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Abstract:

• The usual CUSUM chart for the mean (CUSUM-X̄) is a chart used to quickly detect
small to moderate shifts in a process. In presence of outliers, this chart is known to be
more robust than other mean-based alternatives like the Shewhart mean chart but it
is nevertheless affected by these unusual observations because the mean (X̄) itself is
affected by the outliers. An outliers robust alternative to the CUSUM-X̄ chart is the
CUSUM median (CUSUM-X̃) chart, because it takes advantage of the robust proper-
ties of the sample median. This chart has already been proposed by other researchers
and compared with other alternative charts in terms of robustness, but its performance
has only been investigated through simulations. Therefore, the goal of this paper is
not to carry out a robustness analysis but to study the effect of parameter estima-
tion in the performance of the chart. We study the performance of the CUSUM-X̃
chart using a Markov chain method for the computation of the distribution and the
moments of the run length. Additionally, we examine the case of estimated parameters
and we study the performance of the CUSUM-X̃ chart in this case. The run length
performance of the CUSUM-X̃ chart with estimated parameters is also studied using
a proper Markov chain technique. Conclusions and recommendations are also given.
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1. INTRODUCTION

A main objective for a product or a process is to continuously improve its

quality. This goal, in statistical terms, may be expressed as variability reduction.

Statistical Process Control (SPC) is a well known collection of methods aiming

at this purpose and the control charts are considered as the main tools to detect

shifts in a process. The most popular control charts are the Shewhart charts,

the Cumulative Sum (CUSUM) charts and the Exponentially Weighted Moving

Average (EWMA) charts. Shewhart type charts are used to detect large shifts in

a process whereas CUSUM and EWMA charts are known to be fast in detecting

small to moderate shifts.

The usual Shewhart chart for monitoring the mean of a process is the X̄

chart. It is very efficient for detecting large shifts in a process (see for example

Teoh et al., 2014). An alternative chart used for the same purpose is the median

(X̃) chart. The median chart is simpler than the X̄ chart and it can be easily

implemented by practitioners. The main advantages of the X̃ chart over the X̄

chart is its robustness against outliers, contamination or small deviations from

normality. This property is particularly important for processes running for a

long time. Usually, in such processes, the data are not checked for irregular

behaviour and, therefore, the X̃ chart is an ideal choice.

The CUSUM-X̄ control chart has been introduced by Page (1954). It is

able to quickly detect small to moderate shifts in a process. The CUSUM-X̄

control chart uses information from a long sequence of samples and, therefore,

it is able to signal when a persistent special cause exists (see for instance Nenes

and Tagaras (2006) or Liu et al. (2014)). However, since it is mean-based, the

CUSUM-X̄ suffers from the inefficiency of the mean X̄ to correctly handle out-

liers, contamination or small deviations from normality. A natural alternative

solution to overcome this problem is the CUSUM-X̃ chart. This chart has al-

ready been proposed by Yang et al. (2010). In their paper they compare its

performance with the Shewhart, EWMA and CUSUM charts for the mean under

some contaminated normal distributions using only simulation procedures. This

chart has also been considered by Nazir et al. (2013a), again in a simulation study

with other CUSUM charts, in order to compare their performance for the phase

II monitoring of location in terms of robustness against non-normality, special

causes of variation and outliers.

In the last decades, different types of control charts for variable and count

data based on CUSUM schemes, in univariate or multivariate cases, were pro-

posed in the literature. Here we only mention some recent and less traditional

works on robust and enhanced CUSUM schemes, nonparametric and adaptive

CUSUM control charts and CUSUM charts for count and angular data. The
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interested reader could also take into account the references in the paper that

follow.

Ou et al. (2011, 2012) carried out a comparative study to evaluate the

performance and robustness of some typical X, CUSUM and SPRT type control

charts for monitoring either the process mean or both the mean and variance,

also providing several design tables to facilitate the implementation of the opti-

mal versions of the charts. Nazir et al. (2013b), following the same methodology

used in Nazir et al. (2013a), but for monitoring the dispersion, considered several

CUSUM control charts based on different scale estimators, and analyzed its per-

formance and robustness. Qiu and Zhang (2015) investigated the performance

of some CUSUM control charts for transformed data in order to accommodate

deviations from the normality assumption when monitoring the process data, and

they compared its efficiency with alternative nonparametric control charts. To

improve the overall performance of the CUSUM charts to detect small, moderate

and large shifts in the process mean, Al-Sabah (2010) and Abujiya et al. (2015)

proposed the use of special sampling schemes to collect the data, such as the

ranked set sampling scheme and some extensions of it, instead of using the tradi-

tional simple random sampling. Saniga et al. (2006, 2012) discussed the economic

advantages of the CUSUM versus Shewhart control charts to monitor the process

mean when one or two components of variance exist in a process.

