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Abstract:

• The article presents predictive estimation of population mean of the study variable in
Ranked Set Sampling (RSS). It is shown that the predictive estimators in RSS using
mean per unit estimator, ratio estimator and regression estimator as predictor for
non-sampled values are equivalent to the corresponding classical estimators in RSS.
On the other hand, when product estimator is used as predictor, the resulting es-
timator differs from the classical product estimator under RSS. Expressions for the
Bias and the Mean Squared Error (MSE) of the proposed estimators are obtained
up to first order of approximation. A simulation study is conducted to observe the
performance of estimators under predictive approach.
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1. INTRODUCTION

It is very common to construct estimators for population parameters of

a study variable using the information contained only in a sample of the study

variable. However, in many situations, statisticians are interested in using some

auxiliary information from the population itself which helps in finding more ef-

ficient estimators. In literature, a lot of work has been done on how to use the

auxiliary information (see for example, Agrwal and Roy (1999), Upadhyaya and

Singh (1999), Singh (2003), Singh and Tailor (2003), Kadilar and Cingi (2004,

2006), Yan and Tian (2010), and Singh et al. (2014)). In many situations, we may

be interested in estimating the average value of the variable being measured for

non-sampled units on the basis of sample data at hand. This approach is called

predictive method of estimation. This approach is based on superpopulation

models, and hence it is also called model-based approach. The approach assumes

that the population under consideration is a realization of random variables fol-

lowing a superpopulation model. Under this model the prior information about

the population parameters such as the mean, the variance, and other parameters

is utilized to predict the non-sampled values of the study variable.

Basu (1971) constructed predictive estimators for population mean using

mean per unit estimator, regression estimator, and ratio estimator as predictors

for the mean of unobserved units in the population. Srivastava (1983) compared

the estimator obtained by using the product estimator as a predictor for mean

of unobserved units in the population with the customary product estimator.

Recently, Yadav and Mishra (2015) have established predictive estimators using

product estimator as predictor for the mean of unobserved units of the population.

Basic statistical principles play a vital role in making inference about the

population of interest. If these principles are violated, even optimal statistical

procedures will not allow us to make legitimate statistical inferences about the

parameters of interest. Ranked Set Sampling (RSS) technique is a good alter-

native for Simple Random Sampling (SRS) for obtaining experimental data that

are truly representative of the population under investigation. This is true across

all of the sciences including agricultural, biological, environmental, engineering,

physical, medical, and social sciences. This is because in RSS measurements

are likely more regularly spaced than measurements in SRS. The RSS proce-

dure creates stratification of the entire population at the sampling stage, i.e. we

are randomly selecting samples from the subpopulations of small, medium and

large units without constructing the subpopulation strata in advance. Ranked

set sampling method, proposed originally by McIntyre (1952) to estimate mean

pasture yields, has recently been modified by many authors to estimate the pop-

ulation parameters. Dell and Clutter (1972) showed that the mean estimator

is an unbiased estimator of the population mean under RSS for both perfect as
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well as imperfect ranking. Muttlak (1997) suggested median ranked set sampling

(MRSS) for estimation of finite population mean. Al-Saleh and Al-Omari (2002)

used multistage ranked set sampling (MSRSS) to increase the efficiency of the

estimator of the population mean for certain value of the sample size. Jemain

and Al-Omari (2006) suggested double quartile ranked set sampling (DQRSS) for

estimating the population mean. Many other authors have worked on estimation

of parameters in RSS (see Al-Omari and Jaber (2008), Bouza (2002), Al-Nasser

(2007), Ohyama et al. (1999), and Samawi and Muttlak (1996) among others).

In this study, we propose a predictive estimator, using ratio, product and

regression estimators as predictors for non-sampled observations under ranked set

sampling scheme. In Section 2, we review the predictive estimators introduced by

Basu (1971). Section 3 consists of the proposed estimators and their properties.

An efficiency comparison is carried out through simulations in Section 4. Some

concluding remarks are given in Section 5.

2. PREDICTIVE ESTIMATORS IN SIMPLE RANDOM

SAMPLING

Let U = {U1, U2, ..., UN} be a population of size N . Let (yi, xi) be the values

of the study variable y and the auxiliary variable x on the i-th (0 ≤ i ≤ N) unit

of U .

