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small samples and also we examine the asymptotic distributions of them. The Monte
Carlo simulation study indicates that the new estimators are more efficient than the
conventional estimators, especially in small samples.
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1. INTRODUCTION

The econometrics literature reveals a type of data called“panel data”, which

refers to the pooling of observations on a cross-section of households, countries,

and firms over several time periods. Pooling this data achieves a deep analysis

of the data and gives a richer source of variation which allows for more efficient

estimation of the parameters. With additional, more informative data, one can

get more reliable estimates and test more sophisticated behavioral models with

less restrictive assumptions. Also, panel data sets are more effective in identifying

and estimating effects that are simply not detectable in pure cross-sectional or

pure time series data. In particular, panel data sets are more effective in studying

complex issues of dynamic behavior. Some of the benefits and limitations of using

panel data sets are listed in Baltagi (2013) and Hsiao (2014).

The pooled least squares (classical pooling) estimator for pooled cross-

sectional and time series data (panel data) models is the best linear unbiased

estimator (BLUE) under the classical assumptions as in the general linear re-

gression model.1 An important assumption for panel data models is that the

individuals in our database are drawn from a population with a common regres-

sion coefficient vector. In other words, the coefficients of a panel data model must

be fixed. In fact, this assumption is not satisfied in most economic models, see,

e.g., Livingston et al. (2010) and Alcacer et al. (2013). In this article, the panel

data models are studied when this assumption is relaxed. In this case, the model

is called “random-coefficients panel data (RCPD) model”. The RCPD model has

been examined by Swamy in several publications (Swamy 1970, 1973, and 1974),

Rao (1982), Dielman (1992a, b), Beck and Katz (2007), Youssef and Abonazel

(2009), and Mousa et al. (2011). Some statistical and econometric publications

refer to this model as Swamy’s model or as the random coefficient regression

(RCR) model, see, e.g., Poi (2003), Abonazel (2009), and Elhorst (2014, ch.3).

In RCR model, Swamy assumes that the individuals in our panel data are drawn

from a population with a common regression parameter, which is a fixed compo-

nent, and a random component, that will allow the coefficients to differ from unit

to unit. This model has been developed by many researchers, see, e.g., Beran

and Millar (1994), Chelliah (1998), Anh and Chelliah (1999), Murtazashvili and

Wooldridge (2008), Cheng et al. (2013), Fu and Fu (2015), Elster and Wübbeler

(2017), and Horváth and Trapani (2016).

The random-coefficients models have been applied in different fields and

they constitute a unifying setup for many statistical problems. Moreover, several

applications of Swamy’s model have appeared in the literature of finance and

1Dielman (1983, 1989) discussed these assumptions. In the next section in this article, we
will discuss different types of classical pooling estimators under different assumptions.
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economics.2 Boot and Frankfurter (1972) used the RCR model to examine the

optimal mix of short and long-term debt for firms. Feige and Swamy (1974) ap-

plied this model to estimate demand equations for liquid assets, while Boness and

Frankfurter (1977) used it to examine the concept of risk-classes in finance. Re-

cently, Westerlund and Narayan (2015) used the random-coefficients approach to

predictăthe stock returns at the New York Stock Exchange. Swamy et al. (2015)

applied a random-coefficient framework to deal with two problems frequently en-

countered in applied work; these problems are correcting for misspecifications in

a small area level model and resolving Simpson’s paradox.

Dziechciarz (1989) and Hsiao and Pesaran (2008) classified the random-

coefficients models into two categories (stationary and non-stationary models),

depending on the type of assumption about the coefficient variation. Stationary

random-coefficients models regard the coefficients as having constant means and

variance-covariances, like Swamy’s (1970) model. On the other hand, the coeffi-

cients in non-stationary random-coefficients models do not have a constant mean

and/or variance and can vary systematically; these models are relevant mainly

for modeling the systematic structural variation in time, like the Cooley–Prescott

(1973) model.3

The main objective of this article is to provide the researchers with general

and more efficient estimators for the stationary RCPD models. To achieve this

objective, we propose and examine alternative estimators of these models under

an assumption that the errors are cross-sectional heteroskedastic and contempo-

raneously correlated as well as with the first-order autocorrelation of the time

series errors.

The rest of the article is organized as follows. Section 2 presents the clas-

sical pooling (CP) estimators of fixed-coefficients models. Section 3 provides

generalized least squares (GLS) estimators of the different random-coefficients

models. In section 4, we examine the efficiency of these estimators, theoretically.

In section 5, we discuss alternative estimators for these models. The Monte

Carlo comparisons between various estimators have been carried out in section 6.

Finally, section 7 offers the concluding remarks.

2The RCR model has been applied also in different sciences fields, see, e.g., Bodhlyera et al.

(2014).
3Cooley and Prescott (1973) suggested a model where coefficients vary from one time period

to another on the basis of a non-stationary process. Similar models have been considered by
Sant (1977) and Rausser et al. (1982).
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2. FIXED-COEFFICIENTS MODELS

Suppose the variable y for the ith cross-sectional unit at time period t

is specified as a linear function of K strictly exogenous variables, xkit, in the

following form:

(2.1) yit =
K∑

k=1

αkixkit + uit = xitαi + uit , i = 1, 2, ..., N ; t = 1, 2, ..., T ,

where uit denotes the random error term, xit is a 1 ×K vector of exogenous

variables, and αi is the K × 1 vector of coefficients. Stacking equation (2.1) over

time, we obtain:

(2.2) yi = Xiαi + ui ,

where yi = (yi1, ..., yiT )′, Xi = (x′i1, ..., x′iT )′, αi = (αi1, ..., αiK)′, and

ui = (ui1, ..., uiT )′.

When the performance of one individual from the database is of interest,

separate equation regressions can be estimated for each individual unit using the

ordinary least squares (OLS) method. The OLS estimator of αi, is given by:

(2.3) α̂i =
(
X ′

iXi

)
−1
X ′

iyi .

Under the following assumptions, α̂i is a BLUE of αi:

Assumption 1: The errors have zero mean, i.e., E(ui) = 0; ∀ i= 1, 2, ..., N.

Assumption 2: The errors have the same variance for each individual:

E
(
uiu

′

j

)
=

{
σ2

uIT if i = j
0 if i 6= j

i, j = 1, 2, ..., N .

Assumption 3: The exogenous variables are non-stochastic, i.e., fixed in

repeated samples, and hence, not correlated with the errors. Also, rank (Xi) =

K < T ; ∀ i = 1, 2, ..., N .

These conditions are sufficient but not necessary for the optimality of the

OLS estimator.4 When OLS is not optimal, estimation can still proceed equation

by equation in many cases. For example, if variance of ui is not constant, the

errors are either heteroskedastic and/or serially correlated, and the GLS method

will provide relatively more efficient estimates than OLS, even if GLS was applied

to each equation separately as in OLS.

4For more information about the optimality of the OLS estimators, see, e.g., Rao and Mitra
(1971, ch. 8) and Srivastava and Giles (1987, pp. 17–21).
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Another case, If the covariances between ui and uj (i, j = 1, 2, ..., N) do not

equal to zero as in assumption (2) above, then contemporaneous correlation is

present, and we have what Zellner (1962) termed as seemingly unrelated regres-

sion (SUR) equations, where the equations are related through cross-equation

correlation of errors. If the Xi (i = 1, 2, ..., N) matrices do not span the same

column space and contemporaneous correlation exists, a relatively more efficient

estimator of αi than equation by equation OLS is the GLS estimator applied to

the entire equation system, as shown in Zellner (1962).

With either separate equation estimation or the SUR methodology, we ob-

tain parameter estimates for each individual unit in the database. Now suppose it

is necessary to summarize individual relationships and to draw inferences about

certain population parameters. Alternatively, the process may be viewed as build-

ing a single model to describe the entire group of individuals rather than building

a separate model for each. Again, assume that assumptions 1–3 are satisfied and

add the following assumption:

Assumption 4: The individuals in the database are drawn from a popula-

tion with a common regression parameter vector ᾱ, i.e., α1 = α2 = ··· = αN = ᾱ.