The use of nonparametric control charts has attracted the attention of re-

searchers and practitioners. Chatterjee and Qiu (2009) proposed a nonparametric

cumulative sum control chart using a sequence of bootstrap control limits to mon-

itor the mean, when the data distribution is non-normal or unknown. Li et al.

(2010b) considered nonparametric CUSUM and EWMA control charts based on

the Wilcoxon rank-sum test for detecting mean shifts, and they discussed the

effect of phase I estimation on the performance of the chart. Mukherjee et al.

(2013) and Graham et al. (2014) proposed CUSUM control charts based on the

exceedance statistic for monitoring the location parameter. Chowdhury et al.

(2015) proposed a single distribution free phase II CUSUM control chart based

on the Lepage statistic for the joint monitoring of location and scale. The perfor-

mance of this chart was evaluated by analyzing some moments and percentiles of

the run-length distribution, and a comparative study with other CUSUM charts

was provided. Wang et al. (2017) proposed a nonparametric CUSUM chart based

on the Mann–Whitney statistic and on a change point model to detect small shifts.

Wu et al. (2009) and Li and Wang (2010) proposed adaptive CUSUM con-

trol charts implemented with a dynamical adjustment of the reference parameter

of the chart to efficiently detect a wide range of mean shifts. Ryu et al. (2010) pro-

posed the design of a CUSUM chart based on the expected weighted run length

(EWRL) to detect shifts in the mean of unknown size. Li et al. (2010a) and

Ou et al. (2013) considered adaptive control charts with variable sampling inter-

vals or variable sample sizes to overcome the detecting ability of the traditional
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CUSUM. Liu et al. (2014) proposed an adaptive nonparametric CUSUM chart

based on sequential ranks that efficiently and robustly detects unknown shifts of

several magnitudes in the location of different distributions. Wang and Huang

(2016) proposed an adaptive multivariate CUSUM chart, with the reference value

changing dynamically according to the current estimate of the process shift, that

performs better than other competitive charts when the location shift is unknown

but falls within an expected range.

Some CUSUM charts for count data can be found in Saghir and Lin (2014),

for monitoring one or both parameters of the COM-Poisson distribution, in He

et al. (2014), for monitoring linear drifts in Poisson rates, based on a dynamic

estimation of the process mean level, and in Rakitzis et al. (2016), for monitoring

zero-inflated binomial processes. Recently, Lombard et al. (2017) developed and

analyzed the performance of distribution-free CUSUM control charts based on

sequential ranks to detect changes in the mean direction and dispersion of angular

data, which are of great importance to monitor several periodic phenomena that

arise in many research areas.

To update the literature review in Jensen et al. (2006) about the effects of

parameter estimation on control chart properties, Psarakis et al. (2014) provided

some recent discussions on this topic. We also mention the works of Gandy and

Kvaloy (2013) and Saleh et al. (2016), that suggest the design of CUSUM charts

with a controlled conditional performance to reduce the effect of the Phase I

estimation, avoiding at the same time the use of large amount of data. Such

charts are designed with an in-control ARL that exceeds a desired value with a

predefined probability, while guaranteeing a reduced effect on the out of control

performance of the chart.

In this paper we study the CUSUM-X̃ chart with known and estimated

parameters for monitoring the mean value of a normal process, a topic, as far

as we know, not yet studied in the literature, apart from simulation. The

CUSUM-X̃ chart is the most simple alternative to the CUSUM-X̄ in terms of

efficiency/robustness, when there is some chance of having small disturbances in

the process. For instance, it is possible to have a small percentage of outliers or

contamination along time, that does not affect the process location, and therefore

the chart must not signal in such cases. It is important to note that the goal of

this paper is not to monitor the capability of a capable but unstable process (as

this has already been done in Castagliola and Vannman (2008) and Castagliola

et al. (2009)), but to monitor the median of a process that must remain stable for

ensuring the quality of the products. The paper has three aims. The first aim is

to present the Markov chain methodology for the computation of the distribution

and the moments of the run length for the known and the estimated parameters

case. The second aim is to evaluate the performance of the CUSUM-X̃ chart in

the known and estimated parameters case in terms of the average run length and

standard deviation of the run length when the process is in- and out-of-control.
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The third aim is to help practitioners in the implementation of the CUSUM-

X̃ chart by giving the optimal pair of parameters for the chart with estimated

parameters to behave like the one with known parameters.

