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Abstract:
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are to subtract 1 from xij and to add 1 to xkj , respectively, so that the composition i[j]k of the
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a loop is defined as a composition of such operators that leaves unchanged both row and column
totals. This is used to characterize the r×c contingency tables of maximum probability over the
fixed marginals reference set (under the hypothesis of row and column independence). Another
characterization of such maximum probability tables is given using the concept of associated
U tables, a U = {uij} table being defined as a table such that uij > 0, 1≤ i≤ r and 1≤ j ≤ c,
and for a given set of values rh, 1≤ h < r, uh+1,j = rhuhj for all j. Finally, a necessary and suffi-
cient condition for the uniqueness of a maximum probability table in the fixed marginals reference
set is provided.

Key-Words:

• r×c contingency table; maximum probability r×c contingency table; network algorithm; Fisher’s
exact test.

AMS Subject Classification:

• 62H05, 62H17.

mailto:fcoreque@ugr.es


72 F. Requena

1. INTRODUCTION

Let X = {xij} denote an r×c contingency table, with xij ∈N the entry in row i

and column j, and let R1, ..., Rr be the sums of rows, C1, ..., Cc the sums of columns and
N =

∑
i

Ri =
∑
j

Cj . Given the marginal sums Ri and Cj , i = 1, ..., r, j = 1, ..., c, let

F =

{
X

∣∣ c∑
j=1

xij = Ri ,
r∑

i=1

xij = Cj

}

be the reference set of all possible r×c tables with the aforementioned marginal sums. Then,
under the hypothesis of row and column independence, it is well known that for X ∈ F ,

(1.1) P
(
X

)
=

∏
i

Ri!
∏
j

Cj !

N !
∏
ij

xij !
.

A problem that is of interest is that of obtaining a table X ∈ F which maximizes (1.1), i.e.
a maximum probability fixed marginals r×c table (MPT). This problem arises, for example,
as part of the best known and most efficient algorithm for calculating the p-value of Fisher’s
exact test in unordered r×c contingency tables: the network algorithm of Mehta and Patel [2].
The application of this algorithm to an observed r×c table requires, for many of the nodes in
the network, the calculation of the longest subpath from each node to the terminal node, and
this involves (many) repeated applications of the calculation of maximum probability r×c′

tables (c′ ≤ c) for given fixed marginal sums.

Methods for obtaining these MPTs have been proposed by Mehta and Patel [2] and
by Joe [1]. The most general is that of Joe, which is based on a necessary condition for
the MPTs, and generally involves the (recursive) construction of a subset of F in which the
MPTs are contained, and obtaining these by inspecting the probabilities of the tables of this
subset. However, the computation time for the Joe method grows exponentially when r or c

increase, and it is practically unviable for relatively large values of r and c.

In the particular case of 2×c tables, Requena and Mart́ın [3] present a necessary and suf-
ficient condition for the MPTs. Based on this characterization, Requena and Mart́ın [4] pro-
pose a general and very efficient method for obtaining the MPTs, and Requena and Mart́ın [5]
present some modifications in the network algorithm of Mehta and Patel for 2×c tables, which
produce a drastic reduction in computation time.

In order to obtain general and more efficient methods for obtaining the MPTs, in the
general case of r×c tables, it is important that these methods are based on necessary and
sufficient conditions for the MPTs. In this sense, in this paper, two necessary and sufficient
conditions are presented in order to characterize the MPTs. However, this characterization
is not a generalization of the one previously shown in Requena and Mart́ın [3]; it is com-
pletely different, although logically in the particular case of 2×c tables, the characterization
presented in this paper is equivalent to that of Requena and Mart́ın [3].

In Section 2 of this paper, we define and study the concepts of sequence and loop which
we will use in the characterization of the MPTs, which is presented in Sections 3 and 5.
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In Section 3 we present the characterization as a more theoretical result, while in Section 5,
with a more applied purpose, the characterization is presented in terms of a particular type
of tables (U tables), which we define and study in Section 4. Finally, in Section 6 we provide
a necessary and sufficient condition of the uniqueness of the MPT.

2. SEQUENCES AND LOOPS

The characterization of the MPTs which we set out in the following sections is based on
the concepts of sequence and loop. In order to define these concepts, we will start by defining
some operators, which are applied to an r×c table X = {xij}.

We define the operator i[j] whose effect on X is to subtract 1 from xij leaving all the
other entries unchanged, and the operator [j]k whose effect on X is to add 1 to xkj leaving
all the other entries unchanged. Based on these operators, we define the operator i[j]k as the
composition of i[j] with [j]k (i[j] ◦ [j]k = i[j]k = [j]k ◦ i[j]). It is clear that i[j]k changes the
j-th column of the table without altering its sum. Also, as i[j]i is the identity operator, i[j]
and [j]i are inverse of each other.

Definition 2.1. Given an r×c table X = {xij}, and given the rows i0, i1, ..., ik (with
ih−1 6= ih) and columns j1, ..., jk (not all equal), a sequence is the composition of i0[j1]i1
with i1[j2]i2, ... with ik−1[jk]ik, which for simplicity we denote by i0[j1]i1[j2]i2 ··· ik−1[jk]ik
(1 ≤ ih ≤ r and 1 ≤ jh ≤ c).

Definition 2.2. Given an r×c table X = {xij}, a loop is a sequence in which ik = i0,
i.e. i0[j1]i1[j2]i2···ik−1[jk]i0.

