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Abstract:

e For large datasets, spatial covariances are often modeled using basis functions and covariance of
a reduced dimensional latent spatial process. For skewed data, likelihood based approaches with
Gaussian assumption may not lead to faithful inference. Any Lo norm based estimation is suscep-
tible to long tails and outliers due to contamination. Our method is based on an empirical binned
covariance matrix using the median absolute deviation and minimizes L; norm between empirical
covariance and the model covariance. The consistency of the proposed estimate is established the-
oretically. The improvement is demonstrated using simulated data and cloud data obtained from
NASA’s Terra satellite.
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1. INTRODUCTION

Analysis of geostatistical data is known to be computationally intense or infeasible when
the number of observed locations, n, is large. This is due to the size of the covariance matrix,
3. (which is nxn) and the computational demand of inverting or factoring it. Cressie and
Johannesson [4] introduced Fixed Rank Kriging (FRK) to address the computational hurdle
by modeling the spatial covariance through a fixed number of deterministic basis functions
and a latent reduced rank spatial process. To introduce the parameters, we consider an
observed spatial process Z(s) to be made up of a hidden spatial process Y (s) along with a
white noise process £(s) which could represent, for example, measurement errors. So we write

(1.1) Z(s) =Y(s)+e(s).

Typically Y (s) and £(s) are assumed to be independent Gaussian distributions, with e(s)
having mean of zero. In this work however we develop methods that are robust to depar-
ture from this assumption. Then, for n observed locations, Z(s) = {Z(s1), ..., Z(s,)} is an
n-dimensional process with mean E(Y (s)) = py and covariance matrix expressed as X7 =
Yy + 021, where Sy is the covariance matrix of Y(s) = {Y(s1),...,Y(s,)} and I, is the
identity matrix of rank n. We then model Y (s) using a mixed effects model such as

(1.2) Y(s) = X(s) B+ S(s)n +(s) .

In this model X(s) is a matrix of known covariates and 3 is the associated vector of regression
coefficients; S(s) is a sparse n x r matrix of fixed, spatially varying basis functions which are
centered at a set of r knot locations. Dimension reduction is achieved by selecting r < n.
Various classes of basis functions may be used, including wavelets (Shi and Cressie [18] and
Zhu et al. [22]) and bisquare (Cressie and Johannesson [4] and Paul et al. [16]) functions.
The latent process 1) is a zero-mean r-dimensional Gaussian process defined over the knot
locations, with covariance matrix V. Finally §(s), the process error, is an iid zero-mean
Gaussian process with variance 72 which takes into account the variations unexplained by
the large scale variations X(s)3 and spatial process S(s)m, and uncertainties arising from
the dimension reduction. The process and measurement errors are usually assumed to be
independent. When there is only one observation at each spatial location, 72 and ¢ are non-
identifiable, instead their sum v? = 02 + 72, called the nugget variance, is estimated (though
indirect means exist to estimate these separately, see Katzfuss and Cressie [11]). Going
forward, we suppress the dependence on s when possible by stacking scalers into vectors, and
vectors into matrices (e.g., Y(s) is replaced with Y and X(s) is replaced with X).

With this framework, the covariance matrix ¥ can be written as 3, = SVS’ + 121,,.
The objective is to estimate the model parameters: 3,V and v2. Once this has been done
one may obtain the inverse of X, easily using the Sherman—Morrison—Woodbury matrix
identity. This model offers a large degree of flexibility. The only restriction on V is the
positive-definiteness, hence the resulting covariance matrix may be both anisotropic and
nonstationary.

A variety of approaches have been used to model or estimate V. In introducing FRK,
Cressie and Johannesson [4] used a Method of Moments (MoM) estimation scheme, while
Katzfuss and Cressie [11] developed an expectation-maximization (EM) algorithm. Much
attention has also been given to Bayesian hierarchical modeling (see, for example, Banerjee
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et al. [1], Kang et al. [9] and Kang and Cressie [8]). To-date, little attention appears to
have been given to robust estimation schemes. Zhu et al. [22] developed a method to reduce
bias through improved basis function selection, but otherwise did not consider distributional
assumptions. Paul et al. [16] developed a scale mixture model applicable to non-Gaussian
datasets, but like many Bayesian methods it can be time-intensive to implement and run.