The outline of the paper is the following. In Section 2, we present the

definition and the main properties of the CUSUM-X̃ chart when the process

parameters are known, along with the Markov chain methodology dedicated to

the computation of the run length distribution of the chart and its moments. In

Section 3, we study the case of estimated parameters for the CUSUM-X̃ chart

and we also provide the modified Markov chain methodology for the computation

of the run length properties. A comparison between CUSUM-X̃ with known v.s.

estimated parameters is provided in Section 4. Finally, a detailed example is given

in Section 5, followed by some conclusions and recommendations in Section 6.

2. THE CUSUM-X̃ CHART WITH KNOWN PARAMETERS

In this paper we will assume that Yi,1, ..., Yi,n, i = 1, 2, ... is a Phase II

sample of n independent normal N(µ0 + δσ0, σ0) random variables where i is

the subgroup number, µ0 and σ0 are the in-control mean value and standard

deviation, respectively, and δ is the parameter representing the standardized mean

shift, i.e. the process is assumed to be in-control (out-of-control) if δ = 0 (δ 6= 0).

The upper-sided CUSUM-X̄ chart for detecting an increase in the process

mean plots

(2.1) Z+
i = max(0, Z+

i−1 + Ȳi − µ0 − k+
z )

against i, for i = 1, 2, ... where Ȳi is the mean value of the quality variable for

sample number i. The starting value is Z+
0 = z+

0 ≥ 0 and k+
z is a constant.

A signal is issued at the first i for which Z+
i ≥ h+

z , where h+
z is the upper control

limit. The corresponding lower-sided CUSUM-X̄ chart for detecting a decrease

in the process mean plots

(2.2) Z−

i = min(0, Z−

i−1 + Ȳi − µ0 + k−

z )

against i, for i = 1, 2, ... where k−

z is a constant and the starting value is Z−

0 =

z−0 ≤ 0. The chart signals at the first i for which Z−

i ≤ −h−

z , where −h−

z is the

lower control limit. There is a certain way to compute the values of k+
z , k−

z and

h+
z , h−

z which is related to the distribution of Yi’s. The textbook of Hawkins and

Olwell (1999) is an excellent reference on this subject.
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Now, let Ỹi be the sample median of subgroup i, i.e.

Ỹi =











Yi,((n+1)/2) if n is odd

Yi,(n/2) + Yi,(n/2+1)

2
if n is even

where Yi,(1), Yi,(2), ..., Yi,(n) is the ascendant ordered i-th subgroup. As the sample

median is easier and faster to compute when the sample size n is an odd value,

without loss of generality, we will confine ourselves to this case for the rest of this

paper.

The upper-sided CUSUM-X̃ chart for detecting an increase in the process

median is given by

(2.3) U+
i = max(0, U+

i−1 + Ỹi − µ0 − k+)

where i is the sample number and Ỹi is the sample median. The starting value

is U+
0 = u+

0 ≥ 0 and k+ is a constant. A signal is issued at the first i for which

U+
i ≥ h+, where h+ is the upper control limit. The corresponding lower-sided

CUSUM-X̃ chart for detecting a decrease in the process median plots

(2.4) U−

i = min(0, U−

i−1 + Ỹi − µ0 + k−)

against i, for i = 1, 2, ... where k− is a constant and the starting value is U−

0 =

u−

0 ≤ 0. The chart signals at the first i for which U−

i ≤ −h−, where −h− is the

lower control limit.

The mean value (ARL) and the standard deviation (SDRL) of the Run

Length distribution are two common measures of performance of control charts

that will be used in this work to design the CUSUM median chart. However we

note that other methodologies recently appeared in the literature for the design

of CUSUM charts. Li and Wang (2010), He et al. (2014) and Wang and Huang

(2016), among others, suggested to design the CUSUM chart with the reference

parameter dynamically adjusted according to the current estimate of the process

shift, in order to improve the sensitivity of the chart to detect a wide range

of shifts. Ryu et al. (2010) proposed the design of CUSUM charts based on

the expected weighted run length, a measure of performance more appropriate

than the usual ARL given that the magnitude of the shift is practically unknown.

These interesting approaches are promising and will be explored in a future work.

