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Abstract:

• Partial Least Squares Regression (PLSR) is a linear regression technique developed as
an incomplete or “partial” version of the least squares estimator of regression, applica-
ble when high or perfect multicollinearity is present in the predictor variables. Robust
methods are introduced to reduce or remove the effects of outlying data points. In the
previous studies it has been showed that if the sample covariance matrix is properly
robustified further robustification of the linear regression steps of the PLS1 algorithm
(PLSR with univariate response variable) becomes unnecessary. Therefore, we pro-
pose a new robust PLSR method based on robustification of the covariance matrix
used in classical PLS1 algorithm. We select a reweighted estimator of covariance, in
which the Minimum Covariance Determinant as initial estimator is used, with weights
adaptively computed from the data. We compare this new robust PLSR method with
classical PLSR and four other well-known robust PLSR methods. Both simulation
results and the analysis of a real data set show the effectiveness and robustness of the
new proposed robust PLSR method.

Key-Words:

• efficient estimation; Minimum Covariance Determinant (MCD); partial least squares
regression; robust covariance matrix; robust estimation.

AMS Subject Classification:

• 62F35, 62H12, 62J05.



450 Esra Polat and Suleyman Gunay



A New Robust Partial Least Squares Regression Method 451

1. INTRODUCTION

Classical PLSR is a well-established technique in multivariate data analysis.

It is used to model the linear relation between a set of regressors and a set of

response variables, which can then be used to predict the value of the response

variables for a new sample. A typical example is multivariate calibration where

the x-variables are spectra and the y-variables are the concentrations of certain

constituents. Since classical PLSR is known to be severely affected by the presence

of outliers in the data or deviations from normality, several PLSR methods with

robust behaviour towards data contamination have been proposed (Hubert and

Vanden Branden, 2003; Liebmann et al., 2010). NIPALS and SIMPLS are the

popular algorithms for PLSR and they are very sensitive to outliers in the dataset.

For univariate or multivariate response variable several robustified versions of

these algorithms have already been proposed (González et al., 2009).

The two main strategies in the literature for robust PLSR are (1) the down-

weighting of outliers and (2) robust estimation of the covariance matrix. The early

approaches for robust regression by downweighting of outliers are considered semi-

robust: they had, for instance, non-robust initial weights or the weights were not

resistant to leverage points (Hubert and Vanden Branden, 2003). Based on the

first strategy, for example, Wakeling and Macfie (1992) worked with the PLS with

multivariate response variables (which will be called PLS2) and their idea was to

replace the set of regressions involved in the standard PLS2 algorithm by M esti-

mates based on weighted regressions. Griep et al. (1995) compared least median

of squares (LMS), Siegel’s repeated median (RM) and iterative reweighted least

squares (IRLS) for PLS with univariate response variable (PLS1 algorithm), but

these methods are not resistant to high leverage outliers (González et al., 2009).

Based on the second strategy, a robust covariance estimation, the robust PLSR

methods provide resistance to all types of outliers including leverage points (Hu-

bert and Vanden Branden, 2003). For instance, Gil and Romera (1998) proposed

a robust PLSR method based on statistical procedures for covariance matrix ro-

bustification for PLS1 algorithm. They selected the well-known Stahel–Donoho

estimator (SDE) (Gil and Romera, 1998). Since SIMPLS is based on the empirical

cross-covariance matrix between the y-variables and the x-variables and on linear

Least Squares (LS) regression, the results are affected by outliers in the data set.

Hence, Hubert and Vanden Branden (2003) have been suggested a robust version

of this method called RSIMPLS that it is used in case of both univariate and

multivariate response variables. A robust method RSIMPLS starts by applying

ROBPCA on the x- and y-variables in order to replace the covariance matrices

Sxy and Sx by robust estimates and then proceeds analogously to the SIMPLS

algorithm. A robust regression method (ROBPCA regression) is performed in the

second stage. ROBPCA is a robust PCA method which combines projection pur-

suit ideas with Minimum Covariance Determinant (MCD) covariance estimation

in lower dimensions (Engelen et al., 2004; Hubert and Vanden Branden, 2003).
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Serneels et al. (2005) proposed a method called as Partial Robust M (PRM)

regression that it is conceptually different from the other robust PLSR methods:

instead of robust partial least squares, a partial robust regression estimator was

proposed. This method uses SIMPLS algorithm and it could be used in case

of univariate response. In this method, with an appropriately chosen weighting

scheme, both vertical outliers and leverage points were downweighted (Serneels et

al., 2005). As the name suggests, it is a partial version of the robust M-regression.

In an iterative scheme, weights ranging between zero and one are calculated to

reduce the influence of deviating observations in the y space as well as in the

space of the regressor variables. PRM is very efficient in terms of computational

cost and statistical properties (Liebmann et al., 2010). González et al. (2009)

also concentrated in the case of univariate response (PLS1) and showed that if

the sample covariance matrix is properly robustified the PLS1 algorithm will be

robust and, therefore, further robustification of the linear regression steps of the

PLS1 algorithm is unnecessary (González et al., 2009).

In this paper, we concentrate in the case of univariate response (PLS1)

and we present a procedure which applies the standard PLS1 algorithm to a

robust covariance matrix similar to Gil and Romera (1998) and González et al.

(2009) studies. In our study, we estimate the covariance matrix used in PLS1

algorithm robustly by using ‘an adaptive reweighted estimator of covariance using

Minimum Covariance Determinant (MCD) estimators in the first step as robust

initial estimators of location and covariance’.

The rest of the paper is organized as follows. Section 2 reviews briefly

the PLS1 algorithm (PLS with univariate response variable). Section 3 presents

the new proposed robust PLSR method ‘PLS-ARWMCD’. Section 4 contains

a simulation study where the performance of the new robust PLSR method is

compared to classical PLSR method and other four robust PLSR methods existing

in robust PLSR literature. Section 5 illustrates the performance of the new

proposed robust PLSR method ‘PLS-ARWMCD’ in a well known set of real data

in robust PLSR literature. Finally, Section 6 collects some conclusions.

2. THE CLASSICAL PLS1 ALGORITHM

It is supposed that we have a sample of size n of a 1 + p dimensional vector

z = (y,X)′ which could be decomposed as a set of p independent variables, x and

a univariate response variable y. Throughout this paper, matrices are denoted by

bold capital letters and vectors are denoted by bold lowercase letters. Let Sz, be

the sample covariance matrix of z, consisting of the elements Sz =

[

s2
y s′

y,X

sy,X SX

]

,

where sy,X is the p × 1 vector of covariances between y and the x variables.
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The aim of this study is to estimate the linear regression ŷ = β̂′x, and it is as-

sumed that the response variable can be linearly explained by a set of a compo-

nents t1, ..., tk with k << p, which are linear functions of the x variables. Hence,

calling X the n × p data matrix of the independent variables, and x′
i to its ith

row, the following model showed by (2.1) and (2.2) holds (González et al., 2009):

(2.1) xi = Pti + εi ,

(2.2) yi = q′ti + ηi .