Under this assumption, the observations for each individual can be pooled,

and a single regression performed to obtain an efficient estimator of ᾱ. Now, the

equation system is written as:

(2.4) Y = Xᾱ+ u ,

where Y = (y′1, ..., y
′

N )′, X = (X ′

1, ..., X
′

N )′, u = (u′1, ..., u
′

N )′, and ᾱ =

(ᾱ1, ..., ᾱK)′ is a vector of fixed coefficients which to be estimated. We will

differentiate between two cases to estimate ᾱ in (2.4) based on the variance-

covariance structure of u. In the first case, the errors have the same variance for

each individual as given in assumption 2. In this case, the efficient and unbiased

estimator of ᾱ under assumptions 1–4 is:

̂̄αCP−OLS =
(
X ′X

)
−1
X ′Y.

This estimator has been termed the classical pooling-ordinary least squares

(CP-OLS) estimator. In the second case, which the errors have different variances

along individuals and are contemporaneously correlated as in the SUR framework:

Assumption 5: E
(
uiu

′

j

)
=

{
σiiIT if i = j
σijIT if i 6= j

i, j = 1, 2, ..., N .
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Under assumptions 1, 3, 4 and 5, the efficient and unbiased CP estimator

of ᾱ is:

̂̄αCP−SUR =
[
X ′(Σsur ⊗ IT )−1X

]
−1 [

X ′(Σsur ⊗ IT )−1Y
]
,

where

Σsur =




σ11 σ12 ··· σ1N

σ21 σ22 ··· σ2N

...
...

. . .
...

σN1 σN2 ··· σNN


 .

To make this estimator (̂̄αCP−SUR) a feasible, the σij can be replaced with

the following unbiased and consistent estimator:

(2.5) σ̂ij =
û′iûj

T −K
; ∀ i, j = 1, 2, ..., N,

where ûi = yi −Xiα̂i is the residuals vector obtained from applying OLS to equa-

tion number i.5

3. RANDOM-COEFFICIENTS MODELS

This section reviews the standard random-coefficients model proposed by

Swamy (1970), and presents the random-coefficients model in the general case,

where the errors are allowed to be cross-sectional heteroskedastic and contem-

poraneously correlated as well as with the first-order autocorrelation of the time

series errors.

3.1. RCR model

Suppose that each regression coefficient in (2.2) is now viewed as a random

variable; that is the coefficients, αi, are viewed as invariant over time, but varying

from one unit to another:

Assumption 6 (for the stationary random-coefficients approach): The

coefficient vector αi is specified as:6 αi = ᾱ+ µi, where ᾱ is a K × 1 vector of

5The σ̂ij in (2.5) are unbiased estimators because, as assumed, the number of exogenous
variables of each equation is equal, i.e., Ki = K for i = 1, 2, ..., N . However, in the gen-
eral case, Ki 6= Kj , the unbiased estimator is û′

iûj/ [T − Ki − Kj + tr (Pxx)] , where Pxx =

Xi(X
′

iXi)
−1

X ′

iXj

�
X ′

jXj

�
−1

X ′

j . See Srivastava and Giles (1987, pp. 13–17) and Baltagi (2011,
pp. 243–244).

6This means that the individuals in our database are drown from a population with a common
regression parameter ᾱ, which is a fixed component, and a random component µi, allowed to
differ from unit to unit.
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constants, and µi is a K × 1 vector of stationary random variables with zero

means and constant variance-covariances:

E (µi) = 0 and E
(
µiµ

′

j

)
=

{
Ψ if i = j
0 if i 6= j

i, j = 1, 2, ..., N,

where Ψ = diag
{
ψ2

k

}
; for k= 1, 2, ...,K, whereK<N . Furthermore, E (µixjt)= 0

and E (µiujt) = 0 ∀ i and j.

Also, Swamy (1970) assumed that the errors have different variances along

individuals:

Assumption 7: E
(
uiu

′

j

)
=

{
σiiIT if i = j

0 if i 6= j
i, j = 1, 2, ..., N .

Under the assumption 6, the model in equation (2.2) can be rewritten as:

(3.1) Y = Xᾱ+ e; e = Dµ+ u,

where Y,X, u, and ᾱ are defined in (2.4), while µ = (µ′1, ..., µ
′

N )′, and D =

diag {Xi}; for i = 1, 2, ..., N .

The model in (3.1), under assumptions 1, 3, 6 and 7, called the ‘RCR

model’, which was examined by Swamy (1970, 1971, 1973, and 1974), Youssef

and Abonazel (2009), and Mousa et al. (2011). We will refer to assumptions 1,

3, 6 and 7 as RCR assumptions. Under these assumptions, the BLUE of ᾱ in

equation (3.1) is:
̂̄αRCR =

(
X ′Ω−1X

)
−1
X ′Ω−1Y,

where Ω is the variance-covariance matrix of e:

Ω = (Σrcr ⊗ IT ) +D (IN ⊗ Ψ)D′,

where Σrcr = diag {σii}; for i = 1, 2, ..., N . Swamy (1970) showed that the ̂̄αRCR

estimator can be rewritten as:

̂̄αRCR =

[
N∑

i=1

X ′

i

(
XiΨX

′

i + σiiIT
)
−1
Xi

]−1 N∑

i=1

X ′

i

(
XiΨX

′

i + σiiIT
)
−1
yi.

The variance-covariance matrix of ̂̄αRCR under RCR assumptions is:

var
(̂̄αRCR

)
=
(
X ′Ω−1X

)
−1

=

{
N∑

i=1

[
Ψ + σii

(
X ′

iXi

)
−1
]
−1
}−1

.

To make the ̂̄αRCR estimator feasible, Swamy (1971) suggested using the

estimator in (2.5) as an unbiased and consistent estimator of σii, and the following

unbiased estimator for Ψ:

(3.2) Ψ̂ =

[
1

N − 1

(
N∑

i=1

α̂i α̂
′

i −
1

N

N∑

i=1

α̂i

N∑

i=1

α̂′

i

)]
−

[
1

N

N∑

i=1

σ̂ii

(
X ′

iXi

)
−1

]
.
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Swamy (1973, 1974) showed that the estimator ̂̄αRCR is consistent as both

N,T → ∞ and is asymptotically efficient as T → ∞.7

It is worth noting that, just as in the error-components model, the estimator

(3.2) is not necessarily non-negative definite. Mousa et al. (2011) explained that

it is possible to obtain negative estimates of Swamy’s estimator in (3.2) in case

of small samples and if some/all coefficients are fixed. But in medium and large

samples, the negative variance estimates does not appear even if all coefficients

are fixed. To solve this problem, Swamy has suggested replacing (3.2) by:8

Ψ̂+ =
1

N − 1

(
N∑

i=1

α̂i α̂
′

i −
1

N

N∑

i=1

α̂i

N∑

i=1

α̂′

i

)
.

This estimator, although biased, is non-negative definite and consistent

when T → ∞. See Judge et al. (1985, p. 542).

3.2. Generalized RCR model

To generalize RCR model so that it would be more suitable for most eco-

nomic models, we assume that the errors are cross-sectional heteroskedastic and

contemporaneously correlated, as in assumption 5, as well as with the first-order

autocorrelation of the time series errors. Therefore, we add the following assump-

tion to assumption 5:

Assumption 8: uit = ρiui,t−1 + εit; |ρi| < 1, where ρi (i = 1, 2, ..., N)

are fixed first-order autocorrelation coefficients. Assume that: E (εit) = 0,

E (ui,t−1εjt) = 0; ∀ i and j, and

E
(
εiε

′

j

)
=

{
σεii

IT if i = j
σεij

IT if i 6= j
i, j = 1, 2, ..., N.

This means that the initial time period of the errors have the same prop-

erties as in subsequent periods, i.e., E
(
u2

i0

)
= σεii

/
(
1 − ρ2

i

)
and E (ui0uj0) =

σεij
/ (1 − ρiρj) ∀ i and j.

We will refer to assumptions 1, 3, 5, 6, and 8 as the general RCR assump-

tions. Under these assumptions, the BLUE of ᾱ is:

̂̄αGRCR =
(
X ′Ω∗−1X

)
−1
X ′Ω∗−1Y,

7The statistical properties of b̄αRCR have been examined by Swamy (1971), of course, under
RCR assumptions.