From this point onward in the text, when we write a sequence as

i0[ · ]i1 ··· ik−1[ · ]ik

it will be understood that it is a sequence for an unspecified set of columns j1, ..., jk.

In terms of the effect of applying a sequence or a loop to a table X, we can understand
a sequence or a loop as a succession of operators ih−1[jh] and [jh]ih (or as a succession of
operators ih−1[jh]ih), h = 1, 2, ..., k, applied in a successive manner: each operator is applied
to the table obtained by applying the previous one (the first one is applied to X). For
example, applying the sequence 1[2]2[3]4 to a 4×4 table has the effect of adding 1 in x43,
subtracting 1 in x23, adding 1 in x22 and subtracting 1 in x12. A sequence applied to X does
not alter the column sums, but it alters the i0-th and the ik-th row sum. However a loop
does not alter neither the column sums nor the row sums.

Logically, if one removes pairs of inverse operators from a sequence (or loop) in an
appropriate way, one would obtain a new and more reduced sequence (or loop), but one
which would have the same effect on X as the previous one. In this sense, we give the
following definition:
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Definition 2.3. Given an r×c table X = {xij}, two sequences (or two loops) are
equivalent when they have the same effect on X.

Thus, we have classes of equivalent sequences (or loops). Within a same class, the
difference between two sequences (or two loops) is a set of pairs of inverse operators.

In the same way, we will define the equivalence between a sequence (or loop) and a
group of several sequences (or loops), based on the understanding that the sequences (or
loops) which compose the group are applied in a successive manner: each sequence (or loop)
is applied to the table obtained by applying the previous one.

Because the effect of an operator [j]i on X is to add 1 to xij , and the effect of an
operator i[j] is to subtract 1 from xij , and denoting the number of operators [j]i and i[j]
in the loop by nij and n′ij , respectively, any loop can be represented by means of a table
D = {dij}, defined as dij = nij −n′ij , i = 1, ..., r and j = 1, ..., c. It is easy to see that a table D

defined thus has all its marginal sums equal to 0. Reciprocally, any table D = {dij}, with dij

being integer numbers and marginal sums equal to 0, will represent a loop or a group of loops.
Moreover, applying a loop to a table X is equivalent to adding the corresponding table D to
it, thereby obtaining a new table X ′ with entries x′ij = xij + dij , and with the same marginal
sums as X. But X ′ is not necessarily an r×c table, because some of the entries x′ij could be
negative. If this happens (although we can consider such a loop) we would not consider that
table X ′. This is taken into account in Section 3.

Example 2.1. Let us consider the loop 2[1]3[4]1[1]3[2]4[3]2. Applying this loop to a
4×4 table X, we will obtain a new 4×4 table X ′. Let us see it for some i’s and j’s. For i = 2
and j = 1, because there is only one operator 2[1] (n′21 = 1) and no operator [1]2 (n21 = 0),
d21 = 0− 1 = −1 and we have to subtract 1 from x21 (x′21 = x21 − 1). Likewise, for i = 3
and j = 1 there are two operators [1]3 (n31 = 2) and no operator 3[1] (n′31 = 0), therefore
d31 = 2− 0 = 2 and we have to add 2 to x31 (x′31 = x31 + 2). In a similar way for the other
i’s and j’s. The complete table D that represent this loop is

−1 0 0 1
−1 0 1 0

2 −1 0 −1
1 1 −1 0

and adding this table D to the table X we obtain the table X ′.

If in a sequence (or loop) B we invert the order of the ih’s and also of the jh’s (each
operator would be substituted by its inverse one), we will obtain a new sequence (or loop):
we will call it inverse of B. For example, the sequence inverse of 1[2]2[3]4 is 4[3]2[2]1.
Furthermore, if D = {dij} represents a loop B, then −D = {−dij} will represent the inverse
of B.

Let us now define a particular type of loop which we will use in the characterization of
the MPTs.
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Definition 2.4. For 1 < k ≤ min(r, c), an order k simple loop, is a loop i0[j1]i1[j2] ···
ik−1[jk]i0 in which all the k rows i0, i1, ..., ik−1 are different and all the k columns j1, ..., jk

are different. We will call these the k rows and the k columns of the loop.

Observe that such simple loop leaves r–k rows and c–k columns of X unchanged.

In order to distinguish them from the general case, we will write the tables D which
represent order k simple loops as E = {eij}. In an order k simple loop, since all of its rows
ih (and all of its columns jh) are different, both nij and n′ij can only be equal to 1 or 0, and
nij + n′ij ≤ 1. Therefore, the corresponding table E will have all of its entries eij equal to 0,
except for a 1 and a −1 in each of the k rows and in each of the k columns of the loop.
Moreover, any table E of this type will represent an order k simple loop. For example, the
table

0 −1 0 1 0
−1 1 0 0 0

1 0 0 −1 0
0 0 0 0 0

represents the order 3 simple loop 2[1]3[4]1[2]2.

