.045 (0.212)

IV
2.5113 1.4982 2.5110 1.4870

0.059 (0.212) 0.021 (0.212) 0.067 (0.242) 0.046 (0.209)
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Table 4: The (AC) and (CP) of 90% CIs (β, λ) at (2.5, 1.5).

(n,m) CS
MLE Boot-t Boot-P

β λ β λ β λ

(20,10)

I
4.1147 3.1231 5.2414 3.5421 4.1009 3.1037
(0.87) (0.88) (0.85) (0.86) (0.89) (0.89)

II
3.9544 3.0032 3.9881 3.2131 3.7542 3.0011
(0.88) (0.88) (0.87) (0.88) (0.89) (0.91)

III
3.9654 3.0172 3.9991 3.2321 3.8045 3.0712
(0.88) (0.89) (0.92) (0.88) (0.90) (0.92)

IV
3.9622 3.0161 3.9970 3.2300 3.8039 3.0702
(0.88) (0.89) (0.93) (0.92) (0.91) (0.91)

(20,15)

I
3.7541 3.1001 3.7865 3.1124 3.7111 3.0099
(0.91) (0.89) (0.88) (0.89) (0.89) (0.91)

II
3.1542 2.8570 3.7742 2.899 3.1421 2.8110
(0.89) (0.88) (0.89) (0.89) (0.90) (0.91)

III
3.1588 2.8598 3.7760 2.9200 3.1441 2.8132
(0.88) (0.89) (0.91) (0.88) (0.91) (0.91)

IV
3.1570 2.8592 3.7755 2.9136 3.1432 2.8127
(0.89) (0.90) (0.92) (0.91) (0.92) (0.90)

(30,20)

I
3.7531 3.0991 3.7854 3.1118 3.7101 3.0088
(0.92) (0.89) (0.89) (0.89) (0.90) (0.92)

II
3.1522 2.8550 3.7720 2.8965 3.1400 2.8094
(0.90) (0.88) (0.91) (0.89) (0.91) (0.91)

III
3.1573 2.8585 3.7750 2.9199 3.1432 2.8124
(0.89) (0.89) (0.88) (0.88) (0.92) (0.91)

IV
3.1555 2.8580 3.7742 2.9127 3.1421 2.8118
(0.89) (0.88) (0.92) (0.93) (0.91) (0.91)

(30,25)

I
3.7014 3.0665 3.7116 3.0772 3.6542 3.0545
(0.91) (0.89) (0.89) (0.92) (0.91) (0.92)

II
3.5124 3.0256 3.5198 3.0281 3.5111 3.0231
(0.901) (0.89) (0.91) (0.89) (0.90) (0.91)

III
3.5321 3.0290 3.5221 3.0321 3.5185 3.0287
(0.88) (0.89) (0.89) (0.88) (0.91) (0.91)

IV
3.5314 3.0282 3.5214 3.0307 3.5172 3.0281
(0.89) (0.898) (0.90) (0.92) (0.901) (0.92)
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6. NUMERICAL EXAMPLE

For demonstration purposes, the estimation procedure described in the previous section
is applied to the set of simulated progressive Type-II censoring data under the constant-stress
partially ALT. The MLEs and the two bootstrap CIs are computed for model parameters β

and λ with the real parameters are equal to 1.5 and 2.0, respectively. In this example, we
simulate samples of size (m1 = m2 = 15 of n1 = n2 = 30 ) from the GHLD under the two
progressive CSs R1 = R2 = {1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0} using the algorithm
described in Balakrishnan and Sandhu [12]. The simulated data are presented in Table 5.

Table 5: Simulated progressively censored samples with constant PALTs.

Normal
conditions

0.13901 0.22961 0.26912 0.47032 0.51005 0.52645 0.53583
0.56987 0.65999 0.79289 0.80636 0.89349 1.56115 1.63822
1.66079

Accelerated
conditions

0.00274 0.02767 0.06181 0.06717 0.12004 0.14341 0.25042
0.27614 0.31457 0.42484 0.54109 0.54112 0.75652 1.13610
1.41038

In Figure 1, the two probability density functions show the effect of an acceleration factor.

Figure 1: Probability density under normal and accelerated condition.

The iteration procedure of the MLE needs the initial value of parameter obtained from the
profile log-likelihood function (Figure 2) as 1.8. The point estimates and related RABs and
MSEs of the parameters as well as the 90% and 95% ACIs are listed in Table 6. Also, the point
estimates and the relate RABs and MSEs of the parameters as well as the 90% and 95% PBCIs
and BTCIs are presented in Table 7. We observed that the BTCIs and approximate MLE
intervals are narrower than the PBCIs and always include the population parameter values.
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Figure 2: Profile log likelihood function of λ.

Table 6: MLEs, MSEs, RABs and (90%-95%) approximate confidence intervals.

(.)ML RAB MSE 90% 95%

1.5495 0.0330 0.0495 (0.7769, 2.3221) (0.9011, 2.1979)
1.8034 0.0983 0.1966 (0.7231, 2.8837) (0.8968, 2.7100)

Table 7: Percentile bootstrap CIs and Bootstrap-t CIs based on 500 replications.

(.)Boot RAB MSE
90% 95%

BPCI BTCI BPCI BTCI

1.7421 0.1614 0.2421 (0.3241, 3.1205) (0.7981, 2.2954) (0.6581, 2.6325) (0.8881, 2.1472)
2.3415 0.1707 0.3415 (0.5213, 3.2140) (0.7751, 2.7098) (0.4578, 2.6590) (0.7922, 2.5213)

7. CONCLUDING REMARKS

In product-life testing experiments, reducing the time and cost, especially for units with
high reliability, illustrates the importance of ALTs. Different types of ALTs are available,
one of the types most suitable for different situations is the constant-stress partially ALTs.
Also, the experimenter in some situations is unable to obtain complete information of fail-
ure times for all experimental units or is in need to remove some units other than the final
point of the experiment. The conventional Type-I and Type-II CSs do not have the flexibil-
ity of allowing to remove any units at points other than the final point of the experiment.
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Hence, in this paper, we adopted a more general CS with the constant-stress partially ALT,
known as progressive Type-II censoring. Simulation studies were presented to assess and
compare the performance of the proposed methods. From the results, we observed the fol-
lowing:

1. For fixed values of sample size n and with increasing effected sample size m, the
MSEs and RABs of the considered parameters decrease.

2. For fixed values of the sample and failure time sizes, CS II, in which the censoring
occurs after the first observed failure, gives more accurate results through the MSEs
and RABs than the other schemes..

3. Results for the CS III and CS IV are more similar.

4. The bootstrap-t credible intervals give more accurate results than the ACIs than
the bootstrap CIs because the lengths of the former are less than the lengths of the
latter, for different sample sizes, observed failures, and schemes.

5. For fixed sample sizes and observed failures, CS II moreover gives lower lengths for
the three methods to obtain the CIs compared with the other three schemes.
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