8This suggestion has been used by Stata program, specifically in xtrchh and xtrchh2 Stata’s
commands. See Poi (2003).
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where

(3.3)

Ω∗ =




X1ΨX
′

1 + σε11ω11 σε12ω12 ··· σε1N
ω1N

σε21ω21 X2ΨX
′

2 + σε22ω22 ··· σε2N
ω2N

...
...

. . .
...

σεN1ωN1 σεN2ωN2 ··· XNΨX ′

N + σεNN
ωNN


 ,

with

(3.4) ωij =
1

1 − ρiρj




1 ρi ρ2
i ··· ρT−1

i

ρj 1 ρi ··· ρT−2
i

...
...

...
. . .

...

ρT−1
j ρT−2

j ρT−3
j ··· 1


 .

Since the elements of Ω∗ are usually unknown, we develop a feasible Aitken

estimator of ᾱ based on consistent estimators of the elements of Ω∗:

(3.5) ρ̂i =

∑T
t=2 ûitûi,t−1∑T

t=2 û
2
i,t−1

,

where ûi = (ûi1, ..., ûiT )′ is the residuals vector obtained from applying OLS to

equation number i,

σ̂εij
=

ε̂′iε̂j
T −K

,

where ε̂i = (ε̂i1, ..., ε̂iT )′; ε̂i1= ûi1

√
1− ρ̂2

i , and ε̂it = ûit− ρ̂iûi,t−1 for t= 2, ..., T .

Replacing ρi by ρ̂i in (3.4), yields consistent estimators of ωij , say ω̂ij ,

which leads together with σ̂εij
and ω̂ij to a consistent estimator of Ψ:9

(3.6)

Ψ̂∗ = 1
N−1

(
N∑

i=1
α̂∗

i α̂
∗′

i − 1
N

N∑
i=1

α̂∗

i

N∑
i=1

α̂∗′

i

)
− 1

N

N∑
i=1

σ̂εii

(
X ′

iω̂
−1
ii Xi

)
−1

+




1
N(N−1)

N∑

i 6= j
i, j = 1

σ̂εij

(
X ′

iω̂
−1
ii Xi

)
−1

X ′

iω̂
−1
ii ω̂ijω̂

−1
jj Xj

(
X ′

jω̂
−1
jj Xj

)
−1



,

where

(3.7) α̂∗

i =
(
X ′

iω̂
−1
ii Xi

)
−1
X ′

iω̂
−1
ii yi.

By using the consistent estimators (σ̂εij
, ω̂ij , and Ψ̂∗) in (3.3), and proceed

a consistent estimator of Ω∗ is obtained, say Ω̂∗, that leads to get the generalized

9The estimator of ρi in (3.5) is consistent, but it is not unbiased. See Srivastava and Giles
(1987, p. 211) for other suitable consistent estimators of ρi that are often used in practice.
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RCR (GRCR) estimator of ᾱ:

̂̄αGRCR =
(
X ′Ω̂∗−1X

)
−1
X ′Ω̂∗−1Y.

The estimated variance-covariance matrix of ̂̄αGRCR is:

(3.8) v̂ar
(̂̄αGRCR

)
=
(
X ′Ω̂∗−1X

)
−1
.

4. EFFICIENCY GAINS

In this section, we examine the efficiency gains from the use of GRCR

estimator. Under the general RCR assumptions, It is easy to verify that the

classical pooling estimators (̂̄αCP−OLS and ̂̄αCP−SUR) and Swamy’s estimator

(̂̄αRCR) are unbiased for ᾱ and with variance-covariance matrices:

var
(̂̄αCP−OLS

)
= G1Ω

∗G′

1;

var
(̂̄αCP−SUR

)
= G2Ω

∗G′

2;

var
(̂̄αRCR

)
= G3Ω

∗G′

3,

where

G1 =
(
X ′X

)
−1
X ′;

G2 =
[
X ′
(
Σ−1

sur ⊗ IT
)
X
]
−1
X ′
(
Σ−1

sur ⊗ IT
)
;

G3 =
(
X ′Ω−1X

)
−1
X ′Ω−1.

(4.1)

The efficiency gains, from the use of GRCR estimator, can be summarized

in the following equation:

EGγ = var
(̂̄αγ

)
− var

(̂̄αGRCR

)
= (Gh −G0)Ω∗(Gh −G0)

′; for h = 1, 2, 3,

where the subscript γ indicates the estimator that is used (CP-OLS, CP-SUR, or

RCR), G0 =
(
X ′Ω∗−1X

)
−1
X ′Ω∗−1, and Gh (for h = 1, 2, 3) matrices are defined

in (4.1).

Since Ω∗, Σrcr, Σsur and Ω are positive definite matrices, then EGγ ma-

trices are positive semi-definite matrices. In other words, the GRCR estimator

is more efficient than CP-OLS, CP-SUR, and RCR estimators. These efficiency

gains increase when |ρi| , σεij
, and ψ2

k increase. However, it is not clear to what

extent these efficiency gains hold in small samples. Therefore, this will be exam-

ined in a simulation study.
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5. ALTERNATIVE ESTIMATORS

A consistent estimator of ᾱ can also be obtained under more general as-

sumptions concerning αi and the regressors. One such possible estimator is the

mean group (MG) estimator, proposed by Pesaran and Smith (1995) for estima-

tion of dynamic panel data (DPD) models with random coefficients.10 The MG

estimator is defined as the simple average of the OLS estimators:

(5.1) ̂̄αMG =
1

N

N∑

i=1

α̂i.

Even though the MG estimator has been used in DPD models with random

coefficients, it will be used here as one of alternative estimators of static panel

data models with random coefficients. Note that the simple MG estimator in

(5.1) is more suitable for the RCR Model. But to make it suitable for the GRCR

model, we suggest a general mean group (GMG) estimator as:

(5.2) ̂̄αGMG =
1

N

N∑

i=1

α̂∗

i ,

where α̂∗

i is defined in (3.7).

Lemma 5.1. If the general RCR assumptions are satisfied, then ̂̄αMG

and ̂̄αGMG are unbiased estimators of ᾱ, with the estimated variance-covariance

matrices of ̂̄αMG and ̂̄αGMG are:

v̂ar
(̂̄αMG

)
=

1

N
Ψ̂∗ +

1

N2

N∑

i=1

σ̂εii

(
X ′

iXi

)
−1
X ′

iω̂iiXi

(
X ′

iXi

)
−1

+
1

N2

N∑

i 6= j
i, j = 1

σ̂εij

(
X ′

iXi

)
−1
X ′

iω̂ijXj

(
X ′

jXj

)
−1
,

(5.3)

(5.4) v̂ar
(̂̄αGMG

)
=

1

N (N − 1)




N∑
i=1

α̂∗

i α̂
∗′

i − 1
N

N∑
i=1

α̂∗

i

N∑
i=1

α̂∗′

i

+
N∑

i 6= j
i, j = 1

σ̂εij

(
X ′

iω̂
−1
ii Xi

)
−1

X ′

iω̂
−1
ii ω̂ijω̂

−1
jj Xj

(
X ′

jω̂
−1
jj Xj

)
−1




.

10For more information about the estimation methods for DPD models, see, e.g., Baltagi
(2013), Abonazel (2014, 2017), Youssef et al. (2014a,b), and Youssef and Abonazel (2017).
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Proof of Lemma 5.1:

A. Unbiasedness property of MG and GMG estimators:

Proof: By substituting (3.7) and (2.2) into (5.2):

̂̄αGMG =
1

N

N∑

i=1

(
X ′

iω
−1
ii Xi

)
−1
X ′

iω
−1
ii (Xiαi + ui)

=
1

N

N∑

i=1

αi +
(
X ′

iω
−1
ii Xi

)−1
X ′

iω
−1
ii ui.

(5.5)

Similarly, we can rewrite ̂̄αMG in (5.1) as:

(5.6) ̂̄αMG =
1

N

N∑

i=1

αi +
(
X ′

iXi

)
−1
X ′

iui.

Taking the expectation for (5.5) and (5.6), and using assumptions 1 and 6:

E
(̂̄αGMG

)
= E

(̂̄αMG

)
=

1

N

N∑

i=1

ᾱ = ᾱ.