The basic FRK model we have described has been elaborated in various ways. For
example, to obtain better representation of the spatial dependence some have used a tapering
approach (Sang and Huang [17]) or multiple sets of knot locations with different resolutions
(Cressie and Johannesson [4] and Kang et al. [10]). We demonstrate the latter approach in
our data application in Section 5. Both the estimation and fitting stages in the existing MoM
estimation use least-squares concepts, and therefore may suffer in the presence of skewed or
contaminated data. In the present work we develop an alternative MoM estimator for the
parameters of the RRSM. Our motivation in this is to provide an estimator that can model
data containing outliers or exhibiting skewness, two features that are frequently encountered
in geostatistical datasets, and which does not require significant computational resources.

MoM estimation of the model parameters is divided into two stages: an estimation
stage and a fitting stage. In the estimation stage, the entire spatial domain is divided
into M bins such that r < M < n, and X,; is defined to be the covariance matrix over
the bins. The bins are defined subjectively, though Cressie and Johannesson [4] and Katz-
fuss and Cressie [11] provide some recommendations. Then an empirical estimate S is
constructed using the detail residuals, D = Z — X,@, where B is the ordinary least squares
estimate of 3. Cressie and Johannesson [4] defined 3); in the following manner: The m
diagonal elements 3;(m, m) = avg(D2,) and the (m,m’) off-diagonal element 33/ (m, m’) =
avg(Dy,) x avg(D,, ). In these expressions, D,, is the vector of detail residuals in bin m, and
avg(-) denotes the average.

Similarly S is binned into an M x r matrix by taking the column averages of the rows of S

associated with the observed locations falling into each of the M bins. Denoting this as S,
one may then write

(1.3) Su = SVS + 121y

After estimation, the fitting stage obtains V and 2% by minimizing the Frobenius norm
between X7 and X/, using the Q R-decomposition on S. This is a two-step process resulting
in the following estimates:

7 = (FFF)'F(Zy - QQ'ExQQ),

vV = R—IQI(EM o 192 IM)QR,_la

where F = I, — QQ'. If 3, is not positive-definite, the eigenvalues must be lifted to ensure
that V is positive-definite (see Kang et al. [9]). For further details on Fixed Rank Kriging,
see Katzfuss and Cressie [11].

We redesign both the estimation and fitting stages for the MoM estimation using the
Median Absolute Deviation and quantile regression (Section 2). Our work is novel in that
we return to basic principles to redesign the estimation and fitting stages with a mind for
resisting contaminated data. The consistency of our proposed estimate is shown (Section 3),



206 C.M. Jelsema, R. Paul and J W. McKean

though the technical details are given in the Appendix. We describe and conduct a simulation
study (Section 4) to investigate the performance of our proposed method. Finally, we provide
a data example (Section 5) using a large remote sensing dataset and some concluding remarks
(Section 6).

2. ROBUST ESTIMATION AND FITTING

In this section we describe robust alternatives to both the estimation stage and fitting

~ (rob
stage of MoM estimation for the FRK model. First we define 25\}0 ) as an estimate empirical

binned covariance matrix which is robust to contamination. Then we describe a robust
strategy to fit the model parameters, which we call the robust fit. We denote the previous-

described methods from Cressie and Johannesson [4] as ﬁ]S\SJ) and the Frobenius fit.

2.1. Estimation stage

The diagonal elements of 3, represent the variance within a bin. We estimate this
quantity using the median absolute deviation, MAD(X) = med(|X — med(X)|). A constant
scale factor is applied to the MAD which causes it to be a consistent estimate for the standard
deviation (see Hettmansperger and McKean [7], Eqn.3.9.27). In the present work, we use
the usual MAD which is consistent for ¢ when the errors are normally distributed. Hence,
the diagonal elements of our proposed estimate are given by

(2.1) 20 (0 m) = MAD?(D,),  m=1,.., M.

Estimating the covariance between two bins is more challenging. First, recall that
cov(A, B) = 1[V(A+ B) — V(A — B)|. Estimating a covariance using this identity requires
finding D,, &+ D,,/, however, these quantities are not well-defined. For example, two bins
may not even have the same number of observations, much less any natural correspondence
between observations. We therefore use the pairwise sums and pairwise differences, denoted
using @ and S respectively, to approximate D,,, £ D,,,. We again use the square of the MAD
to estimate the variance, so the off-diagonal elements of our estimate are given by:

~_(TO 1
(2.2) S0 () = 7 [MADX(D,, & D) - MAD*(D,, & D).