It is obvious that if one subtracts from a table D (different to any table E) a table E

whose eij 6= 0 have the same sign as the corresponding dij in D, this will result in another
type D table (or type E). Therefore, it is easy to deduce that any table D is the sum of
several type E tables, i.e. any loop (represented by D) can be broken down into a group of
simple loops, which together are equivalent to D. For example:

0 0 1 −1
−1 3 −2 0

0 −1 0 1
1 −2 1 0

=

0 0 0 0
−1 1 0 0

0 0 0 0
1 −1 0 0

+

0 0 0 0
0 1 −1 0
0 0 0 0
0 −1 1 0

+

0 0 1 −1
0 1 −1 0
0 −1 0 1
0 0 0 0

The loop represented by the table D on the left-hand side is broken down into the
(equivalent) group of three simple loops on the right-hand side (the first and the second are
order 2 and the third order 3).

Finally, for any r×c table X = {xij} and for any loop, from this point onward we will
use expressions of the type

(2.1) Q =
∏
j∈J

xbj + 1
xaj

,

where J represents the set of columns j’s (which are not necessarily all different) correspond-
ing to the [j]’s of the operators a[j]b in the loop, and a and b are the rows of these operators.
In this type of expression, a one-to-one relation between the terms of the product and the set
of operators a[j]b of the loop is established. For example, for the loop 2[1]4[5]1[3]2

Q =
x41 + 1

x21
· x15 + 1

x45
· x23 + 1

x13
.
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3. CHARACTERIZATION OF THE MAXIMUM PROBABILITY
r×c TABLES

The simple loops defined in the previous section are used in the following result to
characterize the MPTs.

Theorem 3.1. The necessary and sufficient condition for X = {xij} ∈ F to be an MPT

is that

(3.1)
∏
j∈J

xbj + 1
xaj

≥ 1

for every order k simple loop E = {eij} and every k, 1 < k ≤ min(r, c), where J is the set of

the k columns of the loop, and for each j ∈ J , b and a are the rows such that ebj = 1 and

eaj = −1.

Proof: Let X be an MPT, and let us consider X ′= X+E, for any order k simple loop E,
1 < k ≤ min(r, c). All of the elements of X and X ′ will be identical, except x′bj = xbj + 1
and x′aj = xaj − 1 for j ∈ J , and a, b and J previously defined. Firstly, if E is an order k

simple loop such that x′aj is a negative integer (for some a and j), that is, X ′ is not an r×c

table, then xaj = 0 and, hence, the condition (3.1) is fulfilled for that E. Secondly, if (on
the contrary) E is such that X ′ is an r×c table (X ′ ∈ F), then from expression (1.1), and
because P(X) ≥ P(X ′), we obtain

P(X)
P(X ′)

=
∏
j∈J

(xbj + 1)! (xaj − 1)!
xbj ! xaj !

=
∏
j∈J

xbj + 1
xaj

≥ 1 .

Therefore, for an MPT, (3.1) is fulfilled for all E of order k.

In order to prove the sufficient condition one must note, in the first place, that if an
r×c table fulfils (3.1) for every simple loop, it will fulfil said expression for an order k simple
loop E, and also for the inverse loop −E (which is also an order k simple loop). For this
reason

(3.2)
∏
j∈J

xaj + 1
xbj

≥ 1

will also be fulfilled with a, b and J defined for E as in the formulation of the theorem.
Thus, for each E, (3.1) and (3.2) will be fulfilled. The proof of the sufficient condition in
the case that there is only one r×c table of F fulfilling (3.1) is trivial. Therefore, we will
assume that there is more than one. Let X ∈ F be an MPT which will obviously fulfil (3.1).
It will be necessary to prove that for any X ′ ∈ F satisfying (3.1) for all order k simple loops,
P(X ′) = P(X) must be fulfilled.

It is clear that X ′ can always be written as X ′ = X +D, when D is a table representing
a loop (or group of loops), which can be broken down into a group of tables E’s (simple loops).
According to this type of decomposition (as we have seen in the previous section), for any
of these E’s, considering j ∈ J , a and b defined as before, the signs of eaj and ebj should be



Maximum Probability Fixed Marginals r×c Contingency Tables 77

the same as those of their corresponding daj and dbj in table D. Moreover, because X ′ fulfils
(3.1) and (3.2) for any of these E’s, we can write

(3.3)
∏
j∈J

x′bj
x′aj + 1

=
∏
j∈J

xbj + dbj

xaj + daj + 1
≤ 1

for each E, and because X also fulfils (3.1), we have that

(3.4)
∏
j∈J

xbj + 1
xaj

≥ 1

for each E. From this expression, and because the dbj ’s are positive and the daj ’s are negative,

(3.5) Q′ =
∏
j∈J

xbj + dbj

xaj + daj + 1
≥ 1

will be fulfilled. Moreover, if any dbj > 1 or any |daj | > 1 we will obtain Q′ > 1, which would
contradict (3.3). Hence dbj = 1 and daj = −1, and from (3.3) and (3.5) we obtain

(3.6)
∏
j∈J

xbj + 1
xaj

= 1 .

Since the above is valid for any of the E’s in which D is broken down, on the one hand we
will obtain |dhl| ≤ 1 for all h and l, hence for every dhl 6= 0 there will be one and only one of
the loops E’s such that ehl = dhl. On the other hand, considering the expression (3.6) for all
the E’s in which D has been broken down, we will obtain

(3.7)

∏
hl∈D+

(xhl + 1)∏
hl∈D−

xhl
= 1

where D+ and D− are the sets of subindices hl such that dhl = 1 and dhl = −1, respectively.
Finally, from (1.1)

P(X)
P(X ′)

=

∏
hl∈D+

(xhl + 1)!
∏

hl∈D−
(xhl − 1)!∏

hl∈D+

xhl!
∏

hl∈D−
xhl!