Here, P is the p × k matrix of the loadings of the vector ti = (ti1, ..., tik)
′

and q is the k-dimensional vector of the y-loadings. The vectors εi and ηi have

zero mean, follow normal distributions and are uncorrelated. The component

matrix T = (t1, ..., tk)
′ is not directly observed and should be estimated. Then,

it can be shown that the maximum likelihood estimation of the T matrix is given

as in (2.3) (González et al., 2009):

(2.3) T = XWk .

Here, the loading matrix Wk = [w1, w2, ...,wk] is the p × k matrix of co-

efficients and the vectors wi, 1 ≤ i < k are the solution of (2.4) under the con-

straint in (2.5) with w1αsy,x. Consequently, we can conclude that components

(t1, ..., tk) are orthogonal (González et al., 2009):

(2.4) wi = arg max
w

cov2 (Xw, y) ,

(2.5) w′w = 1 and w′
iSxwj = 0 for 1 ≤ j < i .

It can be shown that vectors wi are found as the eigenvectors linked to the

largest eigenvalues of the matrix is given as in (2.6):

(2.6) (I − Px(i)) sy,xs′y,x .

Px(i) is the projection matrix on the space spanned by SXWi, given by Px(i) =

(SxWi)
[

(SxWi)
′ (SxWi)

]−1
(SxWi)

′. From these results it is easy to see that

the vectors wi can be computed recursively as in below:

(2.7) w1αsy,x ,

(2.8) wi+1αsy,x − SxWi

(

W ′
i SxWi

)−1
W ′

i sy,x, 1 ≤ i < k .

It could be mentioned that by using the expressions given by (2.7) and

(2.8), it is not necessary to calculate the PLS components ti. In each step of the
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algorithm, wi+1 only depends on the value of the i previous vectors w1, w2, ...,wi,

on Sx and on sy,x. Moreover, as w1 only depends on sy,x, the calculation of

W is completely fixed by the values of Sx and sy,x. Finally, as the regression

coefficients in (2.2) are uncorrelated, due to the uncorrelation of the t variables,

it is easy to see that the regression coefficients β̂PLS
k are given by (2.9) (González

et al., 2009):

(2.9) β̂PLS
k = Wk

(

W ′
kSxWk

)−1
W ′

ksy,x .

The application of this algorithm can be seen as a two step procedure:

(1) the weights wi, defining the new orthogonal regressor ti, are computed with

(2.7) and (2.8) by using the covariance matrix of the observations; (2) the y-

loadings qi are computed by regressing y on individual regressor ti. As it is shown

in (2.9) these two steps depend only on the covariance matrix of the observations

and it may be thought that if this matrix is properly robustified the procedure

will be robust (González et al., 2009).

3. THE NEW PROPOSED ROBUST PLSR METHOD

In this section, the new robust PLSR method, which we proposed based on

‘an adaptive reweighted estimator of covariance using MCD estimators in the first

step as robust initial estimators of location and covariance’, will be introduced.

This adaptive reweighted estimator of covariance will be used in order to robustify

the sample covariance matrix, Sz, in the PLS1 algorithm. Hence, while defining

this estimator, the equations are examined on zi = (yi, xi), i = 1, ..., n ∈ R
p′ ,

here, p′ = p + 1. In this method, the MCD estimator is calculated by well-known

‘FAST-MCD’ algorithm. Hence, in this section, firstly, information about MCD

estimator and operation of the FAST-MCD algorithm will be given.

Besides high outlier resistance, if robust multivariate estimators are to be

of practical use in statistical inference they should offer a reasonable efficiency

under the normal model and a manageable asymptotic distribution. However,

Minimum Volume Ellipsoid (MVE) and MCD estimators are not in this cate-

gory. Gervini (2003) stated that by taking care of both robustness and efficiency

considerations, the best choice seems to be a two-stage procedure. In this pro-

cedure, firstly, a highly robust but perhaps inefficient estimator is computed,

which is used for detecting outliers and computing the sample mean and covari-

ance of the ‘cleaned’ data set as in Rousseeuw and Van Zomeren (1990). This

procedure consists of discarding those observations whose Mahalanobis distances

exceed a certain fix threshold value. In the previous studies, the MVE was com-

monly used as initial estimator for these procedures. However, Rousseeuw and

Van Driessen (1999) have proposed an algorithm for calculating MCD estimator,
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although this algorithm does not guarantee that the exact estimator is found,

it is faster and more accurate than previously existing algorithms even for very

large data sets (n >> p′ = p + 1). This fact, added to its 1/
√

n rate of conver-

gence, seems to point to the MCD method using the FAST-MCD algorithm as

the current best choice in comparison to MVE for initial estimator of a two-step

procedure (Gervini, 2003).

MCD method, proposed by Rousseeuw (1984), is searching for those h data

points for which the determinant of the classical covariance matrix is minimal.

Hence, the MCD estimators of location and covariance will be the mean and

covariance matrix of these h data points, respectively. The calculation of MCD

estimation is not simple. Let z′
i = (yi, xi)

′, i = 1, ..., n be an unified data set. The

MCD estimator can only be applied to data sets where the number of observations

is larger than the number of variables (n > p′ = p + 1). The reason is that if

p′ > n then also p′ > h, and the covariance matrix of any h data points will

always be singular, leading to a determinant of zero. Thus, each subset of h data

points would lead to the smallest possible determinant, resulting in a non-unique

solution (Filzmoser et al., 2009; Polat, 2014).

FAST-MCD algorithm could deal with a sample size n in the tens of thou-

sands. FAST-MCD finds the exact solution for small data sets and it is faster

and more accurate than previously existing algorithms, even for very large data

sets. Rousseeuw and Van Driessen (1999) suggested to use FAST-MCD algorithm

in order to estimate location and covariance as considering the its statistical ef-

ficiency and fastness in computation (Rousseeuw and Van Driessen, 1999). In

FAST-MCD algorithm as the raw MCD estimators of location and covariance

are reweighted in order to improve the finite sample efficiency, they are called as

Reweighted Minimum Covariance Determinant (RMCD) estimators (Hubert and

Vanden Branden, 2003; Moller et al., 2005).

3.1. Construction of the FAST-MCD algorithm

3.1.1. Basic theorem and the C-step for the FAST-MCD algorithm

A key step of the FAST-MCD algorithm is the fact that starting from

any approximation to the MCD, it is possible to compute another approximation

with an even lower determinant. ‘C-step’ procedure, which is used in FAST-MCD

algorithm, given in following Theorem 3.1 (Rousseeuw and Van Driessen, 1999).

Theorem 3.1. Since z′
i = (yi, xi)

′, i = 1, ..., n consider a data set Zn =

{z1, ...,zn} of p′ = p + 1-variate observations. Let a set of observations that de-
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fined as H1 ⊂ {1, ..., n} with |H1| = h. Here, H1 shows the subset of h observa-

tions having the lowest determinant. Hence, as the location and covariance for

subset of h observations µ̂1 := (1/h)
∑

i∈H1
zi and Σ̂1 := (1/h)

∑

i∈H1
(zi − µ̂1) ·

(zi − µ̂1)
′, respectively, if det

(

Σ̂1

)

6= 0 then the relative distances are defined as

d1(i) :=
√

(z1 − µ̂1)
′ Σ̂−1

1 (z1 − µ̂1), i = 1, ..., n. Then, a set of observations H2 is

taken such that {d1(i); i ∈ H2} := {(d1)1:n , ..., (d1)h:n} where (d1)1:n ≤ (d1)2:n ≤
··· ≤ (d1)n:n are the ordered distances, and µ̂2 and Σ̂2 are computed based on H2.