As in the classical approach proposed by Brook and Evans (1972), the

Run Length distribution of the upper-sided CUSUM-X̃ chart with known pa-

rameters can be obtained by considering a Markov chain with states denoted

as {0, 1, ..., r}, where state r is the absorbing state (the computations for the

lower-sided CUSUM-X̃ chart can be done accordingly). The interval from 0 to

h+ is partitioned into r subintervals (Hj − ∆, Hj + ∆], j ∈ {0, ..., r − 1}, each
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of them centered in Hj = (2j + 1)∆ (the representative value of state j), with

∆ = h+

2r . The Markov chain is in transient state j ∈ {0, ..., r − 1} for sample i if

U+
i ∈ (Hj − ∆, Hj + ∆], otherwise it is in the absorbing state.

Let Q be the (r, r) submatrix of probabilities Qj,k corresponding to the r

transient states defined for the upward CUSUM-X̃ chart, i.e.

Q =











Q0,0 Q0,1 ··· Q0,r−1

Q1,0 Q1,1 ··· Q1,r−1
...

...
...

...
Qr−1,0 Qr−1,1 ··· Qr−1,r−1











.

By definition, we have Qj,k = P (U+
i ∈ (Hk −∆, Hk +∆]|U+

i−1 = Hj), where

j ∈ {0, ..., r − 1} and k ∈ {1, ..., r − 1}. This is actually equivalent to Qj,k =

P (Hk − ∆ < Ỹ + Hj − µ0 − k+ ≤ Hk + ∆). This equation can be written as

Qj,k = P
(

Ỹ ≤ Hk − Hj + ∆ + k+ + µ0

)

− P
(

Ỹ ≤ Hk − Hj − ∆ + k+ + µ0

)

= FỸ

(

Hk − Hj + ∆ + k+ + µ0

∣

∣n
)

− FỸ

(

Hk − Hj − ∆ + k+ + µ0

∣

∣n
)

,

where FỸ (...|n) is the cumulative distribution function (c.d.f.) of the sample

median Ỹi, i ∈ {1, 2, ...}. For the computation of Qj,0, j ∈ {0, ..., r − 1} we have

that

Qj,0 = P
(

Ỹ ≤ −Hj + ∆ + k+ + µ0

)

= FỸ

(

−Hj + ∆ + k+ + µ0

∣

∣n
)

.

The c.d.f. of the sample median Ỹ is given by

FỸ (y|n) = Fβ

(

Φ

(

y − µ0

σ0
− δ

) ∣

∣

∣

∣

n + 1

2
,
n + 1

2

)

,

where Φ(x) and Fβ(x|a, b) are the c.d.f. of the standard normal distribution and

the beta distribution with parameters (a, b) (here, we have a = b = n+1
2 ), respec-

tively.

Let q = (q0, q1, ..., qr−1)
T be the (r, 1) vector of initial probabilities associ-

ated with the r transient states {0, ..., r − 1}, where

qj =

{

0 if U+
0 6∈ (Hj − ∆, Hj + ∆]

1 if U+
0 ∈ (Hj − ∆, Hj + ∆]

.

Using this method, the Run Length (RL) properties of the CUSUM-X̃

chart with known parameters can be accurately evaluated if the number r of

subintervals in matrix Q is sufficiently large. In this paper, we have fixed r = 200.

Using the results in Neuts (1981) or Latouche and Ramaswami(1999) concerning



The CUSUM Median Chart for Known and Estimated Parameters 353

the fact that the number of steps until a Markov chain reaches the absorbing

state is a Discrete PHase-type (or DPH) random variable, the probability mass

function (p.m.f.) fRL(ℓ) and the c.d.f. FRL(ℓ) of the RL of the CUSUM-X̃ chart

with known parameters are respectively equal to

fRL(ℓ) = qTQℓ−1c,

FRL(ℓ) = 1 − qTQℓ1,

where c = 1−Q1 with 1 = (1, 1, ..., 1)T . Using the moment properties of a DPH

random variable also allows to obtain the mean (ARL), the second non-central

moment E2RL = E(RL2) and the standard-deviation (SDRL) of the RL

ARL = ν1

E2RL = ν1 + ν2

SDRL =
√

E2RL − ARL2,

where ν1 and ν2 are the first and second factorial moments of the RL, i.e.

ν1 = qT (I − Q)−11,

ν2 = 2qT (I − Q)−2Q1.