Let S be the set of all possible samples from U using simple random sam-

pling with replacement (SRSWR). For any given s ∈ S, let ϑ(s) be the number

of distinct units in s and let s̄ denote the set of all those units of U which are not

in s. Basu (1971) presented population mean as follows:

Ȳ =
ϑ(s)

N
Ȳs +

N − ϑ(s)

N
Ȳs̄,(2.1)

where Ȳs = 1
ϑ(s)

∑

i∈s yi and Ȳs̄ = 1
N−ϑ(s)

∑

i∈s̄ yi. Under simple random sampling

with size ϑ(s) = n, the predictor for overall population mean is given by

Ȳ =
n

N
Ȳs +

N − n

N
Ȳs̄,(2.2)

where Ȳs = 1
n

∑

i∈s yi and Ȳs̄ = 1
N−n

∑

i∈s̄ yi. An appropriate estimator of the

population mean is then given by

t =
n

N
ȳs +

N − n

N
T,(2.3)

where T is the predictor of Ȳs̄. Basu (1971) used the mean per unit estimator

ȳ = 1
n

∑

i∈s yi, ratio estimator ȳr = ȳs

x̄s
X̄s̄, product estimator ȳp = ȳs

X̄s̄
x̄s and re-

gression estimator ȳlr = ȳs +β(X̄s̄− x̄s) as predictors. Here, X̄s̄ = 1
N−n

∑

i∈s̄ xi =
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NX̄−nx̄s

N−n
and β = Syx

/

S2
x
, where β is regression coefficient of Y on X, and X̄ is

the population mean of the auxiliary variable based on N units both are as-

sumed to be known in advance. Also, let S2
x = 1

N−1

∑N
i=1(xi − X̄)2 and Syx =

1
N−1

∑N
i=1(yi − Ȳ )(xi − X̄).

It has been shown by Basu (1971) that while using simple mean per unit

estimator, ratio estimator and regression estimator as T , the predictive estimator

t becomes the corresponding classical simple mean estimator ȳ, ratio estimator

ȳr and regression estimator ȳlrrespectively. However, when product estimator is

used, then t becomes

tp = ȳs
nX̄ + (N − 2n)x̄s

NX̄ − nx̄s

.(2.4)

It can be easily noticed that tp is quite different from the usual product

estimator.

The Bias and Mean Squared Error (MSE) of t with ratio and product

estimators as predictor are given below up to 1st order of approximation:

(2.5) Bias(tr) ∼= Ȳ
1

n

(

C2
x − ρCyCx

)

,

Bias(tp) ∼= Ȳ
1

n

(

θC2
x + ρCyCx

)

(2.6)

and

(2.7) MSE(tr) ∼= Ȳ 2 1

n

(

C2
y + C2

x − 2ρCyCx

)

,

(2.8) MSE(tp) ∼= Ȳ 2 1

n

(

C2
y + C2

x + 2ρCyCx

)

,

where Cy =
Sy

Ȳ
, Cx = Sx

X̄
, ρ =

Syx

SySy
, S2

y = 1
N−1

∑N
i=1(yi − Ȳ )2 and θ = n

N−n
. Also

the bias and MSE of tp are given by

(2.9) Bias(ȳp) ∼= Ȳ
1

n

(

ρCyCx

)

and

(2.10) MSE(ȳp) ∼= Ȳ 2 1

n

(

C2
y + C2

x + 2ρCyCx

)

.

From Equations (2.8) and (2.10), it is clear that ȳp and tp have same MSE

when first order of approximation is used although they are different estimators.

The variance of tlr is given by

(2.11) V ar(tlr) =
1

n
S2

y

(

1 − ρ2
)

.
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3. PREDICTIVE ESTIMATOR IN RANKED SET SAMPLING

To obtain a Ranked Set Sample from a superpopulation consisting of N units,

an initial sample of m units is selected and ranked according to the attribute of

interest. A variety of mechanisms are used for ranking purpose, i.e. visual inspec-

tion of units, expert opinion, or through the use of some concomitant variables.