=

∏
hl∈D+

(xhl + 1)∏
hl∈D−

xhl

is obtained, and from (3.7) we will obtain P(X ′) = P(X).

From this theorem, and from what has been said in the proof, the two following results
are easily deduced:

Theorem 3.2. If X is an MPT and E an order k simple loop for which

(3.8)
∏
j∈J

xbj + 1
xaj

= 1

holds, where J , a and b are defined as in Theorem 3.1, then X ′ = X + E is also an MPT.
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Theorem 3.3. If two tables, X and X ′, belonging to F are MPTs, then the difference

between both tables is one or several simple loops, such that (3.8) holds for X and for each

of these simple loops. Moreover the following always holds

|x′hl − xhl| ≤ 1 , ∀h, l .

Finally, the following result extends expression (3.1) to any loop.

Theorem 3.4. Given the expression Q defined in (2.1), if X is an MPT, for any loop

the following always holds

(3.9) Q =
∏
j∈J

xbj + 1
xaj

≥ 1

where J is the set of columns j’s corresponding to the [j]’s of the loop, and a[j]b are the

operators that compose the loop.

Proof: From Theorem 3.1, for simple loops it is obvious that (3.9) is fulfilled. In the
case of non-simple loops, if the loop is represented by a table D, it can be decomposed into
a set of n simple loops. Representing the expression (2.1) for the simple loop h (1 ≤ h ≤ n)
by Qh, we will obtain that

Q =
n∏

h=1

Qh

and because Qh ≥ 1 for all h (from Theorem 3.1), we obtain Q ≥ 1. Finally, if the loop
is not represented explicitly by any type D table, there will always be an equivalent loop
represented by a table D, and the difference between both loops will only be a set of pairs
of inverse operators. Without loss of generality, let us suppose that the difference is the pair
a[b], [b]a. Then, according to what was said when defining expression (2.1), and decomposing
(as before) the loop D into n simple loops, we will obtain

Q =
xab + 1

xab

n∏
h=1

Qh > 1 .

Therefore, to sum up, (3.9) is fulfilled for every loop.

4. A PARTICULAR TYPE OF TABLES: THE U TABLES

We will now proceed to define and study a type of tables (U tables) that is particularly
important in a new characterization of the MPTs.

Definition 4.1. A U table is a table {uij} with r rows and c columns (1 ≤ i ≤ r and
1 ≤ j ≤ c), in which uij are strictly positive real values (uij > 0) and such that, for a given
set of values rh, 1 ≤ h < r, uh+1,j = rhuhj for all j.
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Given this definition, from this point onward rh = uh+1,j/uhj will represent the ratio
between the consecutive rows h and h + 1 of the U table. On the other hand, it is obvious
that for any two rows h and i, the ratio rhi = uij/uhj is constant for all j, and rih = 1/rhi.
In particular, rh,h+1 = rh. Moreover, for h < i, rhi coincides with the product of the ratios
between consecutive rows from row h to row i, i.e., rhi = rh rh+1 ··· ri−1. So we will also denote
this product by rhi. For example, r14 = r1 r2 r3. Furthermore, it will always be understood
that rhh = 1.

Let us consider some properties of this type of table, the proofs for which are very
straightforward.

Property 4.1. If any row or column of a U table is multiplied by a constant, or the
rows (or columns) of a U table are interchanged, another U table is obtained.

Property 4.2. For any two rows h and i of a U table, rhi = 1/rih is always fulfilled.
Moreover, given the rows h, s and i (h ≤ s ≤ i) of a U table, rhi = rhs rsi will always hold.

Property 4.3. In a U table {uij} the following always holds:∏
j∈J

ubj

uaj
= 1

for every order k simple loop E = {eij}, and every k, 1 < k ≤ min (r, c), where J is the set
of the k columns of the loop, and for each j ∈ J , b and a are the rows such that ebj = 1 and
eaj = −1.

The following are two examples of U tables.

Example 4.1. A table {uij} in which all the elements in each row are equal (that is,
uij = Ai > 0 for all j) is a U table.

Example 4.2. Given an r×c table, with marginal sums {Ri} and {Cj}, the table of
expected frequencies {Eij}, defined as Eij = RiCj/N , is a U table. In this case, the ratios
between the rows are rhi = Ri/Rh. It would also be a U table if Ri and Cj were strictly
positive real values.

The following definition establishes a link between the U tables and the r×c tables.

Definition 4.2. We say that a U table {uij} is associated with an r×c table X = {xij}
if the following holds

(4.1) 0 ≤ uij − xij ≤ 1 , ∀ i, j, 1 ≤ i ≤ r, 1 ≤ j ≤ c .

From this definition and from the definition of U tables, it is easy to deduce that the
U table associated with an r×c table, if it exists, is not necessarily unique (and generally it
is not so).
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Given an r×c table X = {xij}, is there always a U table {uij} associated with it?
In order for such a U table to exist, uij = xij + εij would have to be fulfilled for all i and j,
with 0 ≤ εij ≤ 1. Now, because the ratios between the rows in the U table would be

rhi = uij/uhj = (xij + εij)/(xhj + εhj) , ∀ j ,

and so, for a given j, the minimum and the maximum value for rhi would be xij/(xhj + 1)
and (xij + 1)/xhj , respectively, then, rhi should fulfil

mo
hi ≤ rhi ≤ Mo

hi ,

where
mo

hi = max
j

{
xij/(xhj + 1)

}
and Mo

hi = min
j

{
(xij + 1)/xhj

}
.