2.2. Fitting stage

Given an empirical covariance matrix S, we fit V by minimizing some norm between
Y and Xy, To develop the robust fitting stage, we start from equation (1.3),
SVS + 221y,

S
(2.3) (- 2%1y)S(SS) ' =5
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Then we may see equation (2.3) as a multivariate regression problem with S as the design
matrix and V as the matrix of regression coefficients. Any method of robust regression
may then be implemented to obtain an estimate of V. For this work, we use the popu-
lar least absolute deviations, L, estimator; see Koenker and Bassett [13] and Section 3.8
of Hettmansperger and McKean [7]. In comparison to least squares (LS), the least abso-
lute deviation fit is obtained by replacing the squared Euclidean norm with the Li norm.
Hence, the geometry and interpretation of the L fit is quite similar to LS fit, but unlike the
LS estimate, the L; estimate is robust. As discussed in Section 3.8 of Hettmansperger and
McKean [7], the fit is also efficient. It attains efficiency 0.64 relative to LS for normal errors
but is generally more efficient than LS for error distributions with tails heavier than the
normal.

Each column of (ﬁl =21 M) §(§/§)71 is used as the response in a separate estimation.
There are therefore r estimates to obtain, each of which corresponds to a column of V.
As the final estimate V may not be numerically symmetric, we symmetrize \Y% by taking
V=05 (\7 + \A/'/) We used the quantreg R package (Koenker [12]) for the computation of
the L1 fit.

Estimation of V requires an estimate of 2. By substituting the left side of (2.3) for
SV in (1.3) we obtain:

Su o= (Bn —*Ty) S(S'S) 'S + 21y,
(2.4) Su (v - S(S'S)'S') = 2 (1 - S(8'8) '),

We then stack the columns of 3, (IM — §(§,§) 71§,) and the columns of (IM — §(§,§)71§,).
Doing this, we again cast the problem as a zero-intercept robust regression, where 12 is the
slope. This estimate is substituted into equation (2.3) to obtain an estimate of V.

The estimate of V may not be positive-definite, so we may need to lift the eigenvalues
(similar to Cressie and Johannesson [4]), while preserving the total variability. In our work,
we compute the sum of the eigenvalues, A, and proportionally redistribute this sum across
the eigenvalues after shifting all eigenvalues to be non-negative.

3. ASYMPTOTIC PROPERTIES

Here we discuss some of the infill asymptotic properties of our proposed estimator,
= (rob) .. . . .
¥y, - Infill asymptotics is a common method of considering asymptotics related to geo-
statistical methodology in which the domain, D, remains fixed but the density of observed

locations is increased.

Recall that we obtain V by minimizing some norm || - ||:

V= argminHﬁ]M — EMH .

Hence, once ¥y is known, V is fully determined by the fitting method. Therefore, a desirable

. . . . . &(rob) . . .
property of the empirical binned covariance matrix ZS\? ) is that it be consistent for X/,

which we establish in this section.
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There are two sets of assumptions that we need to make. From expressions (2.1)

and (2.2), ﬁg\?b) is a function of MADs applied to the detail residuals. For each bin m,
these residuals are obtained from ordinary least-squares regression, our proof requires that
\/ﬁ(ﬁ — ) = O(1) for each bin. For this, we assume the conditions in the paper by Lahiri
et al. [14] for each bin.

Our process for bin j (slightly abusing the notation to avoid double subscript), is
{61, €2, .uny enj} which we denote by {e;}. On this process we assume that

1. {e;} is stationary.

2. {e;} satisfies the strong mixing coefficients assumption given as follows. For i # k,
let A; and By be in the o-fields generated by e; and eg. Then

(3.1) PlA; N Bi) = PLA]P[BY]| = 0 (o),

where 0 < p < 1.

Note that Assumption 2 implies that the spatial correlation between two locations
exhibits exponential decay. This is a common feature in spatial modeling (e.g. the Matérn
class of covariance models), and as such is not an unreasonable assumption.

For our proof, let D,,, denote the random detail residual process within the m! bin,
and let D, = {le, ey Rmk} be the k observed detail residuals from that bin. We assume
that D,,, and, as will be seen, |D,,|, exhibit strong mixing as described in conditions 1 and 2.

We now state the consistency result in theorem form. The proof is given in the Appendix.

2 (rob
Theorem 3.1. Under the above conditions, 25\}" ) is a consistent estimator of 3.

Throughout we treat the number of bins, M, as fixed, and do not consider limits over
that quantity. This is analogous to the work of Bliznyuk et al. [2]. In another context
on binned estimation, they considered m (the number of bins) as a radius to determine
“adjacency” of locations, where m does not depend on n, (the number of observations) and
did not limit over m. The only restriction on M is that it should be large enough to ensure
that the assumption of stationary within bins holds for practical implementation.