If ranking is performed on the auxiliary variable X, the unit that is judged to

be the smallest ranked unit from the selected sample is called the first judgment

order statistic and is denoted by Y [1]. On the other hand, when ranking is per-

formed on the study variable Y itself, the smallest ranked unit (called smallest

order statistic) is selected from the sample and denoted by Y (1). Then a second

sample of size m (independent of the first sample) is selected from the population

and is ranked in the same manner as the first. From the second sample, we select

the unit ranked as the second smallest in the sample (i.e. the second judgment

order statistic) and is denoted by Y [2] or Y (2) according to the above mentioned

definitions. This process continues till inclusion of the largest ranked unit from

the m-th sample selected for judgment. This entire process results into m obser-

vations and is called a cycle. We complete r cycles to obtain a ranked set sample

of size n = rm units.

Let Ω be the all possible samples of size n = rm can be taken from a

superpopulation U using a ranked set sampling scheme. Suppose that ω be a

single set Ω having size n = rm. Let ω̄ denote the set of all those units of U

which are not in ω. Let yi[i] and xi(i) be the values of the study variable Y

and the auxiliary variable X for i-th unit taken from the i-th judgment ranked

sample for actual quantification, where i = 1, 2, ..., m. It is assumed that ranking

is performed with respect to the auxiliary variable X.

For a ranked set sample of size n = rm (for simplicity, we use r = 1), we

obtain the following estimators

trss[j] =
m

N
ȳrss +

N − m

N
T[j], (j = 1, 2, 3, 4),(3.1)

where ȳrss = 1
m

∑

i∈ω yi[i] and T[j] is the predictor for mean of non-sampled ob-

servations (Ȳω̄) which is defined by T[1] = ȳrss, T[2] = ȳrss(r), T[3] = ȳrss(lr) and

T[4] = ȳrss(p), where ȳrss[r] = ȳrss
X̟̄

x̄rss
, ȳrss[lr] = ȳrss + β

(

X̟̄ − x̄rss

)

and ȳrss[p] =

ȳrss
x̄rss

X̟̄
. Here, X̟̄ = 1

N−m

∑

i∈̟ xi(i) = NX̄−mx̄rss

N−m
, and x̄rss = 1

m

∑

i∈ω xi(i).

Inserting T[j] for (j = 1, 2, 3, 4) in Equation (3.1), we have

(3.2) trss[1] = ȳrss,

(3.3) trss[2] = ȳrss
X̄

x̄rss
,
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(3.4) trss[3] = ȳrss + β(x̄rss − X̄),

and

(3.5) trss[4] = ȳrss
mX̄ − (N − 2m)x̄rss

NX̄ − mx̄rss

.

Equations (3.2), (3.3) and (3.4) show that trss[1], trss[2] and trss[3] are equivalent

to ȳrss, ȳrss[r] and ȳrss[lr] respectively. On the other hand trss[4] differs from ȳrss[p]

(usual product estimator under RSS).

To obtain the Bias and the MSE of proposed predictive estimators, we

consider the following error terms

∈0=
ȳrss

Ȳ
− 1 and ∈1=

x̄rss

X̄
− 1

such that E(∈0) = E(∈1) = 0 and

E(∈2
0) = Ȳ −2

(

S2
y

m
−

1

m2

m
∑

i=1

δ2
y[i]

)

,

E(∈2
1) = X̄−2

(

S2
x

m
−

1

m2

m
∑

i=1

δ2
x(i)

)

and

E(∈0∈1) = Ȳ −1X̄−1

(

Syx

m
−

1

m2

m
∑

i=1

δy[i]δx(i)

)

,

where δy[i] = Ȳ[i] − Ȳ and δx(i) = X̄(i) − X̄ for i = 1, 2, ..., m. Here, Ȳ[i] and X̄(i)

are population means of the study variable and the auxiliary variable respectively

for i-th order statistic. It is easy to show that trss[1] is an unbiased estimator of

the population mean Ȳ with

V ar(trss[1]) =
S2

y

m
−

1

m2

m
∑

i=1

δ2
y[i].(3.6)

It is clear that V ar(trss[1]) ≤
S2

y

m
. This indicates that trss[1] is more efficient than

ȳs(sample mean under SRSWR). Similarly, the bias and the MSE of trss[2], up

to first order of approximation, are given by

Bias(ȳrss[2]) ∼=
Ȳ

m

[

(

C2
x − ρCyCx

)