In the particular case of consecutive rows (i.e., i = h + 1), the limits for the ratios rh would
be

(4.2) mo
h,h+1 ≤ rh ≤ Mo

h,h+1 , 1 ≤ h < r .

Moreover, because rhi = rhrh+1 ··· ri−1, the limits for the products of ratios rhi should likewise
be

(4.3) mo
hi ≤ rhi ≤ Mo

hi , 1 ≤ h < i− 1 < r .

Therefore, in principle, in order for the said U table to exist, there must be a set of ratios rh

that fulfil (4.2) and whose products rhi fulfil (4.3).

Remark 4.1. If X = {xij} is an MPT, applying expression (3.1) to all order 2 simple
loops, we obtain xij′/(xhj′ + 1) ≤ (xij + 1)/xhj for all h, i, j and j′. Hence the following will
always be fulfilled

mo
hi ≤ Mo

hi , ∀h, i, 1 ≤ h < i ≤ r .

Remark 4.2. For any two rows h and i, and from the definition of the limits mo
hi

and Mo
hi, we easily obtain that

Mo
hi = 1/mo

ih .

We can use this expression to obtain mo
pq and Mo

pq for p > q.

We will call these limits mo
h,h+1, Mo

h,h+1, mo
hi and Mo

hi (for each ratio rh and each
product rhi) initial limits and, in general, we will refer to them (without specifying the
subindices) as limits mo’s and limits Mo’s.

Example 4.3. In order for there to be a U table associated with the 3×3 table

16 10 6
11 7 5
5 2 2

there must be a set of ratios, r1 and r2, that fulfils (4.2) and whose product r13 = r1r2

fulfils (4.3). In this case, the initial limits are: 0.714 ≤ r1 ≤ 0.750, 0.417 ≤ r2 ≤ 0.429 and
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0.294 ≤ r13 ≤ 0.300. In principle, we can take appropriate values of r1 and r2 in order to
construct an associated U table.

If there are appropriate values of rh such that (4.2) and (4.3) are fulfilled, and consider-
ing the initial limits mo’s and Mo’s as the current limits for rh and rhi, they can be redefined
(in the sense that we will show below) given the limits of the other products and ratios, thus
obtaining new and more accurate limits for rh and rhi. In general we will denote these new
limits as mhi and Mhi.

For example, in 3×c tables, for the product r13, because r13 = r1r2, the restriction
mo

12mo
23 ≤ r13 ≤ Mo

12Mo
23 must also be fulfilled, which means r13 should fulfil m13 ≤ r13 ≤

M13, and the new limits will be

m13 = max
{
mo

13, mo
12mo

23

}
and M13 = min

{
Mo

13, Mo
12Mo

23

}
.

Likewise, for the ratio r1, because r1 = r13/r2, the restriction mo
13mo

32 ≤ r1 ≤ Mo
13Mo

32 must
also be fulfilled, and the new limits for r1 will be

m12 = max
{
mo

12, mo
13mo

32

}
and M12 = min

{
Mo

12, Mo
13Mo

32

}
.

In a similar way, the new limits for r2 are

m23 = max
{
mo

23, mo
21mo

13

}
and M23 = min

{
Mo

23, Mo
21Mo

13

}
.

Example 4.3 revisited. Starting from the previously calculated initial limits in Ex-
ample 4.3, we calculate the new limits at the second stage as indicated in the previous
paragraph, and we obtain

0.298 ≤ r13 ≤ 0.300 , 0.714 ≤ r1 ≤ 0.720 and 0.417 ≤ r2 ≤ 0.420 .

In 4×c tables, for the product r13, because from Property 4.2 r13 = r1r2 and r13 =
r14/r3, the restrictions mo

12m
o
23 ≤ r13 ≤ Mo

12M
o
23 and mo

14m
o
43 ≤ r13 ≤ Mo

14M
o
43 must also be

fulfilled, which means r13 has to fulfil m13 ≤ r13 ≤ M13, and the new limits will be:

m13 = max
{
mo

13, mo
12mo

23, mo
14mo

43

}
and

M13 = min
{
Mo

13, Mo
12Mo

23, Mo
14Mo

43

}
.

Likewise, for the ratio r2, because r2 = r13/r1, r2 = r24/r3 and r2 = r14/(r1r3), the following
restrictions must be fulfilled:

mo
21m

o
13 ≤ r2 ≤ Mo

21M
o
13 ,

mo
24m

o
43 ≤ r2 ≤ Mo

24M
o
43 ,

mo
21m

o
14m

o
43 ≤ r2 ≤ Mo

21M
o
14M

o
43 .

Thus r2 must fulfil that m23 ≤ r2 ≤ M23, and the new limits will be:

m23 = max
{
mo

23, mo
21mo

13, mo
24mo

43, mo
21m

o
14m

o
43

}
,

M23 = min
{
Mo

23, Mo
21Mo

13, Mo
24Mo

43, Mo
21M

o
14M

o
43

}
.

In a similar way for r1, r3, r14 and r24.
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Remark 4.3. It is evident that the new limits will fulfil mo
hi ≤ mhi and Mhi ≤ Mo

hi,
and if mhi ≤ Mhi, the new intervals (mhi , Mhi) will be contained in the corresponding initial
(current) intervals (mo

hi , Mo
hi), both for the ratios rh and for the products rhi.