4. SIMULATION STUDY

To compare our proposed methods with the existing methods using simulated data,
we generate a spatial process Z according to the model:

Z=XpB+Sn+e.

First we select n locations uniformly over a 100 x100 domain, and r, = 1225 knot
locations on a 35 x 35 grid. These knot locations are used to simulate the data but not to fit
the models (because reduced rank spatial models are designed as approximations of a more
complex spatial process). Then we define X as an n x 3 matrix where the columns correspond
respectively to an intercept, the x-coordinate, and the y-coordinate.
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To define V we first compute the pairwise distances between the knot locations, and
generate a Matérn covariance matrix using these distances with sill and range parameters
each set to 1, and smoothness set to 0.5. We use cov.sp in the R package SpatialTools
(French [6]) to generate this matrix. We then obtain V as an observation from the inverse
Wishart distribution using the Matérn covariance as a scale matrix and 2(r + 1) degrees of
freedom. In this way the covariance matrix used to simulate the data is not constrained to
be either stationary or isotropic.

We construct S using the bisquare basis functions defined as

2\2
(1= s = wgll/ra)® ) for llss = sl < v,

0 otherwise,

Sij =

where r,, is 1.5 times the minimum distance between knots and || - || denotes the measure of
distance appropriate to the data (e.g., in our simulations, we used Euclidean distance).

We used two methods to simulate the data, a Contaminated Normal distribution and an
Exponential distribution. These simulate the presence of outliers or of skewness, respectively,
in the resulting dataset. For either simulation method, we compare the model fits by splitting
the simulated data into a training set and a held-out test set. The hold-out set was set as all
of the locations in the square bounded by the points (40,40) and (60, 60), which corresponds
to approximately 4% of the observations. We use the estimated parameters to predict at
the held-out locations and compute diagnostics to assess both the accuracy and uncertainty
of the prediction, including the mean square error (MSE), mean square prediction error
(MSPE), and the continuous ranked probability score (CRPS, Wilks [21]), a measure which
incorporates both the prediction accuracy and the prediction uncertainty. Lower values are
preferable for all of these measures.

4.1. Simulation 1: contaminated normal

For simulating datasets we first generate a r,-dimensional process i from a zero-mean
multivariate normal with covariance V. To induce outliers, the measurement error process &
is generated from a contaminated normal distribution. We first draw a random sample from
N(0,v?), and then replace an of the values with random draws from A(0,72). Finally, we
obtain the simulated data by Z = X3 4 Sn + e. For each simulated dataset, estimate model
parameters using both the method of Cressie and Johannesson [4] and the proposed robust
method.

We considered three sample sizes, n € {10000, 15000,20000} and five levels for the
number of knots locations to fit the model, r € {64,100, 144,196,256}, intentionally chosen
to much less than r,, so that the “true” spatial process was more granular than the model. For
the contamination level of € we consider o € {0.00,0.05,0.10,0.15,0.20}. For the simulations
shown, the values of 3 = (1,0.01,0.05)", v* = 1, and v? = 100 were held constant. These
choices are not sensitive to our estimation technique except insofar as a larger or smaller yc2
would correspond to a larger or smaller effect from the contamination. For each combination
of these parameters, we generated 50 replications of data. Hence, there were 75 settings of

parameter levels, and 3750 replications in total.
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4.2. Simulation 2: exponential

As we have noted throughout, skewness can also be problematic for least-squares type
estimators, and skewed data are not uncommon in geostatistics. Hence, we designed a second
simulation in which we generate € from an Exponential distribution rather than from a
contaminated Normal distribution. We use the same design as Simulation 1, but instead of «,
we consider the rate parameter of the Exponential distribution A € {0.10,0.25,0.50,1.00}.
Hence, for this simulation there were 60 settings and 3000 replications in total.

4.3. Simulation results

The simulations suggest that the robust method is generally preferable to the CJ
method. For brevity we present the results for the CRPS, but results for the MSE and
MSPE were similar. We use two main values to compare the results: The median CRPS
across the 50 replications, and the CRPS of the CJ method relative to that of the robust
method (we refer to this as the CRPS ratio).

Results of Simulation 1 are shown in Figure 1, which plots the median CRPS over the
50 replications for each of the settings. In 67 of the 75 settings, the robust method produced
a smaller median CRPS than the CJ method.
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Figure 1: Results for Simulation 1. Plotted points are median CRPS of the CJ method (circles)
and the robust method (triangles) over the 50 replications.
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In addition, the robust method produced a smaller CRPS (i.e. CRPS ratio greater than 1)
in 68.8% of the replications, and the median of the CRPS ratio showed a 9% larger CRPS
for the CJ method. When considering the CRPS ratio for each setting, the worst-performing
setting for the robust method had a median CPRS ratio of 0.975 (near equivalence), while
half of the settings had a median CRPS ratio showing an improvement of 10% or more.