B. Derive the variance-covariance matrix of GMG:

Proof: Note first that under assumption 6, αi = ᾱ+ µi. Add α̂∗

i to the

both sides:

αi + α̂∗

i = ᾱ+ µi + α̂∗

i ,

(5.7) α̂∗

i = ᾱ+ µi + α̂∗

i − αi = ᾱ+ µi + τi,

where τi = α̂∗

i − αi =
(
X ′

iω
−1
ii Xi

)
−1
X ′

iω
−1
ii ui. From (5.7):

1

N

N∑

i=1

α̂∗

i = ᾱ+
1

N

N∑

i=1

µi +
1

N

N∑

i=1

τi,

which means that

(5.8) ̂̄αGMG = ᾱ+ µ̄+ τ̄ ,

where µ̄ = 1
N

N∑
i=1

µi and τ̄ = 1
N

N∑
i=1

τi. From (5.8) and using the general RCR
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assumptions:

var
(̂̄αGMG

)
= var (µ̄) + var (τ̄)

=
1

N
Ψ +

1

N2

N∑

i=1

σεii

(
X ′

iω
−1
ii Xi

)
−1

+
1

N2

N∑

i 6= j
i, j = 1

σεij

(
X ′

iω
−1
ii Xi

)
−1
X ′

iω
−1
ii ωijω

−1
jj Xj

(
X ′

jω
−1
jj Xj

)
−1
.

Using the consistent estimators of Ψ, σεij
, and ωij defined above, then we get

the formula of v̂ar
(̂̄αGMG

)
as in equation (5.4).

C. Derive the variance-covariance matrix of MG:

Proof: As above, equation (2.3) can be rewritten as follows:

(5.9) α̂i = ᾱ+ µi + λi,

where λi = α̂i − αi = (X ′

iXi)
−1X ′

iui. From (5.9):

1

N

N∑

i=1

α̂i = ᾱ+
1

N

N∑

i=1

µi +
1

N

N∑

i=1

λi,

which means that

(5.10) ̂̄αMG = ᾱ+ µ̄+ λ̄,

where µ̄ = 1
N

N∑
i=1

µi, and λ̄ = 1
N

N∑
i=1

λi . From (5.10) and using the general RCR

assumptions:

var
(̂̄αMG

)
= var (µ̄) + var

(
λ̄
)

=
1

N
Ψ +

1

N2

N∑

i=1

σεii

(
X ′

iXi

)
−1
X ′

iωiiXi

(
X ′

iXi

)
−1

+
1

N2

N∑

i 6= j
i, j = 1

σεij

(
X ′

iXi

)
−1
X ′

iωijXj

(
X ′

jXj

)
−1
.

As in the GMG estimator, and by using the consistent estimators of Ψ, σεij
, and

ωij , then we get the formula of v̂ar
(̂̄αGM

)
as in equation (5.3).

It is noted from lemma 1 that the variance of the GMG estimator is less

than the variance of the MG estimator when the general RCR assumptions are
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satisfied. In other words, the GMG estimator is more efficient than the MG

estimator. But under RCR assumptions, we have:

var
(̂̄αMG

)
= var

(̂̄αGMG

)
=

1

N (N − 1)

(
N∑

i=1

αiα
′

i −
1

N

N∑

i=1

αi

N∑

i=1

α′

i

)
=

1

N
Ψ+.

The next lemma explains the asymptotic variances (as T → ∞ with N

fixed) properties of GRCR, RCR, GMG, and MG estimators. In order to justify

the derivation of the asymptotic variances, we must assume the following:

Assumption 9: plim
T→∞

T−1X ′

iXi and plim
T→∞

T−1X ′

iω̂
−1
ii Xi are finite and pos-

itive definite for all i and for |ρi| < 1.

Lemma 5.2. If the general RCR assumptions and assumption 9 are satis-

fied, then the estimated asymptotic variance-covariance matrices of GRCR, RCR,

GMG, and MG estimators are equal:

plim
T→∞

v̂ar
(̂̄αGRCR

)
= plim

T→∞

v̂ar
(̂̄αRCR

)
= plim

T→∞

v̂ar
(̂̄αGMG

)

= plim
T→∞

v̂ar
(̂̄αMG

)
= N−1Ψ+.

Proof of Lemma 5.2:

Following the same argument as in Parks (1967) and utilizing assumption

9, we can show that:

plim
T→∞

α̂i = plim
T→∞

α̂∗

i = αi, plim
T→∞

ρ̂ij = ρij ,

plim
T→∞

σ̂εij
= σεij

, and plim
T→∞

ω̂ij = ωij ,
(5.11)

and then

plim
T→∞

1

T
σ̂εii

T
(
X ′

iω̂
−1
ii Xi

)
−1

= plim
T→∞

1

T
σ̂εii

T
(
X ′

iXi

)
−1
X ′

iω̂iiXi

(
X ′

iXi

)
−1

= plim
T→∞

1

T
σ̂εij

T
(
X ′

iXi

)
−1
X ′

iω̂ijXj

(
X ′

jXj

)
−1

= plim
T→∞

1

T
σ̂εij

T
(
X ′

iω̂
−1
ii Xi

)
−1
X ′

iω̂
−1
ii ω̂ijω̂

−1
jj Xj

(
X ′

jω̂
−1
jj Xj

)
−1

= 0.

(5.12)

Substituting (5.11) and (5.12) in (3.6):

(5.13) plim
T→∞

Ψ̂∗ =
1

N − 1

(
N∑

i=1

αiα
′

i −
1

N

N∑

i=1

αi

N∑

i=1

α′

i

)
= Ψ+.
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By substituting (5.11)–(5.13) into (5.3), (5.4), and (3.8):

plim
T→∞

v̂ar
(̂̄αMG

)
=

1

N
plim
T→∞

Ψ̂∗

+
1

N2

N∑

i=1

plim
T→∞

1

T
σ̂εii

T
(
X ′

iXi

)
−1
X ′

iω̂iiXi

(
X ′

iXi

)
−1

+
1

N2

N∑

i 6= j
i, j = 1

plim
T→∞

1

T
σ̂εij

T
(
X ′

iXi

)
−1
X ′

iω̂ijXj

(
X ′

jXj

)
−1

=
1

N
Ψ+,

(5.14)

(5.15)

plim
T→∞

v̂ar
(̂̄αGMG

)
= 1

N(N−1) plim
T→∞

(
N∑

i=1
α̂∗

i α̂
∗′

i − 1
N

N∑
i=1

α̂∗

i

N∑
i=1

α̂∗′

i

)

+ 1
N(N−1)

N∑

i 6= j
i, j = 1




plim
T→∞

1
T
σ̂εij

T
(
X ′

iω̂
−1
ii Xi

)
−1

X ′

iω̂
−1
ii ω̂ijω̂

−1
jj Xj

(
X ′

jω̂
−1
jj Xj

)
−1


 = 1

N
Ψ+,

(5.16) plim
T→∞

v̂ar
(̂̄αGRCR

)
= plim

T→∞

(
X ′Ω̂∗−1X

)
−1

=

[
N∑

i=1

Ψ+−1

]−1

=
1

N
Ψ+.

Similarly, we will use the results in (5.11)–(5.13) in case of RCR estimator:

plim
T→∞

v̂ar
(̂̄αRCR

)
= plim

T→∞

[(
X ′Ω̂−1X

)
−1
X ′Ω̂−1Ω̂∗ Ω̂−1X

(
X ′Ω̂−1X

)
−1
]

=
1

N
Ψ+.

(5.17)

From (5.14)–(5.17), we can conclude that:

plim
T→∞

v̂ar
(̂̄αGRCR

)
= plim

T→∞

v̂ar
(̂̄αRCR

)

= plim
T→∞

v̂ar
(̂̄αGMG

)
= plim

T→∞

v̂ar
(̂̄αMG

)
=

1

N
Ψ+.