Then, det
(

Σ̂2

)

≤ det
(

Σ̂1

)

with equality if and only if µ̂2 = µ̂1 and Σ̂2 = Σ̂1

(Polat, 2014; Rousseeuw and Van Driessen, 1999).

If det
(

Σ̂1

)

> 0, applying the Theorem 3.1 yields Σ̂2 with det
(

Σ̂2

)

≤

det
(

Σ̂1

)

. In FAST-MCD algorithm the construction in Theorem 3.1 is referred

to as ‘C-step’, where ‘C’ can be taken to stand for ‘covariance’ since Σ̂2 is the

covariance matrix of H2, or for ‘concentration’ since we concentrate on the h

observations with smallest distances, and Σ̂2 is more concentrated (has a lower

determinant) than Σ̂1 (Rousseeuw and Van Driessen, 1999).

Repeating C-steps yields an iteration process. If det
(

Σ̂2

)

= 0 or det
(

Σ̂2

)

=

det
(

Σ̂1

)

we stop; otherwise we run another C-step yielding det
(

Σ̂3

)

, and so on.

The sequence det
(

Σ̂1

)

≥ det
(

Σ̂2

)

≥ det
(

Σ̂3

)

≥ ... is nonnegative and hence

must converge. In fact, since there are only finitely many h subsets there must

be an index m such that det
(

Σ̂m

)

= 0 or det
(

Σ̂m

)

= det
(

Σ̂m−1

)

, hence con-

vergence is reached. In practice, m is often below 10. Afterwards, running the

C-step on
(

µ̂m, Σ̂m

)

no longer reduces the determinant. This is not sufficient

for det
(

Σ̂m

)

to be the global minimum of the MCD objective function, but it is

a necessary condition (Rousseeuw and Van Driessen, 1999). Thus, Theorem 3.1

provides a partial idea for an algorithm: ‘Take many initial choices of H1 and

apply C-steps to each until convergence, and keep the solution with lowest deter-

minant ’. However, several things must be decided to make this idea operational:

how to generate sets H1 to begin with, how many H1 are needed, how to avoid

duplication of work since several H1 may yield the same solution, can’t we do

with fewer C-steps, what about large sample sizes, and so on. These matters will

be discussed in the next sections.

3.1.2. Creating initial subsets H1

In order to apply the algorithmic idea given in the previous section, it must

be decided how to construct the initial subsets H1. For this purpose, first of all, a
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random (p′ + 1)-subset J must be drawn according to method given in Rousseeuw

and Van Driessen (1999) study and then µ̂0 := ave(J) and Σ̂0 := cov(J) must

be computed. If det
(

Σ̂0

)

= 0 then extend J by adding another random ob-

servation, and continue adding observations until det
(

Σ̂0

)

> 0. Then compute

the distances d2
0(i) := (zi − µ̂0)

′ Σ̂−1
0 (zi − µ̂0) for i = 1, ..., n. Sort them into

d0 (π(1)) ≤ ... ≤ d0 (π(n)) and put H1 := {π(1), ..., π(h)}. Rousseeuw and Van

Driessen (1999) mentioned that it would be useless to draw fewer than p′+1

points, since then Σ̂0 is always singular (Polat, 2014; Rousseeuw and Van Driessen,

1999).

3.1.3. Selective iteration

Each C-step calculates a covariance matrix, its determinant, and all relative

distances. Therefore, reducing the number of C-steps would improve the speed.

Rousseeuw and Van Driessen (1999) mentioned that often the distinction between

good (robust) solutions and bad solutions already becomes visible after two or

three C-steps. Moreover, they proposed to take only two C-steps from each initial

subsample, select the 10 different subsets with the lowest determinants, and only

for these 10 to continue taking C-steps until convergence (Rousseeuw and Van

Driessen, 1999).

3.1.4. Nested extensions

For a small sample size n, the above algorithm, which was mentioned in

Section 3.1.1, does not take much time. But when n grows, the computation time

increases, mainly due to the n distances that needed to be calculated each time.

To avoid doing all the computations in the entire data set, Rousseeuw and Van

Driessen (1999) considered a special structure. When n > 1500, the algorithm

generates a nested system of subsets which looks like in Figure 1, where the

arrows mean ‘is a subset of’.

In Figure 1 the five subsets of size 300 do not overlap, and together they

form the merged set of size 1500, which in turn is a proper subset of the data set

of size n. Since the method showed in Figure 1 work with two stages, ‘nested’

name is used. To construct the Figure 1 the algorithm draws 1500 observations,

one by one, without replacement. The first 300 observations, that it encounters,

are put in the first subset, and so on. Because of this mechanism each subset of

size 300 is roughly representative for the data set, and the merged set with 1500

cases even more representative. When n < 600 the algorithm operates as in the
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previous Section 3.1.1. However, when n ≥ 1500 Figure 1 is used (Rousseeuw and

Van Driessen, 1999).

Figure 1: Nested system of subsets generated by the FAST-MCD algorithm.

3.2. The implementation of the FAST-MCD algorithm

Combining all the components of the preceding sections yields the FAST-

MCD algorithm. The steps of the algorithm for p′ = p + 1 dimensional unified

vector z′
i = (yi, xi)

′, i = 1, ..., n are given as in below (Polat, 2014; Rousseeuw

and Van Driessen, 1999).

Step 1: The MCD estimates can resist (n − h) outliers, hence the number

h (or equivalently the proportion α = h/n) determines the robustness of the esti-

mator. The default h value is [(n + p′ + 1) /2] in FAST-MCD algorithm and the

highest resistance towards contamination is achieved by taking this value. How-

ever, the user may choose any integer h with [(n + p′ + 1) /2] ≤ h < n. When

a large proportion of contamination is presumed in data set, h should thus be

chosen h = [0.5n] with α = 0.5. Otherwise if it is exact that the data contains

less than 25% of contamination, which is usually the case, a good compromise be-

tween breakdown value and statistical efficiency is obtained by putting h = [0.75n]

(Polat, 2014; Rousseeuw and Van Driessen, 1999).

Step 2: From here on h < n and p′ ≥ 2. If n is small (say, n < 600) then,

• repeat (say) 500 times:

– construct an initial h-subset H1 using method in Section 3.1.2, i.e.

starting from a random (p′ + 1)-subset,

– carry out two C-steps described in Section 3.1.1;
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• for the 10 results with lowest det
(

Σ̂3

)

:

– carry out C-steps until convergence;

• report the solution
(

µ̂, Σ̂
)

with the lowest det
(

Σ̂
)

.