The results for Simulation 2 were similar to those of Simulation 1, and are shown in
Figure 2. In 55 of the 75 settings, the robust method produced a smaller median CRPS than
the CJ method.

10000 15000 20000
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124"
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025 050 075

Lambda

Figure 2: Results for Simulation 2. Plotted points are median CRPS of the CJ method (circles)
and the robust method (triangles) over the 50 replications.

In addition, the robust method produced a smaller CRPS (i.e. CRPS ratio greater than 1)
in 65.3% of the replications, and the median of the CRPS ratio showed an 8% larger CRPS
for the CJ method. When considering the CRPS ratio for each setting, the worst-performing
setting for the robust method had a median CPRS ratio of 0.957, which again shows minimal
advantage for the CJ method, while half of the settings had a median CRPS ratio showing
an improvement of at least 7%.

To provide an overall summary of our results, our findings suggest that the proposed
robust method tends to be advantageous compared to the CJ method. While we acknowledge
this is not uniformly the case, we note that in approximately two-thirds of cases, the proposed
method resulted in smaller CRPS. It is unfortunately difficult to discern much in the way of a
pattern across the simulation settings, to determine whether the robust or CJ method might
be preferable in a specific setting. The main apparent pattern from these simulations is that
the more knots, the better the robust method tended to perform against the CJ method.
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This could potentially be a consequence of each bin from the estimation of 3, having fewer
observations compared to a setting with the same sample size but smaller number of knots,
in which case outliers would have an increased effect.

Since the number of knots is chosen by the modeler, one might be tempted to select
a smaller value of r, so that any effect from the choice of method is minimized. However,
fewer knots corresponds to a more coarse representation of the spatial variation, hence the
general recommendation (e.g. Finley et al. [5]) is to use as many as possible (within any
computational limits). Hence, the natural choice guiding the selection of r will also tend to
produce situations in which the robust method appears to perform better.

5. APPLICATION TO NASA DATA

We use remote sensing data on daily cloud liquid water path (CWP), obtained through
NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on
April 22, 2012. Note that this date is an arbitrary choice, our interest here is to demonstrate
our method outside of a fabricated example. Because the dataset is large (n = 48552),
a reduced rank model is a reasonable choice for inference. The CWP data are right-skewed,
so we restrict out focus to the log-scale.

5.1. Original Data Analysis

The observed data are plotted in Figure 3. Due to a north-south trend (tending to
smaller values closer to the equator), we model the large-scale variation using Legendre poly-
nomials similar to Stein [19], though using only the latitude. Specifically, let L denote the
degrees latitudes and define ¢ = 7(L/180).

Latitude

Longitude

Iog(CWP)_
0 2 4 6

8

Figure 3: Plot of observed Cloud Water Path over the spatial domain.
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We compute Legendre polynomials Py (sin(¢)) of degree p = 80 and order ¢ = 0, 1, ..., p.
This results in a design matrix consisting of 81 regressors of spherical harmonics. Stein [19]
also included a cosine of the longitude. Since we observed primarily a trend over the latitudes,
we do not include the cosine term on longitude. Since our focus is on the small-scale (spatial)
variation rather than the large-scale variation, the main concern for us is that this model
enables stationarity of the spatial process to be reasonable; visual inspection (figure not
shown) of the predictions for each latitude show this to be the case.

For the MoM estimation described in the preceding sections we first compute the de-
tailed residuals. The normal quantile-quantile plot of the detailed residuals in Figure 4 shows
a heavy lower tail, which motivates the use of the proposed robust techniques. Initially we
model the data as observed. Afterwards, we also induce outliers into the data and reanalyze
the data.

Sample Quantiles

| I | | |
4 -2 0 2 4

Theoretical Quantiles

Figure 4: Normal quantile-quantile plot of the detailed residuals.

As recommended by Cressie and Johannesson [4], we use a multi-resolution model for
CWP (see Nychka et al. [15]), to capture multiple scales of variation. We choose r; = 38
knot locations for the first resolution, and ro = 97 knot locations for the second resolution.
Therefore the estimate of V is a 135 x 135 matrix. A map of these knot locations is given in
Figure 5.