3. THE CUSUM-X̃ CHART WITH ESTIMATED PARAMETERS

In real applications the in-control process mean value µ0 and the standard

deviation σ0 are usually unknown. In such cases they have to be estimated from a

Phase I data set, having i = 1, ..., m subgroups {Xi,1, ..., Xi,n} of size n. Following

Montgomery’s (2009, p. 193 and p. 238) recommendations, these subgroups must

be formed from observations taken in a time-ordered sequence in order to allow

the estimation of between-sample variability, i.e., the process variability over time.

The observations within a subgroup must be taken at the same time from a single

and stable process, or at least as closely as possible to guarantee independence

between them, to allow the estimation of the within-sample variability, i.e., the

process variability at a given time. Here we assume that there is independence

within and between subgroups, and also that Xi,j ∼ N(µ0, σ0). The estimators

that are usually used for µ0 and σ0 are

µ̂0 =
1

m

m
∑

i=1

X̄i,(3.1)

σ̂0 =
1

c4(n)

(

1

m

m
∑

i=1

Si

)

,(3.2)

where X̄i and Si are the sample mean and the sample standard deviation of

subgroup i, respectively. Constant c4(n) = E(Si

σ0
) can be computed for different
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sample sizes n under normality. Although these estimators are usually used in

the mean (X̄) chart, they are not a straightforward choice with the median chart.

Keeping in mind that the median chart is based on order statistics, a more typical

selection of estimators based on order statistics is the following

µ̂′

0 =
1

m

m
∑

i=1

X̃i,(3.3)

σ̂′

0 =
1

d2(n)

(

1

m

m
∑

i=1

Ri

)

,(3.4)

where X̃i and Ri = Xi,(n) − Xi,(1) are the sample median and the range of sub-

group i, respectively, and d2(n) = E(Ri

σ0
) is a constant tabulated assuming a nor-

mal distribution. Instead of the range we could have considered an estimator for

the standard deviation based on quantiles to achieve higher level of robustness

against outliers. The analysis of the properties of such CUSUM median chart is

cumbersome and we will apply this approach in a future work.

The standardised versions of the lower-sided and the upper-sided CUSUM-

X̃ chart with estimated parameters are given by

G−

i = min

(

0, G−

i−1 +
Ỹi − µ̂′

0

σ̂′

0

+ k−

g

)

,(3.5)

G+
i = max

(

0, G+
i−1 +

Ỹi − µ̂′

0

σ̂′

0

− k+
g

)

,(3.6)

respectively, where G−

0 = g−0 ≤ 0, G+
0 = g+

0 ≥ 0 with k−

g and k+
g being two con-

stants to be fixed. For the lower-sided (upper-sided) CUSUM-X̃ chart with esti-

mated parameters a signal is issued at the first i for which G−

i ≤ h−

g (G+
i ≥ h+

g ),

where h−

g (h+
g ) is the lower (upper) control limit.

Equations (3.5) and (3.6) can be equivalently written as

G−

i = min



0, G−

i−1 +

Ỹi−µ0

σ0
+

µ0−µ̂′

0

σ0

σ̂′

0

σ0

+ k−

g



 ,(3.7)

G+
i = max



0, G+
i−1 +

Ỹi−µ0

σ0
+

µ0−µ̂′

0

σ0

σ̂′

0

σ0

− k+
g



 .(3.8)

If we define the random variables V and W as V =
µ̂′

0
−µ0

σ0
and W =

σ̂′

0

σ0
,
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both G+
i and G−

i can be written as

G+
i = max



0, G+
i−1 +

Ỹi−µ0

σ0
− V

W
− k+

g



 ,(3.9)

G−

i = min



0, G−

i−1 +

Ỹi−µ0

σ0
− V

W
+ k−

g



 .(3.10)

Apparently, the decision about when a process is declared as out of control does

not change.

Both µ̂′

0 and σ̂′

0 are random variables, therefore V and W are also random

variables. Assuming that µ̂′

0 and σ̂′

0 have fixed values, which actually means that

V and W have fixed values, the conditional p.m.f. (denoted as f̂RL(ℓ)) of RL,

the conditional c.d.f. (denoted as F̂RL(ℓ)) of RL and the conditional factorial

moments (denoted as ν̂1 and ν̂2) can be computed through the equations given

in section 2. Therefore, if the joint p.d.f. f(V,W )(v, w|m, n) of V and W is known,

then the unconditional p.d.f. fRL(ℓ) and the unconditional c.d.f. FRL(ℓ) of the

Run Length of the upper-sided CUSUM-X̃ chart with estimated parameters are

equal to

fRL(ℓ) =

∫ +∞

−∞

∫ +∞

0
f(V,W )(v, w|m, n)f̂RL(ℓ)dwdv,(3.11)

FRL(ℓ) =

∫ +∞

−∞

∫ +∞

0
f(V,W )(v, w|m, n)F̂RL(ℓ)dwdv.(3.12)

Now we are ready to compute the unconditional ARL that is equal to

(3.13) ARL =

∫ +∞

−∞

∫ +∞

0
f(V,W )(v, w|m, n)ν̂1dwdv.