Step 3: If n is larger (say, n ≥ 600) then,

• construct up to five disjoint random subsets of size nsub according to

Section 3.1.4 (say, subsets of size nsub = 300);

• inside each subset, repeat 500/5 = 100 times:

– construct an initial subset H1 of size hsub = [nsub (h/n)],

– carry out two C-steps, using nsub and hsub,

– keep the 10 best results
(

µ̂sub, Σ̂sub

)

;

• pool the subsets, yielding the merged set (say, of size nmerged = 1500);

• in the merged set, repeat for each of the 50 solutions
(

µ̂sub, Σ̂sub

)

:

– carry out two C-steps, using nmerged and hmerged = [nmerged (h/n)],

– keep the 10 best results
(

µ̂merged, Σ̂merged

)

;

• in the full data set, repeat for the mfull best results:

– take several C-steps, using n and h,

– keep the best final result
(

µ̂full, Σ̂full

)

.

Here, mfull and the number of C-steps (preferably, until convergence) de-

pend on how large the data set is (Polat, 2014; Rousseeuw and Van Driessen,

1999).

This algorithm called as FAST-MCD. It is affine equivariant: when the data

are translated or subjected to a linear transformation, the resulting
(

µ̂full, Σ̂full

)

will transform accordingly. For convenience, the computer program contains two

more steps (Rousseeuw and Van Driessen, 1999):

Step 4: In order to obtain consistency when the data come from a multivari-

ate normal distribution, µ̂MCD = µ̂full and Σ̂MCD =
medi d2

(µ̂full,Σ̂full)
(i)

χ2
p′,0.5

Σ̂full

are putted.

Step 5: In order to obtain ‘one-step reweighted’ estimates, each observation

is reweighted as in (3.1). Hence, by using these weights, the RMCD estimators

are obtained as in (3.2):

(3.1) wi =

{

1, if (zi − µ̂MCD)′ Σ̂−1
MCD (zi − µ̂MCD) ≤ χ2

p′,0.975 ,

0, otherwise .
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µ̂RMCD =

∑n
i=1 wizi

∑n
i=1 wi

,

Σ̂RMCD =

∑n
i=1 wi (zi − µ̂RMCD) (zi − µ̂RMCD)′

∑n
i=1 wi

.

(3.2)

The FAST-MCD algorithm code named as ‘mcdcov ’ could be found in

MATLAB LIBRA Toolbox which is written by Verboven and Hubert (2005).

The implementation of mcdcov function could be given briefly as in below (Po-

lat, 2014; Verboven and Hubert, 2005):

• The data set contains n observations and p′ = p + 1 variables. When

n < 600, the algorithm analyzes the data set as a whole. When the

data set is analyzed as a whole, a subsample of p′ + 1 observations is

taken, of which of them the mean and covariance matrix are calculated.

The h observations with smallest relative distances are used to calculate

the next mean and covariance matrix, and this cycle is repeated two

C-step times. FAST-MCD algorithm is a resampling algorithm. 500

subsets of size p′ + 1 out of n are drawn randomly. Afterwards, the 10

best solutions (means and corresponding covariance matrices) are used

as starting values for the final iteration. The number of the subsets is

chosen as ‘500’ to ensure a high probability of sampling at least one

clean subset. These iterations stop when two subsequent determinants

become equal. At most three C-step iteration are done. The solution

with smallest determinant (location and covariance) is retained.

• However, when n ≥ 600 (whether n < 1500 or not), the algorithm does

part of the calculations on (at most) 5 non-overlapping subsets of

(roughly) 1500 observations. In this case, the algorithm functions in

three stages.

– Stage 1: For each H1 subsample in each subset, two C-steps iter-

ations are carried out in that subset. In this stage, 5 subsets and

500 subsamples are chosen. For each subset, the 10 best solutions

(location and covariance) are stored.

– Stage 2: Then the subsets are pooled, yielding a merged set with at

most 1500 observations. If n is large, the merged set is a proper sub-

set of the entire data set. In this merged set, each of these (at most

50) best solutions
(

µ̂sub, Σ̂sub

)

of Stage 1 are used as starting values

for C-step iterations. In this stage, starting from each
(

µ̂sub, Σ̂sub

)

,

it is continued taking C-steps by using all 1500 observations in the

merged set. Also here, the 10 best solutions
(

µ̂merged, Σ̂merged

)

are

stored.

– Stage 3: This stage depends on n, the total number of observations

in the data set. Finally, each of these 10 solutions is extended to the



A New Robust Partial Least Squares Regression Method 461

full data set in the same way and the best
(

µ̂full, Σ̂full

)

solution is

obtained. Since the final computations are carried out in the entire

data set, they take more time when n increases. Rousseeuw and

Van Driessen (1999) mentioned that the number of initial solutions
(

µ̂merged, Σ̂merged

)

and/or the number of C-steps in the full data set

could be limited in order to speed up the algorithm as n becomes

large (Rousseeuw and Van Driessen, 1999; Verboven and Hubert,

2005). Therefore, the default values of ‘mcdcov ’ function are: If

n ≤ 5000, all 10 preliminary solutions are iterated. If n > 5000, only

the best preliminary solution is iterated. The number of iterations

decreases to 1 according to n × p. If n × p ≤ 100000, the number of

C-steps take on the full data set in the Stage 3 iterate three times,

whereas for n × p > 1000000 only one iteration step is taken.

In the next section, information about ‘a robust and efficient adaptive

reweighted covariance estimator’, which was proposed in Gervini (2003), will be

given. This robust covariance estimator is constructed by using MCD estimators

in the first step as robust initial estimators of location and covariance.

3.3. A robust and efficient adaptive reweighted estimator of covariance

In the context of linear regression, many estimators have been proposed

that aim to reconcile high efficiency and robustness. Overall, if one wants to take

care of both robustness and efficiency considerations, the best choice seems to

be a two-stage procedure. Gervini (2003) proposed essentially an improvement

over Rousseeuw and Van Zomeren (1990). It consists of a reweighted one-step

estimator that uses adaptive threshold values. This adaptive reweighting scheme

is able to maintain the outlier resistance of the initial estimator in breakdown and

bias and, at the same time, attain 100% efficiency at the normal distribution.

This kind of adaptive reweighting was first proposed in Gervini (2002) for the

linear regression model. In Gervini (2003), this idea is extended and an adaptive

method is proposed for multivariate location and covariance estimation.

Given a sample z1, ...,zn in R
p′ with p′ = p+1 and initial robust estimators

of location and covariance
(

µ̂0n, Σ̂0n

)

consider the Mahalanobis distances given

in (3.3) (Gervini, 2003; Polat, 2014):

(3.3) di := d
(

zi, µ̂0n, Σ̂0n

)

=
{

(zi − µ̂0n)′ Σ̂−1
0n (zi − µ̂0n)

}1/2
.

An outlier will typically have a larger Mahalanobis distance than a ‘good’

observation. If one assumes a normal distribution, d2
i is approximately χ2

p′ dis-

tributed and it is reasonable to suspect of those observations with, for instance,
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d2
i ≥ χ2

p′,0.975. What Rousseeuw and Van Zomeren (1990) propose is to skip those

outlying observations and compute the sample mean and covariance matrix of

the rest of the data, obtaining in this way new estimators
(

µ̂1n, Σ̂1n

)

(Gervini,

2003; Polat, 2014).