To construct the S matrix, we use the modified bisquare function, defined as:

S (1 —0.25d? (sl-, uj(l))> for d(si, uj(l)) <2,
,j() —
’ 0 otherwise,

where u;(;) is the 7' knot location of the I*" resolution, s; are the observed locations. The

distance is given by:

d(si uj)) = \/ g (86 W50)) Tiomay T e (6 W50)) /T 1)

where diong (si, uj(l)) and djat (si7 uj(l)) denote the longitude (east-west) and latitude (north-

south) distances, respectively, between the location s and the knot location u;(;y. The values
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Tlong(l) and T15¢(;) control the maximum distance between an observation and a knot such that
there is non-zero weight associated between the two. We set these to be the minimum east-
west distance and minimum north-south distance between two knot locations of the same
resolution.

90

60

304

Latitude
o

-301

—60 1

Longitude

Figure 5: Plot of the knot locations of the basis functions over the spatial domain.
Triangles represent the 38 knot locations of the first resolution, and
circles represent the 97 knot locations of the second resolution.

Figures of the predictions or prediction uncertainties are not particularly informative,
as our focus is on comparing the robust method to the CJ method. The CJ method yielded
larger RMSPEs by approximately 20%, and the CRPS tended to be larger as well. A plot of
the CRPS ratio for each location is shown in Figure 6. On average, the CRPS ratio is 1.04,
indicating better performance for the robust method.
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Figure 6: Plot of the CRPS of predictions using the CJ method relative to
those using the robust method. Larger values indicate the CJ method
produced a larger CRPS at that location.
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5.2. Analysis after inducing outliers

In addition to this analysis, we artificially contaminated the log CWP data by replacing
the 2% of observed values Z;(s) with 1.5 Z;(s). Inspection of the normal quantile-quantile
plot showed a heavy upper tail which also contained many outliers. The results followed the
same pattern as those described above. The RMSPE were again uniformly larger for the
CJ method, now averaging 78% larger, while the CRPS were, on average, 11% larger.

6. CONCLUSIONS AND DISCUSSION

The Method of Moments is a flexible and powerful tool for estimating the parameters of
a FRK model. Bayesian methods are more accurate than kriging (Kang and Cressie [8]), but
they are also more time-consuming, and often come with some distributional assumptions.
Kriging is typically a faster process, and kriging estimates are BLUP even in the face of non-
normality, so kriging presents benefits of its own. However the typical parameter estimates
using EM algorithm or MoM are susceptible to contaminated data. In this work we have
provided robust alternatives to both stages of the MoM estimation.

Our results indicate that the proposed estimate and fitting scheme successfully capture
the spatial covariance. In both our simulations and in our application to real data, the robust
method tended to provide an advantage over the CJ method. At times the advantage was
small, but in some cases the robust method showed substantial improvement, even when the
data were neither contaminated or skewed.

Besides the Li-fit, other robust fits can be used. For example, the Wilcoxon fit is a ro-
bust fit that minimizes the sum of the absolute differences of the residuals (see Hettmansperger
and McKean [7], Section 3.8). The Wilcoxon fit is generally more efficient than the L;-fit
and it generalizes to fits for skewed-error distributions. We are currently investigating other
robust norms which result in fits with higher efficiency than that of the L; fit for normal
erTors.

Again we emphasize that the kriging equations have been derived by minimizing the
mean square prediction error. These predictions are then simply functions of V and v. In our
work, we have provided robust methods of estimating these same parameters. Yet when using
robust techniques, it may be desirable to derive predictions and measures of precision using a
different loss function than the squared error loss, or such that the predictions are robust in
addition to the parameter estimates (Cressie and Hawkins [3]). Our robust estimates perform
well in spite of this.
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A. APPENDIX — Proof of Theorem 3.1

The proof utilizes the consistency of a fit 3 such that Vn (B - ﬁ) = O(1); the assump-
tions as discussed in Section 3, including n; — oo, for j = 1,...M; and the theory for the sign
processes as discussed in Chapters 1 and 3 of Hettmansperger and McKean [7]. For the sign
process theory, we assume that the pdf of the random errors is positive at its median. The
proof is in two parts. Part 2 gives the desired result, while Part 1 establishes the consistency
of the medians used in the second part.

Part 1 of the Proof:

Consider the j-th bin, for j =1,..M. Let {e;} denote the process of random errors
of the linear model Z; = X; 3; + e;. Assume without loss of generality that 3; = 0 and the
median of e; is 0, where for ease of notation we have omitted the second subscript j on e;.
Let e=7Z; — X ijls denote the residuals from the a fit such that \/ﬁ(ﬁ —B) =O(1). Let
F(t) and f(t) denote the cdf and pdf of e;, respectively.