−
1

m

(

m
∑

i=1

W 2
x(i) −

m
∑

i=1

Wy[i]Wx(i)

)]

(3.7)

and

MSE(trss[2]) ∼=
1

m

(

S2
y + R2S2

x − 2RρSySx

)

−
1

m2

m
∑

i=1

κ2
[i],(3.8)



558 S. Ahmed, J. Shabbir and Sat Gupta

where κ[i] = Wy[i] − RWx(i), Wy[i] =
δy[i]

Ȳ
, Wx(i) =

δx(i)

X̄
and R = Ȳ

X̄
. From Equa-

tions (2.7) and (3.8), it is obvious that MSE(trss[2]) ≤ MSE(tr), i.e. trss[2] is

more efficient than the predictive type ratio estimator under SRSWR. Further,

we can show that trss[3] is an unbiased estimator of Ȳ with variance

V ar(trss[3]) =
S2

y

m

(

1 − ρ2
)

−
1

m2

m
∑

i=1

A2
[i],(3.9)

where A[i] = W
y[i] −βWx(i), ∀ i = 1, 2..., m. Equation (3.9) shows the superiority

of the predictive type regression estimator as compared to its counterpart in

SRSWR.

Finally, to compute the Bias and the MSE of trss[4], note that

trss[4] = Ȳ (1+ ∈0)
mX̄ + (N − 2m)X̄(1+ ∈1)

NX̄ − mX̄(1+ ∈1)
,

= Ȳ (1+ ∈0)

(

1 +
(N − 2m) ∈1

N − m

)(

1 +
m ∈1

N − m

)

−1

.

Assuming
∣

∣

∣

m
N−m

∣

∣

∣
< 1, and expanding up to first order of approximation using

binomial expansion, we have

(3.10) trss[4] − Ȳ ∼= Ȳ
(

∈0 + ∈1 + ∈0∈1 +φ ∈2
1

)

where φ = m
N−m

. Taking expectation of Equation (3.10), we get

Bias(trss[i]) ∼=
Ȳ

m

[

Cyx + φC2
x −

1

m

m
∑

i=1

(

δyx[i] + φδ2
x(i)

)

]

.(3.11)

MSE of trss[4] can be obtained by squaring and taking expectation in Equation

(3.10). This gives

MSE(trss[4]) ∼=
1

m

(

S2
y + R2S2

x + 2RρSySx

)

−
1

m2

m
∑

i=1

B2
[i],(3.12)

where B[i] = W
y[i] + RW

x(i) for i = 1, 2, ..., m.

From Equations (2.6), (2.8), (3.11) and (3.12) it can be noticed that the

expression for bias of trss[4] is different from that of usual product estimator

although they have the same MSE for first order of approximation.
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4. SIMULATION STUDY

To compare the efficiencies of the proposed estimators, we conduct a sim-

ulation study as follows:

1. Generate a hypothetical population on two variables X and Y , where

X is generated using three different distributions with some specific

values of parameters as described in first row of Table 1.

2. Then Y is generated as Y = ρ × X + e, where e is generated using a

standard normal distribution and ρ is the correlation coefficient between

X and Y which is fixed at 0.5, 0.7 and 0.9.

3. Take an RSS and a SRSWR, each having size n = rm, and compute the

proposed estimators and corresponding estimators in SRSWR, where

r = 5, 10 and m = 2, 4, 6.

4. Repeat Step 2, 10,000 times. Then compute the mean squared error of

each estimator to obtain relative efficiency of the proposed estimators.

Table 1 provides relative efficiency of proposed predictive estimators in RSS

with respect to simple mean estimator in SRS, i.e.

RE[j] =
V ar(ȳs)

MSE(trss[j])
for j = 1, 2, 3, 4.

Table 1 shows that the relative efficiencies of the RSS increases with the increase

of the correlation between the auxiliary variable and the study variable. RE also

increases with the increase of the set size m. Predictive estimator using ratio

estimator and regression estimator as predictors are almost equally efficient for

all the case that considered in this study. However, the product estimator gives

worse performance as the correlation between the study variable and the auxiliary

variable increases. But this because product estimator is not preferable for pre-

diction in ranked set sampling, when ranking is performed based on an auxiliary

variable that has positive correlation with the variable of interest. Efficiencies

of the proposed estimators are significantly higher when uniform distribution is

used to generate data in the interval [0, 10]. Efficiency is at its peak for uniform

distribution with high positive correlation between the study variable and the

auxiliary variable.
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Table 1: Efficiency Comparison.