Remark 4.4. For any two rows h and i, from Remark 4.2 and from the definition of
the new limits, we easily obtain that Mhi = 1/mih.

Now, taking the limits mhi and Mhi as the current limits for the ratios and products,
we can recalculate the limits in the same sense as before, obtaining new limits (for the ratios
and products) which we will also denote as mhi and Mhi. Thus we will have a recursive
process, where, at each stage, the newly calculated limits will have the same property as the
current limits. At each stage, we always obtain the new limits mhi and Mhi for h < i, and
we can use Remark 4.4 for h > i. In general, and at any stage of the process, we will refer to
these limits (without specifying the subindices) as limits m’s and limits M ’s.

In this process, because from Property 4.2, rhi = rhsrsi, 1 ≤ h < s < i ≤ r, and rhi =
rh′i′/(rh′hrii′), 1 ≤ h′ ≤ h < i ≤ i′ ≤ r, it is easy to see that the general expressions of the
new limits, mhi and Mhi, for rhi (1 ≤ h < i ≤ r) in terms of the current limits can be written
as:

mhi = max
i′,h′,s

{
mhsmsi , h < s < i ; mhh′ mh′i′ mi′i , 1 ≤ h′ ≤ h < i ≤ i′ ≤ r

}
,(4.4)

Mhi = min
i′,h′,s

{
MhsMsi , h < s < i ; Mhh′ Mh′i′ Mi′i , 1 ≤ h′ ≤ h < i ≤ i′ ≤ r

}
,(4.5)

where the terms on the right-hand side of the expressions correspond to the current limits of
the ratios and products (these will coincide with the initial limits mo’s and Mo’s in the first
stage of the process), and where we understand that mqq = Mqq = 1.

In particular, taking i = h+1 in (4.4) and (4.5) we will obtain the limits for the ratios
rh:

mh,h+1 = max
i′,h′

{
mhh′ mh′i′ mi′,h+1 , 1 ≤ h′ ≤ h < i′ ≤ r

}
,(4.6)

Mh,h+1 = min
i′,h′

{
Mhh′ Mh′i′ Mi′,h+1 , 1 ≤ h′ ≤ h < i′ ≤ r

}
.(4.7)

If all the intervals (mhi , Mhi) are not empty (mhi ≤Mhi) (this we will see in Section 5),
and because the new intervals (mhi , Mhi) are contained in the corresponding current inter-
vals, the process will converge and we will be able to obtain final limits for the ratios and
products, and we will continue to represent these by mhi and Mhi.

Example 4.3 revisited. For the 3×3 table of Example 4.3, given the second stage
limits, the new limits obtained at the third stage are the same limits as at the second stage.
Therefore, the final limits are

0.298 ≤ r13 ≤ 0.300 , 0.714 ≤ r1 ≤ 0.720 and 0.417 ≤ r2 ≤ 0.420 .

Once the final limits have been obtained, we can answer the question posed previously more
precisely. Given an r×c table X, in order for there to be a U table associated with it, there
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must be a set of ratios rh that fulfils (4.2) and whose products rhi fulfil (4.3), but taking
(in these expressions) the final limits mhi and Mhi instead of the initial ones. In greater
detail, and taking rh successively, there must be: first, a value r1 such that m12 ≤ r1 ≤ M12;
second, a value r2 such that m23 ≤ r2 ≤ M23 and with the product r1r2 = r13 such that
m13 ≤ r1r2 ≤ M13, i.e. a value r2 such that

max
{
m23, m13/r1

}
≤ r2 ≤ min

{
M23, M13/r1

}
,

and so on. Moreover, the associated U table {uij} would be of the form: u1j = x1j + ε1j

(0 ≤ ε1j ≤ 1) and uij = u1jr1i, 1 < i ≤ r, 1 ≤ j ≤ c.

We can express all this in general form by saying that, given an r×c table X, in order
for there to be a U table associated with X, it must be possible to take successively a set of
ratios rh, h = 1, 2, ..., r−1, such that

(4.8) max
1≤s≤h

{
ms,h+1/rsh

}
≤ rh ≤ min

1≤s≤h

{
Ms,h+1/rsh

}
(in which rsh = rsrs+1 ··· rh−1 and we understand that rhh = 1) and a set of ε1j (1 ≤ j ≤ c)
(for the first row of the U table) such that (4.1) is fulfilled.

Further on in this paper, we will see that an associated U table exists for the MPTs,
and only for these.

Example 4.3 revisited. Given the final limits we have calculated in this example, in
order to obtain a U table associated with the 3×3 table, we can take r1 = 0.716 (for example).
In this case, from (4.8) we have to take a value r2 such that 0.417 ≤ r2 ≤ 0.419: it may be
r2 = 0.418. With these ratios, and taking appropriate values for ε1j , for example, ε11 = 0.74,
ε12 = 0.02 and ε13 = 0.99 (we will see how to take these values in Section 5) we obtain the
associated U table

16 + 0.74 10 + 0.02 6 + 0.99
16.74 · 0.716 10.02 · 0.716 6.99 · 0.716

16.74 · 0.716 · 0.418 10.02 · 0.716 · 0.418 6.99 · 0.716 · 0.418
=

16.74 10.02 6.99
11.98 1.174 5.005
5.010 2.999 2.092

5. CHARACTERIZATION OF THE MPTs IN TERMS OF THE U TABLES

In order to characterize the MPTs in terms of the U tables we will use products of limits
M ’s, m’s, Mo’s and mo’s (which we will denote by ΠM , Πm, ΠMo and Πmo, respectively),
the subindices of which are chained in the sense that we are going to define.