Consider the sign process given by
(A1) Si(0) = — > sgn(e; — 0),

where sgn(u) = —1,0,0r 1 for u < 0, u = 0, or u > 0. Denote the median of ey, ..., en; by f..
Notice that 6, solves the equation §j (#) = 0. Our immediate goal is the asymptotic linearity
of the process S;(0) that is given in expression (A.3). We accomplish this by showing that
the four sufficient conditions hold as given in Section 1.5 of Hettmansperger and McKean [7].
First note that S;(6) is a nonincreasing function of §. Thus the first condition holds. For the
second condition, by a simple shift theorem and stationarity, we have

j

— Fo[5,0)] = E[5;(0)] = 1Z%www44ﬂ@

i=1
Hence, 1/(0) = 2 f(0) > 0 which establishes the second condition.
For the third condition, we need to show the variance of ,/mi; S;(0) exists. This variance
is
an, = V[y/m; 5;(0)]
1 & 9 !
= ZV(sgn(el — Z cov[sgn(e;),sgn(ey)] .
) = nj -1

k=i+1

The first term on the right is easily seen to be 1. Using Ple; <0] =1/2 and expanding
each covariance term into its expectation, we obtain four probability terms and, hence, the
sum of four series. The absolute value of one of these four series is given next. As we show, we
establish a bound on the series by invoking the assumption (3.1) and then applying properties
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of the geometric series. A similar proof holds for the other three series.

anl n;

Z 3 [ ez<0,ek<0)—P(ei<0)P(ek<0)}
"2 k=i o
J
< = Z Z‘ (e: <0, ex <0) — Pe; <0) Pey <0)|
i=1 k=i+1
nj—l nj
SEZY Y
i=1 k=i+1
=1 1 p?
1—p n; nj 1—p
<ok
1—p’

where the constants K > 0 and 0 < p < 1 are given in expression (3.1). The last line follows
because the term in brackets is nonnegative and the entire expression is nonnegative. Thus
the above series is convergent. Since the other three series follow similarly and, since absolute
convergence implies convergence, the series for the variance a,%j converges. Let 02(0) denote
the value to which the series converges. The actual value is not needed in the proof but can

be obtained from Wendler [20] as noted below.

The fourth condition requires that for all b, Varo{\/rTj [S(b/\/m5) —3(0)]} — 0, as
n; — 0o, where I(x) = 1 if x is true, 0 otherwise. Based on the sign function, we have

Vi, b =dm Var [\/m [S(b/\/n5) — ?(0)]] = Var \;% z]: I(0<e < b/\/TTj)I :

=1
Thus,
4 L]
Voss = o ;Var[ (0<es<bfym)]
(A.2) a1
+— Z >~ cov|1(0< e <b/\/i;), 1(0< e < b/ig)|
" kS

By stationarity and continuity of the cdf F(t), E[I1(0<e¢; <b/\/m;)] = F(b/\/n;) —5 — 0
as nj — 00; hence, the variance term on the right side of (A.2) goes to 0 as nj — oc.

We can write the covariances as
Cnjik =dfn COV [I(O <eg < b/\/rTj), I(O <ep< b/\/m)}
= P[O<ei<b/\/7Tj, 0<6k<b/\/717}
= Plo<ei<b/ym| Plo<ep<bly|.

Notice that this is similar to the above argument on the variance, except that the terms also
go to zero as n; — 00. Using mean value theorems it follows that the rate of this convergence
is 1/n;. Using the assumptions from Section 3 and this rate we have |an,i,k:| <K pf;j_i, where
pn; = O(1/n;). Following the same argument as used for the variance, the covariance term
in (A.2) in absolute value is less than or equal to

2Kp7<0(1/nj)—>0 as nj — 00.

1= pn;
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Thus Vy,;» — 0 as n; — oo.

By these four conditions, as shown in Chapter 1 of Hettmansperger and McKean [7],
the sign process satisfies the linearity result:

(A.3) Vi 8j(0) = /n; S;(0) = 2£(0)y/n; 0 + 0p(1),
for \/nj10] < B, for all B > 0.

To obtain 02(0), we can use Wendler [20]. He showed, under the mixing conditions
above, that ,/m;|0.| converges in distribution and, hence, is tight. Since S;(6) =0, we can
use (A.3) and Wendler’s asymptotic distribution to obtain the asymptotic normal distribution

of \/mgj(O)

For our proof, we are interested in the residual process. Since for the proof the true
parameters are 0, we can write the residuals as é; = e¢; — X85, i = 1,...,n;. The residual
sign process is then given by

(A4) SH0) = =3 sen(és - 6).