From Lemma 5.2, we can conclude that the means and the variance-

covariance matrices of the limiting distributions of ̂̄αGRCR, ̂̄αRCR, ̂̄αGMG, and
̂̄αMG are the same and are equal to ᾱ and N−1Ψ respectively even if the errors

are correlated as in assumption 8. it is not expected to increase the asymptotic

efficiency of ̂̄αGRCR, ̂̄αRCR, ̂̄αGMG, and ̂̄αMG. This does not mean that the GRCR

estimator cannot be more efficient than RCR, GMG, and MG in small samples

when the errors are correlated as in assumption 8. This will be examined in our

simulation study.
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6. MONTE CARLO SIMULATION

In this section, the Monte Carlo simulation has been used for making com-

parisons between the behavior of the classical pooling estimators (CP-OLS and

CP-SUR), random-coefficients estimators (RCR and GRCR), and mean group

estimators (MG and GMG) in small and moderate samples. The program to

set up the Monte Carlo simulation, written in the R language, is available upon

request. Monte Carlo experiments were carried out based on the following data

generating process:

(6.1) yit =
3∑

k=1

αkixkit + uit, i = 1, 2, ..., N ; t = 1, 2, ..., T.

To perform the simulation under the general RCR assumptions, the model

in (6.1) was generated as follows:

1. The independent variables, (xkit; k = 1, 2, 3), were generated as inde-

pendent standard normally distributed random variables. The values

of xkit were allowed to differ for each cross-sectional unit. However,

once generated for all N cross-sectional units the values were held fixed

over all Monte Carlo trials.

2. The errors, uit, were generated as in assumption 8: uit = ρui,t−1 + εit,

where the values of εi = (εi1, ..., εiT )′ ∀ i = 1, 2, ..., N were generated

as multivariate normally distributed with means zeros and variance-

covariance matrix: 


σεii
σεij

··· σεij

σεij
σεii

. . .
...

...
. . .

. . . σεij

σεij
··· σεij

σεii



,

where the values of σεii
, σεij

, and ρ were chosen to be: σεii
= 1 or 100;

σεij
= 0, 0.75, or 0.95, and ρ = 0, 0.55, or 0.85, where the values of σεii

,

σεij
, and ρ are constants for all i, j = 1, 2, ..., N in each Monte Carlo

trial. The initial values of uit are generated as ui1 = εi1/
√

1 − ρ2 ∀ i =

1, 2, ..., N . The values of errors were allowed to differ for each cross-

sectional unit on a given Monte Carlo trial and were allowed to differ

between trials. The errors are independent with all independent vari-

ables.

3. The coefficients, αki, were generated as in assumption 6: αi = ᾱ+ µi,

where ᾱ = (1, 1, 1)′, and µi were generated from two distributions.

First, multivariate normal distribution with means zeros and variance-

covariance matrix Ψ = diag
{
ψ2

k

}
; k = 1, 2, 3. The values of Ψ2

k were

chosen to be fixed for all k and equal to 5 or 25. Second, multivari-

ate student’s t distribution with degree of freedom (df): df = 1 or 5.
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To include the case of fixed-coefficients models in our simulation study,

we assume that µi = 0.

4. The values of N and T were chosen to be 5, 8, 10, 12, 15, and 20 to rep-

resent small and moderate samples for the number of individuals and

the time dimension. To compare the small and moderate samples per-

formance for the different estimators, three different samplings schemes

have been designed in our simulation, where each design contains four

pairs of N and T . The first two represent small samples while the mod-

erate samples are represented by the second two pairs. These designs

have been created as follows: First, case of N < T , the pairs of N and T

were chosen to be (N,T ) = (5, 8), (5, 12), (10, 15), or (10, 20). Second,

case of N = T , the pairs are (N,T ) = (5, 5), (10, 10), (15, 15), or (20,

20). Third, case of N > T , the pairs are (N,T ) = (8, 5), (12, 5), (15, 10),

or (20, 10).

5. All Monte Carlo experiments involved 1000 replications and all the

results of all separate experiments are obtained by precisely the same

series of random numbers. To raise the efficiency of the comparison

between these estimators, we calculate the average of total standard

errors (ATSE) for each estimator by:

ATSE =
1

1000

1000∑

l=1

{
trace

[
v̂ar

(̂̄αl

)]0.5
}
,

where ̂̄αl is the estimated vector of ᾱ in (6.1), and v̂ar
(̂̄αl

)
is the

estimated variance-covariance matrix of the estimator.

The Monte Carlo results are given in Tables 1–6. Specifically, Tables 1–3

present the ATSE values of the estimators when σεii
= 1, and in cases of N <

T,N = T , andN > T , respectively. While case of σεii
= 100 is presented in Tables

4–6 in the same cases of N and T . In our simulation study, the main factors that

have an effect on the ATSE values of the estimators are N, T, σεii
, σεij

, ρ, ψ2
k

(for normal distribution), and df (for student’s t distribution). From Tables 1–6,

we can summarize some effects for all estimators in the following points:

• When the values of N and T are increased, the values of ATSE are

decreasing for all simulation situations.

• When the value of σεii
is increased, the values of ATSE are increasing

in most situations.

• When the values of (ρ, σεij
) are increased, the values of ATSE are in-

creasing in most situations.

• When the value of ψ2
k is increased, the values of ATSE are increasing

for all situations.

• When the value of df is increased, the values of ATSE are decreasing

for all situations.
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Table 1: ATSE for various estimators when σεii
= 1 and N < T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20)

µi = 0

CP-OLS 0.920 0.746 0.440 0.436 0.857 0.888 0.409 0.450 1.107 1.496 0.607 0.641
CP-SUR 0.958 0.767 0.419 0.417 0.829 0.880 0.381 0.384 0.947 1.469 0.453 0.532
MG 0.947 0.765 0.470 0.469 0.886 0.910 0.442 0.468 1.133 1.475 0.608 0.636
GMG 0.702 0.556 0.369 0.375 0.638 0.662 0.289 0.305 0.644 1.098 0.302 0.291
RCR 1.012 30.746 0.517 0.497 1.064 1.130 2.241 0.726 1.365 5.960 0.856 1.326
GRCR 0.754 0.624 0.352 0.357 0.634 0.703 0.302 0.295 0.735 1.141 0.324 0.388

µi ∼ N(0, 5)

CP-OLS 4.933 4.682 2.320 2.742 2.588 2.902 2.598 2.130 3.627 5.079 2.165 2.935
CP-SUR 5.870 5.738 2.852 3.411 3.143 3.456 3.212 2.592 4.011 5.906 2.668 3.549
MG 4.057 4.112 2.086 2.494 2.173 2.478 2.352 1.888 3.094 4.040 1.938 2.626
GMG 4.057 4.110 2.084 2.494 2.176 2.479 2.348 1.879 3.052 4.024 1.908 2.606
RCR 4.053 4.114 2.083 2.493 2.632 3.304 2.352 1.888 3.287 6.422 2.052 2.648
GRCR 4.030 4.092 2.067 2.480 2.104 2.413 2.331 1.855 2.969 3.905 1.865 2.578

µi ∼ N(0, 25)

CP-OLS 7.528 7.680 7.147 6.341 8.293 8.156 6.321 6.739 7.942 7.214 4.691 6.423
CP-SUR 8.866 9.439 8.935 8.046 10.104 9.880 8.028 8.402 9.074 8.482 5.739 7.937
MG 6.272 6.549 6.324 5.597 6.879 6.650 5.541 5.917 6.442 6.083 4.118 5.672
GMG 6.271 6.548 6.324 5.597 6.881 6.650 5.538 5.913 6.422 6.078 4.103 5.662
RCR 6.271 6.548 6.324 5.597 6.885 6.657 5.541 5.917 7.546 6.098 4.122 5.686
GRCR 6.251 6.539 6.319 5.590 6.857 6.626 5.530 5.906 6.389 6.010 4.082 5.649

µi ∼ t(5)

CP-OLS 2.253 1.983 1.562 1.544 1.479 1.977 1.060 1.223 2.115 3.301 1.470 1.439
CP-SUR 2.626 2.419 1.925 1.912 1.694 2.266 1.275 1.454 2.403 3.903 1.717 1.643
MG 1.859 1.776 1.410 1.401 1.324 1.722 0.984 1.078 1.923 2.707 1.335 1.260
GMG 1.856 1.771 1.408 1.400 1.316 1.718 0.970 1.064 1.826 2.666 1.284 1.215
RCR 2.002 1.768 1.452 1.396 2.020 3.260 1.017 1.087 12.328 6.655 2.035 2.650
GRCR 1.788 1.727 1.377 1.375 1.215 1.655 0.926 1.019 1.786 2.552 1.221 1.155

µi ∼ t(1)