Since the MCD method calculated by FAST-MCD algorithm is improved

as a good alternative to MVE method, Gervini (2003) stated that MCD estima-

tors could be used as the initial robust estimators of location and covariance in

the ‘adaptive reweighted’ method. Hence, in this study, in ‘adaptive reweighted’

method using the MCD estimators
(

µ̂MCD, Σ̂MCD

)

as initial robust estimators of

location and covariance
(

µ̂0n, Σ̂0n

)

, the obtained robust location and covariance

estimators
(

µ̂1n, Σ̂1n

)

are called as ‘Adaptive Reweighted Minimum Covariance

Determinant/ARWMCD’ estimators
(

µ̂ARWMCD, Σ̂ARWMCD

)

(Gervini, 2003; Po-

lat, 2014).

This reweighting step given in Gervini (2003) is known to improve the effi-

ciency of the initial estimator while retaining (most of) its robustness. However,

the threshold value χ2
p′,0.975 is an arbitrary number. For large data sets a con-

siderable number of observations have to be discarded from the analysis even if

they follow the normal model. One way to avoid this problem is to increase the

threshold value to another arbitrary fix number, however, in this case the bias

of the reweighted estimator will be affected. Hence, a better alternative is to

use ‘an adaptive threshold value’ that increases with n if the data is ‘clean’ but

remains bounded if there are outliers in the sample. Gervini (2003), proposed a

method of constructing such adaptive threshold values. Let (3.4) be the empirical

distribution of the squared Mahalanobis distances (Gervini, 2003; Polat, 2014):

(3.4) Gn(u) =
1

n

n
∑

i=1

I
(

d2
(

zi, µ̂MCD, Σ̂MCD

)

≤ u
)

.

Let Gp′(u) be the χ2
p′ distribution function. For a normally distributed

sample it is expected to Gn to converge to Gp′ . Therefore, a way to detect

outliers is to compare the tails of Gn with the tails of Gp′ . If η = χ2
p′,1−α for a

certain small α, say α = 0.025, (3.5) is defined (Gervini, 2003; Polat, 2014)

(3.5) αn = sup
u≥η

{

Gp′(u) − Gn(u)
}+

,

where {·}+ indicates the positive part. This αn can be regarded as a measure

of outliers in the sample. Since a negative difference would not indicate pres-

ence of outliers, it is only taken into account positive differences in (3.5). If

d2
(i) denotes the ith order statistic of the squared Mahalanobis distances and

i0 = max
{

i : d2
(i) < η

}

, then (3.5) comes down to as in (3.6) (Gervini, 2003; Po-
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lat, 2014):

(3.6) αn = max
i>i0

{

Gp′(d
2
(i)) −

i − 1

n

}+

.

Those observations corresponding to the largest ⌊αnn⌋ distances are con-

sidered as outliers and eliminated in the reweighting step. Here ⌊a⌋, is the largest

integer that is less than or equal to a. The cut-off value is then defined as in

(3.7) where as usual G−1
n (u) = min {s : Gn(s) ≥ u}. Note that cn = d2

(in) with

in = n− ⌊αnn⌋ and that in > i0 as a consequence of the definition of αn. There-

fore, cn > η (Gervini, 2003; Polat, 2014):

(3.7) cn = G−1
n (1 − αn) .

To define the reweighted estimator, weights of the form in (3.8) are used

(Gervini, 2003; Polat, 2014):

(3.8) win = w





d2
(

zi, µ̂MCD, Σ̂MCD

)

cn



 .

Here, the weight function that satisfies (W ) w : [0,∞) → [0, 1] is non-

increasing, w(0) = 1, w(u) > 0 for u ∈ [0, 1) and w(u) = 0 for u ∈ [1,∞). The

simplest choice among those functions satisfying (W ) is the hard-rejection func-

tion w(u) = I(u < 1) which is the one most commonly used in the practice.

Once weights in (3.8) are computed, the one-step reweighted estimators
(

µ̂ARWMCD, Σ̂ARWMCD

)

are defined as in (3.9) and (3.10) (Gervini, 2003; Polat,

2014):

(3.9) µ̂ARWMCD =

∑n
i=1 winzi

∑n
i=1 win

,

(3.10) Σ̂ARWMCD =

∑n
i=1 win (zi − µ̂ARWMCD) (zi − µ̂ARWMCD)′

∑n
i=1 win

.

It is clear that under appropriate conditions, the threshold values in (3.7)

will tend to infinity under the multivariate normal model and then (3.9) and (3.10)

will be asymptotically equivalent to the common sample mean and covariance,

and thus attain full asymptotic efficiency (Gervini, 2003).

Finally, in this study, first of all, by using robust covariance estimator

Σ̂ARWMCD that it is given in (3.10), the robust covariance estimator Ŝz of Sz =
[

s2
y s′

y,X

sy,X SX

]

is obtained. Then, by using robust covariance estimator Ŝz in
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the alternative definition of PLS1 algorithm given between (2.7)–(2.9), a new

robust PLSR method called ‘PLS-ARWMCD’ is proposed. The steps of the PLS-

ARWMCD algorithm could be given as in (3.11) (Polat, 2014):

w1αŝy,x ,

wi+1αŝy,x − ŜxWi

(

W ′
i ŜxWi

)−1
W ′

i ŝy,x, 1 ≤ i < k ,

β̂PLS−ARWMCD
k = Wk

(

W ′
kŜxWk

)−1
W ′

kŝy,x .

(3.11)

Here, the robust covariance estimations ŝy,x and Ŝx are obtained by de-

composing the robust covariance estimation of unified data set z′
i = (yi, xi)

′,

i = 1, ..., n , which is calculated by ARWMCD estimator, as in Ŝz =

[

ŝ2
y ŝ′

y,X

ŝy,X ŜX

]

(Polat, 2014).

4. SIMULATION STUDY

In this section, the new proposed robust PLS-ARWMCD method is com-

pared with other four robust PLSR methods RSIMPLS (Hubert and Vanden

Branden, 2003), PRM (Serneels et al., 2005), PLS-SD (Gil and Romera, 1998),

PLS-KurSD (González et al., 2009) and the classical PLSR method in order to

validate the good properties of the new PLSR robustification. The new pro-

posed robust PLS-ARWMCD method and the other five methods (including the

classical method) are compared in terms of efficiency, goodness-of-fit (GOF) and

predictive ability by performing a simulation study on uncontaminated and con-

taminated data sets.

According to the initial models given in (2.1) and (2.2), and following a

simulation design similar as the one described in González et al. (2009), we have

generated the data sets as in (4.1):

T ∼ N2 (02,Σt) ,

X = TI2,p + Np (0p, 0.1Ip) ,

y = TA2,1 + N(0, 1) .

(4.1)

Here, (Ik,p)i,j = 1, for i = j and (Ik,p)i,j = 0, otherwise; Ip is p × p di-

mensional identity matrix; 02 = (0, 0)′ is a two-dimensional vector of zeros and

A2,1 = (1, 1)′ is a two-dimensional vector of ones and T is the n × 2 dimensional

component matrix. Furthermore, we select n = 200, p = 5, k = 2 and we set

Σt =

[

4 0
0 2

]

.
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In this simulation study, the performance of the new proposed robust PLS-

ARWMCD method is compared with other four robust PLSR methods existing

in the literature and the classical method in the presence of five types of contam-

ination.