Let 6* denote median of the residuals. Notice that it solves g; (6*) = 0. In the independent
error case, Hettmansperger and McKean [7] established the linearity of the residual process
for any root-n consistent estimate of 3; see their Section 3.5 and the associated parts of the
Appendix. A key result used in their proof was the linearity for the single sample case, i.e.,
in the current proof, the result (A.3). See Lemma A.3.2 of Hettmansperger and McKean [7].
The remainder of the proof for the linearity of §; (0) follows using similar reasoning as above.
The result is

(A.5) V5 S5 (8) = \/nj S5(0) = 2£(0) /7156 + 0p(1),

for \/n; |0 < B, for all B > 0. Using this and FJ*(HA*) = 0, we obtain the asymptotic distri-

bution of §* and, hence, its consistency.

The second part of our proof requires the consistency of three other estimators. The
first is the median of the absolute value of the residuals. This is easily obtained by replacing
e; with |e;| in the above processes. Since the pdf of |e;| is strictly positive at the true median,
the proof holds in this case too. The second estimator is a function of the residuals from two
bins, say, j and j'. More specifically, it is a function of the residuals

where Bj and Bj/ denote the LS estimates from bins j and j’, respectively. Because the

AT T
vector (,Bj ,,Bj/)T is root-n comnsistent and the convolution of identical pdfs is positive at its
median when each pdf is positive at its median, nothing in the above proof precludes the
use of random errors of the form e;; + €. Thus the theory holds in this case also. These

comments apply to the third estimator also because it is based on the residuals é;; — €;/;.
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Part 2 of the Proof:

This part of the proof makes use of the standard inequality |a| = |a —b+b| < |a—b|+b].
~(rob
It suffices to show consistency of Eﬁfj ) element-wise. We first show the consistency of the

~ (rob
diagonal elements. The statistic and functional of the m'" diagonal of ES\? ) are given by:
MAD{e,,} = medi‘émi — medj{émj}‘ with functional &,, = med}em — med{em}‘ )

Without loss of generality, assume that med{e,} = 0. From Part 1, med;{é,,} L0, in

probability. Next, assume that med{|e,,|} =&. Then also from Part 1, med;|é,,] il €.
Choose Ny sufficiently large so that, given € > 0,

(A.6) k>Ny = |medicici{énm,}| <e

with probability greater than (1 — (¢/2)). Let A,, denote the event where (A.6) occurs. Then,
on A, we have

&m;| = ‘émi — med; {émj} + med; {émj}‘
< |ém, — med;{én,}| + |med;{&n, }|
< |ém, — med;{én, }| + €.

So, on A,
(A.7) med; &, | < med;|&p,, — med;{&m,}| + ¢,
and
€m, — medj{éij = }émi —med;j{€n;} — €&m, + &n,
< |med;{&n, }| + €]
< |ém;| +¢.
Hence, on A,
(A.8) med;|€,,, — med;{&y,, }| < med;|é,,,| +¢.

Putting (A.7) and (A.8) together, we have on 4,
(A.9) ’medi‘émi — med;{&n, }| — medi]émiw < e.

Since this occurs with probability of at least (1—(g/2)), the difference on the left-side goes to 0

in probability. As noted above, from Part 1, med;|é,,, £>§ ; hence, medi‘émi—medj {émj}‘ 5 £

For the off-diagonal elements, let m # m’ be given. Recall that the off-diagonal elements
~ (rob
of ES\}O ) are given by equation (2.2), which can be expressed as follows:

~ ~ 2 A A 2
(A.10) 50 (0 m!) = (MAD {em G; ! }) - (MAD {em 92 Crm! }) .

It suffices to show consistency for each of the terms on the right-side. Define t = % (em @ en).
Then the statistic and its functional, respectively, for the off-diagonal elements are:

MAD{t} = med; [t; — med; {t;}| with functional &, = med|t — med{t}|.

Without loss of generality let med{t} = 0. From Part 1, med;{t;} L. 0. Then the proof follows
in the same manner as for the diagonal elements. So each of the MADs in equation (A.10)

is consistent. Therefore, the entire expression is consistent. Thus, the diagonal and off-diagonal
b) b)

. S\TOo . SO . . .
entries of 25\4 are consistent. Hence, ng is a consistent estimator of 3j;. U
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