CP-OLS 16.112 4.096 2.732 10.189 12.490 24.982 6.424 2.837 6.685 5.668 12.763 1.786
CP-SUR 19.483 5.046 3.365 12.976 14.940 29.854 8.009 3.555 7.807 7.043 15.947 2.126
MG 11.751 3.427 2.432 9.094 9.811 19.875 5.742 2.306 5.568 4.365 11.473 1.620
GMG 11.751 3.423 2.431 9.094 9.811 19.875 5.740 2.298 5.540 4.352 11.468 1.583
RCR 11.751 3.423 2.431 9.094 9.813 19.877 5.742 2.304 5.591 7.730 11.475 1.829
GRCR 11.739 3.403 2.417 9.090 9.795 19.868 5.733 2.271 5.498 4.228 11.462 1.530
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Table 2: ATSE for various estimators when σεii
= 1 and N = T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (5,5) (10,10) (15,15) (20,20) (5,5) (10,10) (15,15) (20,20) (5,5) (10,10) (15,15) (20,20)

µi = 0

CP-OLS 1.671 0.461 0.259 0.174 2.081 0.424 0.274 0.207 3.351 0.678 0.394 0.276
CP-SUR 2.387 0.550 0.299 0.178 3.340 0.478 0.291 0.182 4.301 0.716 0.293 0.192
MG 1.686 0.486 0.280 0.183 2.058 0.474 0.300 0.210 3.093 0.668 0.377 0.255
GMG 1.174 0.395 0.234 0.159 1.669 0.363 0.209 0.149 2.028 0.370 0.190 0.115
RCR 1.905 0.557 0.314 0.179 1.997 0.953 0.411 0.502 3.249 1.982 0.471 0.458
GRCR 1.294 0.320 0.173 0.102 1.678 0.264 0.151 0.093 2.480 0.380 0.145 0.094

µi ∼ N(0, 5)

CP-OLS 4.119 3.404 1.982 1.651 4.593 2.002 1.517 1.474 5.023 2.926 1.847 1.740
CP-SUR 6.478 5.521 3.511 3.097 8.141 3.313 2.735 2.737 7.176 4.951 3.313 3.368
MG 3.480 2.750 1.744 1.520 4.015 1.671 1.295 1.341 4.284 2.531 1.633 1.608
GMG 3.481 2.750 1.743 1.520 4.008 1.664 1.289 1.337 4.034 2.515 1.615 1.599
RCR 5.955 2.749 1.743 1.520 4.232 1.666 1.295 1.342 12.312 2.574 1.651 1.617
GRCR 3.400 2.727 1.730 1.513 3.826 1.622 1.266 1.328 3.913 2.463 1.591 1.590

µi ∼ N(0, 25)

CP-OLS 8.056 6.265 4.022 3.637 7.976 5.496 4.240 3.968 10.264 6.615 4.558 3.733
CP-SUR 12.776 10.403 7.168 6.869 14.233 9.622 7.606 7.540 15.004 11.368 8.361 7.229
MG 6.474 5.145 3.558 3.348 6.491 4.599 3.692 3.623 6.798 5.597 4.042 3.464
GMG 6.476 5.145 3.558 3.348 6.498 4.596 3.690 3.622 6.822 5.589 4.036 3.460
RCR 6.469 5.145 3.558 3.348 6.457 4.597 3.692 3.624 10.576 5.614 4.050 3.468
GRCR 6.412 5.134 3.552 3.345 6.399 4.581 3.683 3.618 6.534 5.566 4.027 3.456

µi ∼ t(5)

CP-OLS 2.017 1.444 1.054 0.818 2.719 2.306 1.452 1.202 3.512 1.374 1.130 0.866
CP-SUR 2.952 2.278 1.848 1.499 4.581 4.002 2.602 2.251 4.784 2.113 1.960 1.584
MG 1.900 1.215 0.933 0.759 2.435 1.892 1.228 1.113 3.241 1.209 1.017 0.800
GMG 1.752 1.214 0.933 0.759 2.369 1.886 1.221 1.108 2.635 1.177 0.989 0.780
RCR 2.987 1.209 0.931 0.758 2.862 1.886 1.229 1.114 11.891 1.760 1.527 0.815
GRCR 1.628 1.165 0.908 0.744 2.193 1.848 1.199 1.097 2.727 1.073 0.951 0.762

µi ∼ t(1)

CP-OLS 2.946 4.082 36.296 32.249 170.833 4.983 7.221 5.545 5.447 14.094 27.076 2.245
CP-SUR 4.663 6.691 70.583 64.229 291.169 8.653 13.554 10.472 7.942 25.514 54.690 4.290
MG 2.569 3.337 23.288 26.932 92.236 4.064 5.831 5.069 4.403 11.428 20.763 2.085
GMG 2.565 3.337 23.288 26.932 92.238 4.060 5.829 5.068 4.362 11.420 20.759 2.078
RCR 5.160 3.337 23.288 26.932 92.238 4.061 5.831 5.069 7.663 11.440 20.767 2.091
GRCR 2.433 3.320 23.280 26.931 92.226 4.042 5.823 5.065 4.024 11.401 20.753 2.072
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Table 3: ATSE for various estimators when σεii
= 1 and N > T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10)

µi = 0

CP-OLS 1.763 3.198 0.510 0.438 1.254 1.399 0.436 0.536 1.218 1.350 0.688 0.591
CP-SUR 2.504 4.585 0.635 0.518 1.748 1.963 0.497 0.607 1.637 1.808 0.780 0.655
MG 1.856 2.927 0.576 0.475 1.434 1.455 0.501 0.618 1.528 1.523 0.830 0.631
GMG 1.288 1.767 0.452 0.391 1.017 0.995 0.350 0.417 1.014 0.982 0.468 0.433
RCR 7.356 2.702 0.567 0.573 1.353 1.333 0.693 1.625 1.490 1.468 2.432 1.605
GRCR 1.289 2.277 0.342 0.267 0.937 1.010 0.248 0.306 0.865 0.856 0.413 0.312

µi ∼ N(0, 5)

CP-OLS 3.136 4.014 2.525 2.017 3.677 3.352 2.477 3.105 2.146 3.501 1.927 2.415
CP-SUR 4.590 5.845 3.576 2.888 5.279 4.824 3.485 4.396 3.080 4.935 2.687 3.393
MG 2.753 3.418 2.153 1.685 2.972 2.643 2.113 2.628 2.191 2.813 1.724 2.156
GMG 2.665 3.425 2.152 1.684 2.951 2.660 2.106 2.617 2.097 2.748 1.679 2.142
RCR 3.611 3.306 2.146 1.681 2.897 3.034 2.109 2.621 61.169 137.429 2.187 2.147
GRCR 2.400 2.982 2.103 1.636 2.774 2.399 2.066 2.572 1.852 2.550 1.532 2.075

µi ∼ N(0, 25)

CP-OLS 6.919 6.434 6.179 5.259 6.442 5.639 4.972 4.460 6.279 7.428 5.480 5.366
CP-SUR 10.250 9.292 8.750 7.682 9.200 8.224 7.123 6.378 9.507 10.544 7.791 7.698
MG 5.090 5.029 5.092 4.381 4.987 4.505 4.167 3.688 5.353 5.689 4.545 4.756
GMG 5.046 5.031 5.092 4.380 4.971 4.512 4.163 3.680 5.316 5.677 4.530 4.749
RCR 4.986 4.735 5.091 4.380 4.939 4.466 4.165 3.683 5.303 6.219 4.538 4.753
GRCR 4.898 4.588 5.071 4.362 4.874 4.408 4.142 3.645 5.189 5.559 4.479 4.720

µi ∼ t(5)

CP-OLS 1.779 2.367 1.151 1.080 1.780 2.464 1.986 1.308 2.157 2.848 1.473 1.283
CP-SUR 2.541 3.365 1.604 1.493 2.596 3.711 2.929 1.745 3.137 4.179 1.987 1.730
MG 1.839 1.989 1.010 0.943 1.647 2.276 1.603 1.074 2.109 2.401 1.260 1.467
GMG 1.577 1.974 1.008 0.942 1.563 2.245 1.586 1.076 1.730 2.362 1.235 1.255
RCR 2.573 2.327 0.991 0.960 2.785 2.945 1.591 1.097 3.523 3.020 3.322 3.509
GRCR 1.336 1.738 0.924 0.837 1.529 1.893 1.525 0.982 1.652 2.120 1.124 1.049