The unconditional SDRL is derived using the well known relationship

(3.14) SDRL =
√

E2RL − ARL2,

where

E2RL =

∫ +∞

−∞

∫ +∞

0
f(V,W )(v, w|m, n)(ν̂1 + ν̂2)dwdv.

Assuming normality, it is known that X̄i and S2
i are two independent statis-

tics. Consequently, µ̂0 and σ̂0 in equations (3.1) and (3.2) are also independent

statistics. However, X̃i and Ri are dependent statistics and so are µ̂′

0 and σ̂′

0 in

equations (3.3) and (3.4). Hogg (1960) proved that “an odd location statistic like

the sample median and an even scale location-free statistic like the sample range

are uncorrelated when sampling from a symmetric distribution”. On account of

the fact that we assume we are sampling from a normal distribution, the sample

median X̃i and the sample range Ri are uncorrelated statistics. Since µ̂′

0 and σ̂′

0
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are averaged quantities of X̃i and Ri respectively, the central limit theorem can

be used to conclude that their joint distribution asymptotically converges to a

bivariate normal distribution as m increases. Moreover, the fact that these statis-

tics are uncorrelated, leads us to the conclusion that the statistics µ̂′

0 and σ̂′

0 are

asymptotically independent (and so are V and W ). Therefore, the joint p.d.f.

f(V,W )(v, w|m, n) in equations (3.11)–(3.14) is well approximated by the product

of the marginal p.d.f. fV (v|m, n) of V and fW (w|m, n) of W , i.e.

(3.15) f(V,W )(v, w|m, n) ≃ fV (v|m, n) × fW (w|m, n).

To evaluate how large n has to be for equation (3.15) to hold, or instead,

to get approximately independence between the median and the range statistics

in case of normal data, we did some simulations, using the following algorithm.

1. We generated 100000 samples of size n = 3, 5, 7, 9, 11, 13, 15. Each ob-

servation Xij (i = 1, ..., 100000, j = 1, ..., n) follows a N(0,1) distribu-

tion;

2. Then, we computed the median (X̃) and the range (R) for these 100000

samples, i.e., we got the values X̃i and Ri, i = 1, ..., 100000.

3. Afterwards, we estimated the c.d.f. of the statistics X̃ and R, and the

joint c.d.f. of (X̃, R), i.e., the functions

• FX̃(xm) = P (X̃ ≤ xm), for several values of xm,

• FR(xr) = P (R ≤ xr), for several values of xr,

• FX̃,R(xm, xr) = P (X̃ ≤ xm ∩ R ≤ xr), for the combinations of

(xm, xr).

4. Finally, we computed the difference |FX̃,R(xm, xr)−FX̃(xm)×FR(xr)|

for all the combinations of (xm, xr), and we kept the maximum of these

differences.

Table 1: Maximum difference between the joint c.d.f. and the product
of the two marginal c.d.f. for some small sample sizes n.

Sample size n max |FX̃,R(xm, xr) − FX̃(xm) × FR(xr)|

3 0.01134
5 0.00838
7 0.00640
9 0.00529

11 0.00481
13 0.00402
15 0.00402
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The obtained results are presented in Table 1. As we can see, the difference

between the joint c.d.f. and the product of the two marginal c.d.f.’s is very small

and it gets smaller as n increases. This is not a proof of independence between X̃

and R, but for sure these statistics seem to be almost independent for small values

of n. We also notice that the estimates for the nominal values of the process are

the average of the medians and of the ranges, and consequently, the convergence

to independence is faster.