Definition 5.1. We will say that ΠM is a product whose subindices are chained if it
can be written as Mi0i1Mi1i2 ···Mih−1ih . When ih = i0 we will say that the subindices of the
product are circularly chained. We will say the same for products Πm, ΠMo and Πmo.
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From this definition we see that the chained subindices of a product

Mi0i1 Mi1i2 ···Mih−1ih

form a sequence i0[ · ]i1[ · ]i2 ··· ih−1[ · ]ih (without specifying the columns), and if ih = i0 they
would form a loop. Let us give some examples. The subindices of the product M23M35M54 are
chained, and they form the sequence 2[ · ]3[ · ]5[ · ]4. The subindices of the product m13m34m42m21

are circularly chained, and they form the loop 1[ · ]3[ · ]4[ · ]2[ · ]1. Logically there will be some
products whose subindices are not chained, e.g. M12M34.

We will now provide a result about products of terms M ’s, which we will use in the
characterization of the MPTs in terms of the U tables.

Theorem 5.1. Given an MPT X = {xij}, for a product of terms M ’s (ΠM) whose

subindices are circularly chained, the following will always hold

(5.1) ΠM ≥ 1 .

Proof: As we have seen previously, the terms M ’s and m’s are obtained by a recursive
process from the M ’s and m’s of the previous step. Specifically, from (4.5), Mhi is either a
product MhsMsi or a product Mhh′Mh′i′Mi′i of terms of the previous step, whose subindices
(in both cases) are chained, and they form a sequence beginning in row h and ending in row i.
Now, by going back one step in the recursive process, the same can be applied to each of
these Mhs, Msi, Mhh′ , ... . In this way, by going back to the initial step in the process, we
will obtain that Mhi can always be written as a product of terms Mo’s whose subindices are
chained, and they form a sequence beginning in row h and ending in row i.

Thus, and in accordance with what has just been said, the product on the left-hand
side of (5.1), whose subindices are circularly chained, can always be expressed as a product
ΠMo whose subindices are circularly chained. Therefore, in order to demonstrate the theorem
we will have to prove that ΠMo ≥ 1 whenever the subindices of the product are circularly
chained, and they form a loop. Let the product be

ΠMo = Mo
i0i1M

o
i1i2 ···M

o
is−1i0

which, according to the definition of the terms Mo’s, can be written as

ΠMo =
s∏

h=1

xihjh
+ 1

xih−1jh

where j1, j2, ..., js are columns that correspond to the terms Mo’s of the product, and where
is = i0. Then, if j1 = j2 = ··· = js it is evident that ΠMo > 1. Otherwise, we can consider
the loop i0[j1]i1[j2]i2 ··· is−1[js]i0, which is determined by the subindices of the product, and
from the expression (3.9) of the Theorem 3.4 one will obtain ΠMo ≥ 1.

The following result characterizes the MPTs in terms of the U tables.

Theorem 5.2. An r×c table X = {xij} is an MPT if, and only if, a U table {uij}
exists associated with it.
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Proof: Let {uij} be a U table associated with X. From the Property 4.3,∏
j∈J

ubj

uaj
= 1

for every order k simple loop, 1 < k ≤ min (r, c) , and J , a and b defined as in the said
property. In addition, from (4.1) we will obtain

xaj ≤ uaj , xbj ≤ ubj and xbj + 1 ≥ ubj .

Hence, for every order k simple loop, 1 < k ≤ min (r, c),

1 =
∏
j∈J

ubj

uaj
≤

∏
j∈J

xbj + 1
xaj

and, therefore, X fulfils the condition of Theorem 3.1 and will be an MPT.

It remains to be demonstrated that if X is an MPT, there will always be a U table
associated with it. For this purpose, and in accordance with what was said previously in
Section 4, on the one hand we must demonstrate that there will always be a set of ratios rh,
1 ≤ h < r, which fulfil (4.8).

Firstly, in order to demonstrate that we can always take at least one value for each of
the ratios rh, 1 ≤ h < r, within the respective intervals (mh,h+1 , Mh,h+1), which would be
true if mhi ≤ Mhi for h < i, it will be sufficient to prove that any of the expressions which
appear on the right-hand side of (4.4) is less than or equal to any of those on the right-hand
side of (4.5), i.e.

Mhs′Ms′i/(mhsmsi) = Mhs′Ms′iMisMsh ≥ 1 ,

Mhh′Mh′i′Mi′i/(mhsmsi) = Mhh′Mh′i′Mi′iMisMsh ≥ 1 ,

MhsMsi/(mhh′mh′i′mi′i) = MhsMsiMii′Mi′h′Mh′h ≥ 1 ,

Mhh′Mh′i′Mi′i/(mhh′′mh′′i′′mi′′i) = Mhh′Mh′i′Mi′iMii′′Mi′′h′′Mh′′h ≥ 1 ,

for all s, h′ and i′ within the established limits in (4.4) and (4.5), and all s′, h′′ and i′′ with the
same limits of s, h′ and i′, respectively. But all these inequalities are true from Theorem 5.1,
because the subindices of each one of the products are circularly chained.