µi ∼ t(1)

CP-OLS 23.572 9.953 1.708 9.638 9.612 3.030 5.400 4.609 6.932 8.340 25.666 4.259
CP-SUR 35.133 13.767 2.466 14.035 15.207 4.429 8.027 6.816 9.309 12.412 39.880 6.199
MG 17.304 6.568 1.410 6.014 7.568 2.654 4.164 3.451 4.802 6.004 16.848 3.318
GMG 17.295 6.563 1.409 6.014 7.580 2.629 4.155 3.452 4.781 5.991 16.840 3.267
RCR 17.295 6.535 1.398 6.012 7.546 2.499 4.158 3.456 6.130 5.997 16.849 4.158
GRCR 17.263 6.483 1.345 5.979 7.492 2.345 4.128 3.407 4.593 5.877 16.779 3.081
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Table 4: ATSE for various estimators when σεii
= 100 and N < T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20)

µi = 0

CP-OLS 2.908 2.357 1.389 1.379 2.756 2.863 1.414 1.395 3.798 5.179 2.042 2.208
CP-SUR 3.028 2.422 1.323 1.316 2.806 2.997 1.335 1.302 3.520 5.316 1.692 1.989
MG 2.993 2.419 1.486 1.483 2.830 2.984 1.492 1.503 3.850 4.907 2.010 2.292
GMG 2.221 1.759 1.168 1.187 1.975 2.180 1.027 1.004 2.132 3.466 1.022 1.191
RCR 3.199 97.225 1.634 1.570 3.205 6.691 2.576 2.846 4.711 7.169 2.708 3.170
GRCR 2.381 1.970 1.111 1.128 2.188 2.399 1.061 1.029 2.667 3.872 1.220 1.429

µi ∼ N(0, 5)

CP-OLS 5.096 4.872 2.481 2.890 3.298 3.570 2.732 2.260 4.432 6.390 2.479 3.180
CP-SUR 5.787 5.751 2.856 3.437 3.573 3.960 3.305 2.557 4.449 6.946 2.463 3.524
MG 4.533 4.450 2.361 2.737 3.193 3.448 2.575 2.172 4.327 5.642 2.363 3.076
GMG 4.507 4.427 2.349 2.734 2.869 3.165 2.539 2.101 3.695 5.110 2.150 2.849
RCR 11.579 5.572 2.500 2.702 3.871 8.045 3.278 3.489 7.748 9.539 5.301 22.220
GRCR 4.179 4.294 2.166 2.576 2.755 3.026 2.378 1.911 3.456 5.004 1.879 2.560

µi ∼ N(0, 25)

CP-OLS 7.670 7.803 7.209 6.407 8.362 8.314 6.380 6.781 7.971 7.887 4.852 6.554
CP-SUR 8.833 9.460 8.952 8.050 10.073 10.032 8.245 8.508 9.153 9.160 5.890 8.277
MG 6.570 6.760 6.431 5.714 7.118 7.016 5.653 6.018 6.812 7.017 4.338 5.913
GMG 6.556 6.749 6.426 5.713 7.116 7.013 5.625 5.991 6.658 6.996 4.240 5.795
RCR 10.949 6.908 6.423 5.706 7.103 7.629 5.647 6.008 11.120 16.814 9.260 6.478
GRCR 6.400 6.633 6.370 5.646 6.945 6.826 5.558 5.932 6.286 6.595 4.057 5.661

µi ∼ t(5)

CP-OLS 3.227 2.672 1.820 1.804 2.894 3.067 1.534 1.558 4.052 5.630 2.112 2.299
CP-SUR 3.432 2.879 1.975 1.959 3.045 3.327 1.529 1.560 3.998 6.065 1.838 2.099
MG 3.186 2.654 1.829 1.810 2.924 3.097 1.588 1.617 4.042 5.146 2.071 2.318
GMG 2.816 2.405 1.799 1.782 2.296 2.690 1.394 1.435 2.792 4.288 1.603 1.692
RCR 3.665 3.442 2.592 2.462 4.922 4.147 3.057 4.985 9.667 14.064 3.871 6.113
GRCR 2.666 2.317 1.625 1.543 2.374 2.662 1.232 1.233 3.045 4.365 1.456 1.604

µi ∼ t(1)

CP-OLS 16.193 4.345 2.882 10.228 12.527 25.028 6.481 2.957 6.842 6.962 12.819 2.363
CP-SUR 19.488 5.071 3.383 12.975 14.929 30.583 8.213 3.571 7.803 7.838 16.626 2.317
MG 11.990 3.871 2.673 9.164 9.996 19.985 5.841 2.595 6.095 5.929 11.548 2.434
GMG 11.990 3.832 2.665 9.163 9.979 19.993 5.819 2.524 5.898 5.591 11.512 1.988
RCR 11.965 4.529 2.625 9.162 9.966 19.996 5.839 3.527 13.705 59.015 11.574 14.464
GRCR 11.840 3.650 2.507 9.122 9.862 19.940 5.762 2.360 5.434 5.506 11.460 1.773
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Table 5: ATSE for various estimators when σεii
= 100 and N = T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (5,5) (10,10) (15,15) (20,20) (5,5) (10,10) (15,15) (20,20) (5,5) (10,10) (15,15) (20,20)

µi = 0

CP-OLS 5.284 1.456 0.818 0.548 6.920 1.339 0.904 0.629 11.353 2.314 1.215 0.871
CP-SUR 7.548 1.737 0.942 0.559 10.528 1.580 0.977 0.589 15.654 2.573 0.987 0.625
MG 5.331 1.537 0.886 0.577 6.606 1.417 0.998 0.658 10.554 2.362 1.238 0.839
GMG 3.712 1.250 0.741 0.503 5.470 1.105 0.693 0.466 6.959 1.419 0.602 0.410
RCR 6.023 1.759 0.990 0.564 8.315 2.026 2.034 1.388 10.978 3.817 2.088 1.241
GRCR 4.090 1.007 0.545 0.318 5.497 0.907 0.527 0.318 8.037 1.363 0.525 0.325

µi ∼ N(0, 5)

CP-OLS 5.580 3.519 2.061 1.705 7.429 2.182 1.629 1.543 10.993 3.155 1.991 1.859
CP-SUR 8.237 5.479 3.497 3.091 11.726 3.255 2.651 2.742 15.414 4.585 3.080 3.221
MG 5.622 2.996 1.876 1.592 6.993 1.987 1.522 1.438 10.338 3.017 1.864 1.733
GMG 4.959 2.994 1.876 1.591 6.571 1.968 1.459 1.406 7.682 2.893 1.712 1.649
RCR 8.572 3.064 1.861 1.588 8.773 2.645 2.696 1.435 10.818 6.531 3.172 1.779
GRCR 4.679 2.764 1.747 1.520 6.313 1.727 1.249 1.322 8.234 2.397 1.489 1.558

µi ∼ N(0, 25)

CP-OLS 8.220 6.333 4.056 3.661 9.384 5.567 4.285 3.991 12.808 6.724 4.618 3.788
CP-SUR 12.685 10.388 7.152 6.865 15.219 9.557 7.574 7.573 18.954 11.401 8.194 7.215
MG 7.404 5.282 3.620 3.380 8.388 4.740 3.779 3.657 11.236 5.845 4.138 3.523
GMG 7.257 5.281 3.620 3.380 8.438 4.728 3.754 3.645 9.858 5.787 4.073 3.482
RCR 12.035 5.272 3.618 3.380 9.526 4.731 3.774 3.658 12.921 6.137 4.153 3.545
GRCR 6.703 5.166 3.556 3.347 7.863 4.608 3.688 3.613 9.475 5.537 3.995 3.440

µi ∼ t(5)