For the computation of fV (v|m, n) and fW (w|m, n) there is no known

closed-form, however, suitable approximations with satisfactory results are pro-

vided in Castagliola and Figueiredo (2013):

• The marginal p.d.f. fV (v|m, n), can be computed through the equation

fV (v|m, n) ≃
b

√

(v − δ)2 + d2
φ

(

b sinh−1

(

v − δ

d

))

,

where φ(x) is the p.d.f. of the standard normal distribution, and

b =

√

2

ln(
√

2(γ2(V ) + 2) − 1)
,

d =

√

2µ2(V )
√

2(γ2(V ) + 2) − 2
,

with

µ2(V ) ≃
1

m

(

π

2(n + 2)
+

π2

4(n + 2)2
+

π2
(

13
24π − 1

)

2(n + 2)3

)

,

γ2(V ) ≃
2(π − 3)

m(n + 2)
;

• The marginal p.d.f. fW (w|m, n), can be computed through the equation

fW (w|m, n) ≃
2νd2

2(n)w

c2
fχ2

(

νd2
2(n)w2

c2
|ν

)

,

where fχ2(x|ν) is the p.d.f. of the χ2 distribution with ν degrees of

freedom with

ν ≃









−2 + 2

√

√

√

√

√

√

1 + 2







B

A2
+

(

−2 + 2
√

1 + 2B
A2

)3

16















−1

,

c ≃ A

(

1 +
1

4ν
+

1

32ν2
−

1

128ν3

)

,

and A = d2(n), B =
d2
3
(n)
m where d2(n) and d3(n) are constants tabulated

for the normal case.
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4. A COMPARISON

In this work we compute the mean and the standard deviation of the Run

Length distribution under the assumption that the scheme starts at the specified

initial value, and we denote them as ARL0,m and SDRL0,m when the process is in-

control, and as ARL1,m and SDRL1,m, when the process is out-of-control, where

m is the number of samples used in Phase I. We compare several control charts

implemented with known and estimated parameters, all with the same in-control

ARL value, here assumed equal to ARL0,m = 370.4. The chart that exhibits the

best performance to detect a specific shift size δ among its counterparts is the one

that has the smaller ARL1,m value for this specific shift. Due to the symmetry

of the Gaussian distribution, the performance of the charts are similar to detect

either an upward or a downward shift of the same magnitude in the process mean

value. Therefore we only concentrate our analysis on the performance of the

charts for δ ≥ 0.

Using equations (3.13) and (3.14) we computed the ARL1,m and SDRL1,m

values for several combinations of the sample size n, the number of samples m, and

the shift size δ. These values (ARL1,m, SDRL1,m) are present in Table 2, together

with the optimal set of parameters (H, K) for the specific n and δ values. The

value m = +∞ is associated with the known parameters case. In the estimated

parameters case the number of subgroups considered in the estimation is m =

5, 10, 20, 50, 100. The pairs (H, K) given in each line are optimal in the sense

that, among all the possible values of H and K, the noted pair gives the smallest

ARL1,m value for the case m = +∞. Setting h− = h+ = H and k− = k+ = K

in the CUSUM-X̃ charts defined in (2.3) and (2.4) allow us to obtain a control

chart with the ARL behavior described in Table 2. From Table 2 the following

conclusions are easily observed:

• The ARL1,m and SDRL1,m values in the known and estimated param-

eters cases are significantly different when the shift size δ or the number

of subgroups m is small. For example, in case of n = 3 and δ = 0.1,

the ARL1,m and SDRL1,m values are larger than 105 if m = 5, but for

m = ∞ we have ARL1,∞ = 98.7 and SDRL1,∞ = 69.9.

• If we take m = 20 subgroups of size n = 5 for the estimation of the

unknown process parameters, as usually happens, only for δ ≥ 1 we get

ARL1,m ≃ ARL1,∞.

• For δ small, even if m is relatively large, the ARL1,m values are larger

than the ones obtained in the case of known parameters. See, for ex-

ample, the case of m = 100 subgroups of size n = 9 (an overall sample

of size n×m = 900 observations): for δ = 0.1, we get an ARL1,m value

about 50% larger than the corresponding ARL1,∞.
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Table 2: ARL1,m, SDRL1,m, H, K values for different combinations of
n, m and δ.

n = 3
δ (H, K)