1. Bad leverage points, which occurs when an observation is far away from

the regression hyperplane while its projection onto the regression hy-

perplane falls outside the large majority of the projected observations

(good observations):

Bad Leverage Points :
Tǫ ∼ N2 (102,Σt) ,
Xǫ = TǫI2,p + Np (0p, 0.1Ip) .

2. Vertical outliers, which are observations with large distance from the

hyperplane but with projections within the large majority of the pro-

jected observations:

Vertical outliers : yǫ = TA2,1 + N(10, 0.1) .

3. Good leverage points, which are observations located in the vicinity of

the hyperplane but far away from the cluster of the large majority of

the observations:

Good Leverage Points :
Tǫ ∼ N2 (102,Σt) ,
Xǫ = TǫI2,p + Np ((02,10p−2) , 0.1Ip) .

4. Concentrated Outliers, which are clusters of bad leverage points:

Concentrated Outliers :
Tǫ ∼ N2 (102,Σt) ,
Xǫ = TǫI2,p + Np (10p, 0.001Ip) .

5. Orthogonal outliers, which were first used by Hubert and Vanden Bran-

den (2003). They have the property that they lie far from the t-space,

but they become regular observations after projection in the t-space.

Hence they will not badly influence the computation of the regression

parameters, but they might influence the loadings:

Orthogonal outliers : Xǫ = TI2,p + Np ((02,10p−2) , 0.1Ip) .

For each situation, m = 1000 data sets were generated. The efficiency of

the considered methods is evaluated by means of the MSE of the estimated re-

gression parameters β̂ that is defined as in (4.2). Moreover, it is clear that the

true parameter vector is determined as βp,1 = I ′
p,2A2,1. Here, β̂

(l)
k denotes the

estimated parameter based on k components in the lth simulation. The MSE in-

dicates to what extent the slope and intercept are correctly estimated. Therefore,

the aim is to obtain a MSE value close to zero (Engelen et al., 2004):

(4.2) MSEk

(

β̂
)

=
1

m

m
∑

l=1

∥

∥

∥β̂
(l)
k − β

∥

∥

∥

2
.
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Furthermore, we are interested on how well the methods fit the regular data

points. Because of the simulation settings, we know exactly their indices as we

store in the set Gr. Then, the GOF criterion is defined as in (4.3). Here ri,k is the

residual of the ith observation when k components are computed. The objective

is to obtain a GOF value close to 1 (Engelen et al., 2004):

(4.3) GOFk = 1 −
var
i∈Gr

(ri, k)

var
i∈Gr

(yi)
.

The predictive ability of the methods could be measured by means of the

Root Mean Squared Error (RMSE). First a test set Gt of uncontaminated data

points with size nt = 100 is generated and then (4.4) is computed. Here, ŷi,k is the

predicted y-value of observation i from the test set when the regression parameter

estimates are based on the training set (X, Y ) of size n and k components are

retained in the model (Engelen et al., 2004):

(4.4) RMSEk =

√

√

√

√

1

nt

nt
∑

i=1

(yi − ŷi,k)
2 .

After m = 1000 replications, the mean angle (denoted by mean(angle)) be-

tween the estimated slope β̂[yǫ,Xǫ],k and the true slope β are also evaluated and

included in the simulation results (González et al., 2009; Hubert and Vanden

Branden, 2003).

The results obtained according to simulation settings given in above for

the data sets uncontaminated and contaminated by replacing first 10% and 20%

of the observations by different types of outliers: bad leverage points, vertical

outliers, good leverage points, concentrated outliers and orthogonal outliers. The

simulation results for the n = 200, p = 5, k = 2 when the proportion of outliers

is 10% given in Table 1. The simulation results for the same simulation setting

when the proportion of outliers is 20% given in Table 2.

Table 1 shows that in case of no contamination is added the new proposed

robust PLS-ARWMCD method and the four robust PLSR methods existing in

the literature (RSIMPLS, PRM, PLS-SD, PLS-KurSD) have nearly close per-

formance to classical PLSR method in terms of efficiency, fitting to data and

predictive ability. However, when the data set is contaminated by different types

of outliers, the four robust PLSR methods existing in literature and the new

proposed robust PLSR method outperform the classical PLSR method especially

in terms of efficiency and predictive ability. Especially when the data contain

bad leverage points or concentrated outliers, the performance of classical PLSR

method in terms of efficiency, fitting to data and predictive ability is much lower

than the new proposed robust PLS-ARWMCD method. The mean angle values
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between the estimated slope and the true slope for the classical PLSR method

are also higher than the new proposed robust PLS-ARWMCD method for these

two types of outliers.

Table 1: The sample size is n = 200, p = 5 and k = 2,
the proportion of outliers is 10%.

PLSR RSIMPLS PRM PLS- SD PLS-KurSD
PLS-

ARWMCD

No Contamination

MSE 0.0092 0.0111 0.0101 0.0104 0.01 0.0105
GOF 0.8312 0.8308 0.8308 0.8308 0.8309 0.8308
RMSE 1.0961 1.0974 1.0969 1.0973 1.0968 1.0974
Mean(angle) 0.0446 0.0519 0.0462 0.0492 0.0477 0.0491

Bad Leverage Points

MSE 1.7184 0.0115 0.0688 0.0969 0.0109 0.0104
GOF 0.2585 0.8306 0.8177 0.8098 0.8307 0.8309
RMSE 2.2892 1.0996 1.1413 1.1654 1.0996 1.0989
Mean(angle) 1.1403 0.0515 0.0796 0.0943 0.0496 0.0478

Vertical Outliers

MSE 0.0489 0.0107 0.0121 0.0118 0.0113 0.0106
GOF 0.817 0.8295 0.8294 0.8296 0.8299 0.83
RMSE 1.1384 1.0989 1.0998 1.0998 1.0987 1.0981
Mean(angle) 0.113 0.0467 0.0516 0.0526 0.0507 0.0485

Good Leverage Points

MSE 1.0282 0.0118 1.0346 0.0162 0.0109 0.0103
GOF 0.6988 0.8307 0.7721 0.8305 0.8307 0.8309
RMSE 1.4658 1.0996 1.2789 1.1002 1.0996 1.0988
Mean(angle) 0.768 0.053 0.7027 0.0583 0.0496 0.0476

Concentrated Outliers

MSE 1.9646 0.0118 1.6318 0.03 0.0109 0.0104
GOF 0.5093 0.8307 0.7503 0.8281 0.8307 0.8309
RMSE 1.8671 1.0996 1.3228 1.1078 1.0996 1.0989
Mean(angle) 1.1031 0.0529 0.6964 0.0707 0.0496 0.0478

Orthogonal Outliers

MSE 0.1815 0.0137 0.1341 0.0107 0.0109 0.0103
GOF 0.7847 0.8295 0.7988 0.8298 0.8298 0.83
RMSE 1.2316 1.1002 1.1917 1.0996 1.0997 1.099
Mean(angle) 0.2821 0.0575 0.2323 0.0494 0.0503 0.0488

Table 1 shows that there are no big differences between the classical method

and the robust PLSR methods (including the new proposed robust PLS-ARWMCD

method) in terms of fitting to data for the contaminated data sets with the

exception of good leverage points, bad leverage points and concentrated outliers.