Secondly, we will demonstrate by induction that, given the final limits, there will al-
ways be at least one set of these ratios (taken successively, r1, r2, ..., rr−1) that fulfil (4.8).
We can always take one value for the first ratio r1 from inside (m12 , M12), and it is obvious
that this r1 fulfils (4.8).

Now we have to prove that if we take a subset of ratios r1, r2, ..., rh−1 (1 < h < r) such
that they fulfil (4.8), we can always take an rh which also fulfils (4.8). It is easy to see that
if r1, r2, ..., rh−1 fulfil (4.8), we will have

(5.2) mss′ ≤ rss′ ≤ Mss′ , 1 ≤ s < s′ ≤ h .

Now, for an rh that fulfils (4.8) to exist it will be enough to prove that

(5.3) ms,h+1/rsh ≤ Ms′,h+1/rs′h , ∀ s, s′, 1 ≤ s ≤ h, 1 ≤ s′ ≤ h .
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For s = s′ it is obvious that this inequality is fulfilled, because we have already proved that
mhi ≤ Mhi. For s < s′, and taking into account Remark 4.4, expression (5.3) is reduced to

ms,h+1mh+1,s′ ≤ rss′ , 1 ≤ s < s′ ≤ h ,

which is true, because from (4.4) and (5.2) we have

ms,h+1mh+1,s′ ≤ mss′ ≤ rss′ , 1 ≤ s < s′ ≤ h .

This is proved in a similar way for s > s′.

Finally, given a set of ratios r1, r2, ..., rr−1 that fulfil (4.8), we must demonstrate that
there will always be a U table {uij}, with u1j = x1j + ε1j (0 ≤ ε1j ≤ 1) and uij = u1j r1i,
1 < i ≤ r, 1 ≤ j ≤ c, which is associated with X. In other words, we have to prove that there
will always be values ε1j , 1 ≤ j ≤ c, such that (4.1) is fulfilled, i.e., such that

0 ≤ (x1j + ε1j) r1i − xij ≤ 1 , 1 ≤ i ≤ r ,

from which it follows that the ε1j , 1 ≤ j ≤ c, should satisfy

(5.4) max
1≤ i≤r

{
xij

r1i
− x1j

}
≤ ε1j ≤ min

1≤ i≤ r

{
xij + 1

r1i
− x1j

}
.

Let us see that for every j there is a value ε1j which satisfies (5.4). For this purpose, it is
enough to prove that for any j and any i and i′ the following holds:

xij/r1i ≤
(
xi′j + 1

)
/r1i′ .

For i = i′ it is trivial that this is true. For i < i′ it is also true, because r1i′/r1i = rii′ , and
because from (4.8) (taking s = i and h + 1 = i′) and from the definition of the limits M ’s and
the limits Mo’s we can obtain

rii′ ≤ Mii′ ≤ Mo
ii′ ≤

(
xi′j + 1

)
/xij , ∀ j .

This is proved in a similar way for i > i′.

The last part of the proof of the Theorem 5.2 shows us how we can easily obtain a
U table associated with an MPT. This is summarized in the next result.

Corollary 5.1. Given an MPT X = {xij} and a set of ratios rh, 1 ≤ h < r, fulfilling

(4.8), a table {uij} with

uij =

{
x1j + ε1j , i = 1, 1 ≤ j ≤ c ,

u1j r1i , 1 < i ≤ r, 1 ≤ j ≤ c ,

where r1i = r1r2 ··· ri−1 and ε1j satisfies (5.4) for all j, is a U table associated with X.
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6. ON THE UNIQUENESS OF A MAXIMUM PROBABILITY r×c TABLE

The following result, based on the previous results, is a necessary and sufficient condi-
tion which characterizes the uniqueness of an MPT.

Theorem 6.1. An MPT X = {xij} is unique if and only if

(6.1)
∏
j∈J

xbj + 1
xaj

> 1

for every order k simple loop E = {eij} and every k, 1 < k ≤ min (r, c), where J is the set

of the k columns of the loop, and for each j ∈ J , b and a are the rows such that ebj = 1 and

eaj = −1.

Proof: Let X be the unique MPT, which obviously will fulfil (3.1). If (3.8) is fulfilled
for a simple order k loop E, then, from Theorem 3.2, X ′ = X + E would be an MPT, which
would contradict the initial hypothesis and, thus, (6.1) is fulfilled. Reciprocally, let X be an
MPT fulfilling (6.1), and let us suppose that X ′ is also an MPT. Then, from Theorem 3.3,
the difference between both will be one or several simple loops, such that (3.8) will be fulfilled
for X and for each of these simple loops, which would contradict (6.1). Hence, X is the only
MPT.

7. CONCLUSIONS

The most efficient algorithm (network algorithm) to calculate the p-value of the Fisher’s
exact test in an r×c table requires us to calculate many times maximum probability r×c′

(c′ ≤ c) contingency tables, and to perform a great amount of comparisons in which the
probabilities of these tables are involved. At present, the general method to obtain maximum
probability fixed marginals contingency tables is based on a necessary condition for these
tables, which makes that method insufficiently efficient, especially for a relatively large r

or c. In this paper, we present two necessary and sufficient conditions for these maximum
probability tables. This characterization, especially that which is expressed based on U tables,
will allow us to construct a general algorithm for obtaining the aforementioned maximum
probability contingency tables.
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