CP-OLS 5.268 1.758 1.205 0.930 6.905 2.466 1.566 1.289 11.183 2.322 1.363 1.078
CP-SUR 7.487 2.302 1.826 1.505 10.462 3.902 2.518 2.232 15.445 2.648 1.486 1.354
MG 5.301 1.734 1.173 0.901 6.588 2.197 1.457 1.231 10.371 2.363 1.359 1.024
GMG 3.914 1.688 1.171 0.900 5.741 2.170 1.392 1.193 7.036 1.810 1.138 0.874
RCR 6.313 2.356 1.226 0.885 8.980 4.088 1.806 1.224 10.384 6.372 4.418 4.574
GRCR 4.238 1.313 0.937 0.764 5.796 1.894 1.179 1.094 8.124 1.489 0.823 0.688

µi ∼ t(1)

CP-OLS 5.492 4.176 36.310 32.254 170.969 5.046 7.246 5.564 11.208 14.166 27.093 2.332
CP-SUR 8.085 6.670 70.596 64.232 277.362 8.718 13.502 10.390 15.450 26.068 54.457 4.185
MG 5.469 3.529 23.379 26.943 92.536 4.228 5.898 5.095 10.448 11.655 20.834 2.180
GMG 4.346 3.528 23.378 26.943 92.558 4.213 5.878 5.086 7.748 11.603 20.786 2.114
RCR 7.220 3.503 23.365 26.943 92.513 4.383 5.895 5.096 13.141 12.397 20.840 2.210
GRCR 4.471 3.354 23.296 26.932 92.445 4.050 5.822 5.064 8.345 11.384 20.731 2.046
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Table 6: ATSE for various estimators when σεii
= 100 and N > T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10)

µi = 0

CP-OLS 5.574 3.501 1.511 1.493 5.616 4.178 1.764 1.546 8.088 9.255 2.325 2.474
CP-SUR 7.919 4.835 1.798 1.840 7.780 5.841 2.229 1.813 11.886 12.804 2.723 2.975
MG 5.868 3.453 1.659 1.676 5.678 4.306 1.908 1.629 9.127 8.473 2.678 2.773
GMG 4.073 2.490 1.349 1.337 3.643 3.717 1.515 1.219 5.788 7.373 1.382 1.581
RCR 23.253 3.498 1.759 1.808 5.403 6.417 5.387 2.286 8.172 11.799 2.744 4.156
GRCR 4.072 2.397 0.931 0.972 3.998 3.241 1.142 0.872 5.937 6.519 1.267 1.352

µi ∼ N(0, 5)

CP-OLS 5.574 4.258 2.867 2.692 5.221 5.014 2.744 2.396 8.256 9.261 2.333 3.037
CP-SUR 7.899 5.954 3.858 3.725 7.202 7.096 3.802 3.166 12.049 12.885 2.782 4.092
MG 5.793 3.775 2.616 2.509 5.407 4.904 2.622 2.241 9.299 8.462 2.682 3.135
GMG 4.753 3.635 2.615 2.503 4.022 4.657 2.663 2.226 6.423 7.531 2.230 2.815
RCR 7.585 5.340 2.525 2.569 25.633 6.314 8.404 2.808 10.171 10.268 15.344 8.355
GRCR 4.220 3.123 2.206 2.063 3.901 3.925 2.101 1.771 6.533 6.464 1.443 2.026

µi ∼ N(0, 25)

CP-OLS 7.383 6.000 5.791 4.700 6.808 7.512 4.220 6.284 7.648 11.202 4.729 4.463
CP-SUR 10.777 8.636 8.118 6.667 9.409 11.012 5.987 8.667 11.213 16.010 6.596 6.367
MG 6.876 4.940 4.816 4.146 6.287 6.642 3.722 5.162 8.635 9.623 4.346 4.168
GMG 6.442 4.902 4.815 4.143 6.205 6.532 3.765 5.156 7.205 9.360 4.171 3.961
RCR 11.741 5.730 4.792 4.090 11.299 7.379 3.776 5.160 12.146 12.980 13.643 7.505
GRCR 5.510 4.310 4.615 3.915 5.288 5.902 3.379 4.983 6.356 8.403 3.669 3.352

µi ∼ t(5)

CP-OLS 5.373 3.666 1.719 1.726 5.575 4.294 1.789 1.805 8.085 9.347 2.373 2.455
CP-SUR 7.646 5.136 2.115 2.217 7.757 5.989 2.248 2.223 11.901 13.041 2.803 2.974
MG 5.706 3.482 1.779 1.837 5.623 4.394 1.926 1.802 9.133 8.456 2.695 2.784
GMG 4.249 3.082 1.722 1.759 3.683 3.907 1.647 1.727 5.933 7.429 1.691 1.879
RCR 9.861 5.223 2.501 2.758 5.421 5.238 3.195 3.158 13.392 14.875 4.908 6.298
GRCR 3.915 2.670 1.150 1.268 4.044 3.334 1.188 1.170 6.032 6.570 1.342 1.415

µi ∼ t(1)

CP-OLS 5.821 3.703 4.328 6.252 6.016 5.931 31.442 4.149 11.344 10.999 5.576 3.013
CP-SUR 8.533 5.188 6.188 9.132 8.500 8.555 47.659 5.806 17.261 15.893 8.562 3.969
MG 5.986 3.550 3.544 5.182 5.876 5.420 21.165 3.416 11.058 9.507 4.826 3.140
GMG 4.941 3.242 3.537 5.179 5.579 5.219 21.177 3.402 8.986 9.203 4.557 2.831
RCR 8.791 13.034 13.254 5.140 7.133 6.561 21.171 3.896 13.086 12.317 10.078 10.717
GRCR 4.403 2.740 3.115 4.987 4.936 4.559 21.041 3.093 8.697 7.876 3.877 2.021
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For more deeps in simulation results, we can conclude the following results:

1. Generally, the performance of all estimators in cases of N 6 T is better

than their performance in case of N > T . Similarly, their performance

in cases of σεii
= 1 is better than the performance in case of σεii

= 100,

but not as significantly better as in N and T .

2. When σεij
= ρ = µi = 0, the ATSE values of the classical pooling es-

timators (CP-OLS and CP-SUR) are approximately equivalent, espe-

cially when the sample size is moderate and/or N 6 T . However, the

ATSE values of GMG and GRCR estimators are smaller than those

of the classical pooling estimators in this situation (σεij
= ρ = µi = 0)

and other simulation situations (case of σεii
, σεij

, ρ, ψ2
k are increasing,

and df is decreasing). In other words, GMG and GRCR are more ef-

ficient than CP-OLS and CP-SUR whether the regression coefficients

are fixed or random.

3. If T ≥ 15, the values of ATSE for the MG and GMG estimators are

approximately equivalent. This result is consistent with Lemma 5.2.

According to our study, this case (T ≥ 15) is achieved when the sample

size is moderate in Tables 1, 2, 4, and 5. Moreover, convergence slows

down if σεii
, σεij

, and ρ are increased. But the situation for the RCR

and GRCR estimators is different; the convergence between them is

very slow even if T = 20. So the MG and GMG estimators are more

efficient than RCR in all simulation situations.

4. When the coefficients are random (whether they are distributed as nor-

mal or student’s t), the values of ATSE for GMG and GRCR are

smaller than those of MG and RCR in all simulation situations (for

any N, T, σεii
, σεij

, and ρ). However, the ATSE values of GRCR are

smaller than those of GMG estimator in most situations, especially

when the sample size is moderate. In other words, the GRCR estima-

tor performs better than all other estimators as long as the sample size

is moderate regardless of other simulation factors.
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7. CONCLUSION

In this article, the classical pooling (CP-OLS and CP-SUR), random-

coefficients (RCR and GRCR), and mean group (MG and GMG) estimators of

stationary RCPD models were examined in different sample sizes for the case

where the errors are cross-sectionally and serially correlated. Analytical efficiency

comparisons for these estimators indicate that the mean group and random-

coefficients estimators are equivalent when T is sufficiently large. Furthermore,

the Monte Carlo simulation results show that the classical pooling estimators are

absolutely not suitable for random-coefficients models. And, the MG and GMG

estimators are more efficient than the RCR estimator for random- and fixed-

coefficients models, especially when T is small (T ≤ 12). But when T ≥ 20, the

MG, GMG, and GRCR estimators are approximately equivalent. However, the

GRCR estimator performs better than the MG and GMG estimators in most sit-

uations, especially in moderate samples. Therefore, we conclude that the GRCR

estimator is suitable to stationary RCPD models whether the coefficients are

random or fixed.
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