It could be mentioned that for all the types of outliers the new proposed robust

PLS-ARWMCD method comes to the forefront with robust RSIMPLS and PLS-

KurSD methods existing in the literature especially in terms of efficiency. Overall,

for all the types of outliers the new proposed robust PLS-ARWMCD method with

more or less differences gives better results than robust PRM method in terms
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of efficiency, fitting to data and predictive ability. Furthermore, for all types of

outliers but especially when the data contain bad leverage points or concentrated

outliers, the new proposed robust PLS-ARWMCD method outperforms robust

PLS-SD method in terms of efficiency, fitting to data and predictive ability. The

mean angle values between the estimated slope and the true slope for the PLS-

AWMCD method is also lower than the classical method (as expected) and all

the other four robust PLSR methods for all types of outliers with the exception

of vertical outliers. Because when the data contain vertical outliers RSIMPLS

gives somewhat lower mean(angle) value than the PLS-ARWMCD method.

Table 2 shows that for all the types of outliers with the exception of vertical

outliers when the proportion of outliers increases, it is seen that the performance

of robust PRM method decreases especially in terms of efficiency and predic-

tive ability, moreover, the mean angle values between the estimated slope and

the true slope for this robust method is also higher than the other four robust

PLSR methods (including the new proposed robust PLS-ARWMCD method).

Especially when the proportion of concentrated outliers or orthogonal outliers

is 20% in the data set, PRM method performs worse even than classical PLSR

method in terms of MSE, GOF, RMSE and mean(angle) criterions. Furthermore,

when there is 20% proportion of good leverage points PRM performs worse than

classical PLSR method in terms of efficiency.

It is clear that when there is 20% proportion of bad leverage points or ver-

tical outliers in the data set, the new proposed robust PLS-ARWMCD method,

robust PLS-KurSD and RSIMPLS methods existing in the literature are the three

forefront methods in terms of efficiency and predictive ability. Moreover, the mean

angle values between the estimated slope and the true slope of these three robust

methods are also lower than the robust PRM and PLS-SD methods for these two

types of outliers. The concentrated outliers are the hardest type of outliers to

cope with. It is seen that when there is 20% proportion of bad leverage points or

concentrated outliers in the data set, the new proposed robust PLS-ARWMCD

method performs better than both robust PLS-SD and PRM methods existing

in the literature in terms of efficiency, fitting to data and predictive ability. Fur-

thermore, PLS-ARWMCD method’s mean angle values are also lower than these

two robust methods for these two types of outliers. It could be mentioned that

when the proportion of outliers in the data set gets a high-level as 20%, the new

proposed robust PLS-ARWMCD method still gives better results than classical

PLSR method for all the types of outliers in terms of efficiency, fitting to data

and predictive ability.

Overall, both of from Table 1 and Table 2, it could be concluded that

the new proposed robust PLS-ARWMCD method outperforms especially its two

robust competitors (PRM and PLS-SD) existing in the literature with more or

less differences in terms of efficiency, fitting to data and predictive ability for five

different types of outliers.
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Table 2: The sample size is n = 200, p = 5 and k = 2,
the proportion of outliers is 20%.

PLSR RSIMPLS PRM PLS- SD PLS-KurSD
PLS-

ARWMCD

No Contamination

MSE 0.0092 0.0111 0.0101 0.0104 0.01 0.0105
GOF 0.8312 0.8308 0.8308 0.8308 0.8309 0.8308
RMSE 1.0961 1.0974 1.0969 1.0973 1.0968 1.0974
Mean(angle) 0.0446 0.0519 0.0462 0.0493 0.0477 0.0491

Bad Leverage Points

MSE 1.8946 0.0122 1.7726 0.4134 0.0121 0.0109
GOF 0.1858 0.8309 0.2395 0.7143 0.831 0.8313
RMSE 2.4002 1.1012 2.3205 1.4282 1.1011 1.0998
Mean(angle) 1.3018 0.0537 1.1833 0.2467 0.054 0.05

Vertical Outliers

MSE 0.0791 0.0115 0.0174 0.0176 0.0126 0.0112
GOF 0.8057 0.8278 0.8265 0.8267 0.8282 0.8286
RMSE 1.1681 1.1002 1.106 1.1063 1.1003 1.0989
Mean(angle) 0.1437 0.0471 0.0632 0.0656 0.054 0.0503

Good Leverage Points

MSE 0.9975 0.0128 1.0568 0.044 0.0121 0.0109
GOF 0.6741 0.831 0.6817 0.8282 0.831 0.8313
RMSE 1.5213 1.1011 1.5049 1.1102 1.1011 1.0998
Mean(angle) 0.7739 0.057 0.7813 0.1165 0.0539 0.05

Concentrated Outliers

MSE 1.8527 0.0128 1.926 0.1628 0.0121 0.0109
GOF 0.4929 0.831 0.485 0.8107 0.831 0.8313
RMSE 1.8946 1.1012 1.9104 1.1648 1.1011 1.0998
Mean(angle) 1.1091 0.0569 1.1119 0.2307 0.0539 0.05

Orthogonal Outliers

MSE 0.1987 0.0176 0.2332 0.0108 0.0115 0.0104
GOF 0.7806 0.831 0.7718 0.8319 0.8319 0.8322
RMSE 1.2488 1.1026 1.2739 1.1007 1.101 1.0999
Mean(angle) 0.2982 0.066 0.3247 0.0504 0.0519 0.0491

5. APPLICATION TO FISH DATA

In this section, the new proposed robust PLSR method and four robust

PLSR methods, existing in the literature, will be compared on a real data includ-

ing outliers in terms of goodness-of-fit and predictive ability by using (4.3) and

(4.4). For this purpose, the fish data which was given in Naes (1985) will be used.

The fish data comprise 45 observations and the last 7 are outliers (in the words of

Naes, ‘abnormal samples’). In this example, fat concentration (percentage, %) of

45 fish samples (rainbow trout) and independent variables of the absorbance at

9 Near Infrared Reflectance (NIR) wavelengths measured after sample homogeni-

sation. The aim of the analysis made on this data set is to model the relationships

between the fat concentration (one response variable) and these nine spectrums

(independent variables). In this study, the data set is divided into two parts.
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The first 20 observations are the test set and the other remained 25 samples are

the training set (Gil and Romera, 1998; Hardy et al., 1996; Naes, 1985).

Firstly, similar to the our simulation studies, while computing the GOF val-

ues 7 outliers are removed from training set that occurs of 25 samples. However,

while computing the RMSE values the models are constituted using the training

set including the 7 outliers. Then, by using the regression coefficients obtained

from these models, the predictions are made from clean test set that occurs of

20 samples. Hence, the predictive ability of the new robust PLSR method ‘PLS-

ARWMCD’ is examined especially against the classical PLSR method and the

other four robust methods.

The GOF or RMSE values could be considered while selecting the number

components that will be retained in the model. The optimal number of compo-

nents could be selected as the k for which the GOF values are no more change.

However, as it is mentioned before in Engelen et al. (2004), it is more convenient

to consider the RMSE values while selecting the optimal number of components.

The significant point while selecting the optimal number of components retaining

in the model is that adding one more component whether cause an important

decrease or not in RMSE value. Hence, both the aim of data reduction is not

deviated and an unnecessary component is not added to model. In Figure 2, the

figure of RMSE values against the number of components in the model is drawn.