Normal(5,1) Exponential(1) Uniform(0,10)
r m

RE(1) RE(2) RE(3) RE(4) RE(1) RE(2) RE(3) RE(4) RE(1) RE(2) RE(3) RE(4)

2 1.1035 1.315 1.3171 0.7292 1.0758 1.0675 1.297 0.6952 1.3359 3.366 3.5067 0.4542
5 4 1.1208 1.2557 1.2581 0.8375 1.1616 1.1833 1.3128 0.8434 1.7646 3.5969 3.6251 0.6835

ρ = 0.5
6 1.223 1.3371 1.3383 0.97 1.1961 1.1827 1.3148 0.9336 2.0576 3.5757 3.5902 0.8916

2 1.0587 1.2869 1.2897 0.691 1.0842 1.0733 1.3092 0.6919 1.3304 3.485 3.6089 0.4504
10 4 1.1147 1.2583 1.2598 0.8299 1.1925 1.1805 1.3412 0.8673 1.7856 3.5659 3.6008 0.7013

6 1.1966 1.3087 1.3097 0.9537 1.1762 1.2036 1.289 0.918 2.048 3.5403 3.5553 0.8895

2 1.2067 1.9023 1.9053 0.5654 1.1752 1.5186 1.8926 0.5362 1.4461 8.1124 8.4514 0.4061
5 4 1.3263 1.8048 1.8084 0.7308 1.3749 1.6819 1.9129 0.7272 2.1256 8.6801 8.7483 0.6425

ρ = 0.7
6 1.5132 1.9278 1.9295 0.9165 1.4852 1.6825 1.9196 0.8758 2.699 8.5921 8.6269 0.8745

2 1.1361 1.8449 1.849 0.5286 1.1812 1.5155 1.9115 0.5315 1.4348 8.3593 8.6565 0.4023
10 4 1.3311 1.8299 1.8321 0.7327 1.4121 1.6694 1.9515 0.7478 2.1744 8.6288 8.7132 0.6629

6 1.4946 1.8999 1.9013 0.914 1.4611 1.7073 1.8795 0.8616 2.6987 8.5361 8.5724 0.8752

2 1.3744 4.9954 5.0033 0.4283 1.3408 4.0352* 5.0519* 0.4086 1.5073 33.3303** 34.723** 0.3841
5 4 1.7944 4.7412 4.7506 0.6223 1.8154 4.4429* 5.0647* 0.6081 2.3887 35.7477** 36.0284** 0.6244

ρ = 0.9
6 2.2503 5.0197* 5.0242* 0.8455 2.1969 4.4629* 5.0952* 0.804 3.2381 35.1926** 35.335** 0.8656

2 1.2823 4.8347* 4.8455* 0.4006 1.3338 3.9467* 5.0819* 0.4022 1.4964 34.1889** 35.4045** 0.3803
10 4 1.8255 4.8757* 4.8816* 0.6354 1.8519 4.3654* 5.1294* 0.6201 2.4573 35.5361** 35.8836** 0.6447

6 2.2714 5.0086* 5.0122* 0.8629 2.1789 4.5009* 5.0205* 0.7967 3.2513 35.1079** 35.257** 0.8692

* Stands for higher relative efficiency;
** Stands for highest relative efficiency.
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5. CONCLUSION

Assuming a superpopulation model, we developed some predictive type

estimators in ranked set sampling as RSS is more efficient method of sample se-

lection for actual measurements. Properties (bias and efficiency) are examined

up to first order of approximation. It is observed that the predictive estima-

tors are equivalent to the corresponding classical estimators in RSS when simple

mean estimator, ratio estimator and regression estimator are used as predictors

for non-sampled values. On the other hand, predictive estimator has different

form as compared to the corresponding classical product estimator when product

estimator is used as predictor.

This study can be extended by using exponential type estimators and some

other efficient estimators as predictor
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