Figure 2: The RMSE values against the number of components in the model for fish data
with the training set of 25 samples and the test set of 20 samples.

When Figure 2 is examined, it is seen that it is right to select the number

of components retaining in the model as three for this data set. Because from

the figure it is seen that adding the third component to the model causes a
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significant decrease in the RMSE values of all the methods. It could be seen

also much clearly from Table 3 that the optimal number of components should

be selected as kopt = 3, as adding the third component to the model cause an

important decrease in the RMSE values for all the robust methods. Furthermore,

it is clear that the fitting to data also improves for all the methods after adding

the third component to the model. Table 3 shows that the new proposed robust

PLS-ARWMCD method fitting to the data better and it has a higher predictive

ability than both classical PLSR method and robust PRM method for kopt = 3.

Table 3: The GOF and RMSE values for fish data in case of the first 20 observa-
tions are the test set and the other 25 samples are the training set.

Number of
Components

PLSR RSIMPLS PRM PLS-SD PLS-KurSD
PLS-

ARWMCD

k=1
GOF 0.2912 0.4335 0.3777 0.4417 0.4444 0.4397

RMSE 3.0001 2.2937 2.3307 2.2274 2.2029 2.2487

k=2
GOF 0.6927 0.7421 0.2713 0.7853 0.6948 0.7605

RMSE 1.9715 1.8293 2.4072 1.573 1.8935 1.8234

k=3
GOF 0.882 0.9687 0.6166 0.9665 0.9594 0.9579

RMSE 1.4861 1.1401 2.0993 1.0797 1.259 1.3322

k=4
GOF 0.8987 0.971 0.6277 0.9737 0.9447 0.9662

RMSE 1.3742 1.1089 2.0237 1.1198 1.1924 1.2646

k=5
GOF 0.9113 0.979 0.6782 0.9716 0.9777 0.9713

RMSE 1.4874 1.1918 2.0921 1.2705 1.2708 1.5054

k=6
GOF 0.9231 0.9825 0.7705 0.9796 0.9854 0.9816

RMSE 1.5348 1.0543 1.4578 1.3727 1.1129 1.4545

k=7
GOF 0.9299 0.9829 0.7806 0.9714 0.9865 0.9862

RMSE 1.4553 1.519 1.5835 1.2033 1.4528 1.3679

k=8
GOF 0.9463 0.9768 0.8063 0.9769 0.9868 0.9861

RMSE 1.5056 1.7989 1.7409 1.1925 1.4019 1.33

k=9
GOF 0.9463 0.9851 0.8087 0.9812 0.9798 0.987

RMSE 1.5052 1.4874 1.8095 1.2338 1.2843 1.399

6. CONCLUSIONS

In this study, we propose a new robust PLSR method for the linear regres-

sion model with one response variable, PLS-ARWMCD, in order to obtain robust

predictions in case of outliers present in the data set.

In the simulation study, the new proposed robust PLSR method is com-

pared with classical PLSR method and four robust PLSR methods existing in

the literature in terms of efficiency, fitting to data and predictive ability on a

clean data set and on contaminated data sets with bad leverage points, verti-

cal outliers, good leverage points, concentrated outliers or orthogonal outliers.
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The optimal number of components is selected as k = 2 at the beginning of the

simulation study. 10% and 20% proportions of this data set are replaced by out-

liers, respectively. Thus, the increment in the proportion of outliers how affects

on performances of the new proposed robust PLSR method and four robust PLSR

methods (existing in the literature) is examined. When the 10% proportion of the

data set is contaminated by different types of outliers, both the new proposed ro-

bust PLS-ARWMCD method and the four robust PLSR methods existing in the

literature outperform classical PLSR method in terms of efficiency and predictive

ability (exception of PRM method that performs not better than classical PLSR

method in terms of efficiency in case of good leverage points existence). The PLS-

ARWMCD method comes to the forefront as a good alternative method against

robust PRM and PLS-SD methods in terms of efficiency, fitting to data and pre-

dictive ability for all the types of outliers. Moreover, PLS-ARWMCD method

shows a close performance with robust RSIMPLS and PLS-KurSD methods in

terms of efficiency, fitting to data, predictive ability and mean angle measures.

When the proportion of outliers in the data set is reached to a high level as

20%, robust PRM method shows a lower performance than other robust methods

in terms of efficiency, fitting to data and predictive ability for all the types of

outliers except that vertical outliers. Furthermore, if there is 20% proportion of

concentrated outliers or orthogonal outliers in the data set, robust PRM method

looses its performance completely against classical PLSR method. When there

is high proportion of bad leverage points or concentrated outliers in the data

set, robust PLS-SD method is less efficient and it has a lower predictive ability

than the other robust RSIMPLS, PLS-KurSD methods and new proposed robust

PLS-ARWMCD method.

The results obtained from real data analysis show that the optimal number

of components is selected as kopt = 3, as adding the third component to the

model causes a considerably decrease in the RMSE values of robust methods.

It is clear from the results of the model containing k = 3 components that GOF

values of the new proposed robust PLS-ARWMCD method are higher than both

classical PLSR method and robust PRM method. Moreover, when kopt = 3 is

selected, the RMSE value for PLS-ARWMCD is lower than both classical PLSR

method and robust PRM method. Generally, whatever the optimal number of

the components in the model for the fish data set, the new proposed robust PLS-

ARWMCD method gives better models than both classical PLSR method and

robust PRM method in terms of fitting to data and predictive ability.

Consequently, it is seen that the new proposed robust PLS-ARWMCD

method gives more efficient results than especially classical PLSR method in

data sets contaminated by a reasonable amount of outliers. The simulation

study shows that when the data contain 10% or 20% proportion of bad lever-

age points, the new robust PLS-ARWMCD method outperforms both of the

robust PRM and PLS-SD methods in terms of efficiency and predictive ability.
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When the data contain 10% proportion of vertical outliers, the new robust PLS-

ARWMCD method shows a close performance to the other four robust PLSR

methods existing in literature. However, when there is 20% proportion of ver-

tical outliers in the data set; the new robust PLS-ARWMCD method, robust

RSIMPLS and PLS-KurSD methods are the forefront methods in terms of ef-

ficiency and predictive ability. When the data contain 10% or 20% proportion

of good leverage points; the new robust PLS-ARWMCD method has a better

performance than robust PRM method both in terms of efficiency and predictive

ability, however, it is only more efficient than robust PLS-SD method. When

there is 10% proportion of concentrated outliers; the new robust PLS-ARWMCD

method is both more efficient and it has a higher predictive ability than robust

PRM method, however, it is only more efficient than robust PLS-SD method.

When there is 20% proportion of concentrated outliers in the data set, the new

robust PLS-ARWMCD method is both more efficient and it has a higher predic-

tive ability than both robust PRM and PLS-SD methods. When the data contain

10% or 20% proportion of orthogonal outliers; the new robust PLS-ARWMCD

method has a better performance than robust PRM method in terms of efficiency,

fitting to data and predictive ability. Overall, it could be concluded that the new

proposed robust PLS-ARWMCD could cope with different types and proportions

of outliers efficiently and it give robust predictions.
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