m = 5 m = 10 m = 20 m = 50 m = 100 m = ∞

0.1 (8.003, 0.0501) (> 105, > 105) (> 105, > 105) (> 105, > 105) (636.9, 60171.3) (165.7, 659.3) (98.7, 69.9)
0.2 (6.003, 0.0999) (> 105, > 105) (> 105, > 105) (2723.1, > 105) (76.7, 407.1) (55.9, 66.2) (46.5, 30.4)
0.3 (4.813, 0.1497) (> 105, > 105) (> 105, > 105) (98.3, 14407.4) (34.4, 49.9) (30.3, 25.5) (27.5, 17.1)
0.5 (3.444, 0.2489) (> 105, > 105) (63.6, 62917.8) (17.7, 47.5) (14.5, 11.3) (13.9, 9.2) (13.3, 7.7)
0.7 (2.666, 0.3478) (1039.6, > 105) (11.8, 165.9) (9.1, 8.6) (8.4, 5.5) (8.2, 4.9) (8.0, 4.4)
1.0 (1.965, 0.4951) (8.3, 2204.2) (5.3, 5.7) (4.9, 3.3) (4.7, 2.7) (4.7, 2.6) (4.6, 2.4)
1.5 (1.319, 0.7432) (2.8, 3.3) (2.6, 1.7) (2.5, 1.4) (2.5, 1.3) (2.5, 1.3) (2.5, 1.2)
2.0 (0.934, 0.9963) (1.7, 1.1) (1.6, 0.9) (1.6, 0.8) (1.6, 0.8) (1.6, 0.8) (1.6, 0.8)

n = 5
δ (H, K)

m = 5 m = 10 m = 20 m = 50 m = 100 m = ∞

0.1 (5.903, 0.0500) (> 105, > 105) (> 105, > 105) (> 105, > 105) (275.2, 8232.2) (115.9, 281.0) (79.1, 54.7)
0.2 (4.269, 0.0999) (> 105, > 105) (> 105, > 105) (266.2, 49881.9) (48.3, 107.4) (39.9, 38.2) (35.1, 22.2)
0.3 (3.349, 0.1496) (> 105, > 105) (829.8, > 105) (37.1, 474.7) (23.4, 23.6) (21.6, 16.0) (20.2, 12.1)
0.5 (2.329, 0.2487) (1035.0, > 105) (16.5, 316.0) (11.3, 12.8) (10.1, 6.9) (9.8, 6.0) (9.5, 5.3)
0.7 (1.767, 0.3473) (14.5, 3462.5) (6.9, 10.9) (6.2, 4.5) (5.9, 3.5) (5.8, 3.2) (5.7, 3.0)
1.0 (1.270, 0.4949) (4.1, 11.7) (3.6, 2.6) (3.4, 2.0) (3.3, 1.8) (3.3, 1.7) (3.3, 1.7)
1.5 (0.812, 0.7467) (1.9, 1.3) (1.8, 1.0) (1.8, 0.9) (1.8, 0.9) (1.8, 0.9) (1.7, 0.9)
2.0 (0.511, 0.9990) (1.3, 0.6) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5) (1.2, 0.4)

n = 7
δ (H, K)

m = 5 m = 10 m = 20 m = 50 m = 100 m = ∞

0.1 (4.749, 0.0500) (> 105, > 105) (> 105, > 105) (27291.2, > 105) (170.3, 2633.7) (90.9, 166.3) (67.0, 45.5)
0.2 (3.348, 0.0999) (> 105, > 105) (17933.4, > 105) (100.8, 5616.9) (36.2, 54.4) (31.6, 27.1) (28.6, 17.8)
0.3 (2.586, 0.1496) (> 105, > 105) (123.7, 36763.2) (24.0, 102.8) (18.0, 15.6) (17.0, 11.8) (16.2, 9.5)
0.5 (1.762, 0.2487) (60.7, 50167.3) (10.5, 42.8) (8.5, 7.4) (7.8, 5.0) (7.7, 4.5) (7.5, 4.1)
0.7 (1.316, 0.3472) (7.0, 114.4) (5.1, 4.9) (4.7, 3.1) (4.6, 2.6) (4.5, 2.5) (4.5, 2.3)
1.0 (0.926, 0.4963) (3.0, 3.3) (2.7, 1.8) (2.6, 1.5) (2.6, 1.4) (2.6, 1.3) (2.6, 1.3)
1.5 (0.557, 0.7484) (1.5, 0.8) (1.4, 0.7) (1.4, 0.7) (1.4, 0.6) (1.4, 0.6) (1.4, 0.6)
2.0 (0.286, 0.9998) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3)

n = 9
δ (H, K)

m = 5 m = 10 m = 20 m = 50 m = 100 m = ∞

0.1 (4.007, 0.0500) (> 105, > 105) (> 105, > 105) (7728.6, > 105) (123.1, 1171.1) (75.7, 115.1) (58.7, 39.3)
0.2 (2.770, 0.0999) (> 105, > 105) (2714.7, > 105) (58.7, 1396.9) (29.4, 35.5) (26.4, 21.0) (24.3, 14.9)
0.3 (2.114, 0.1496) (24658.7, > 105) (48.4, 4394.4) (18.2, 42.2) (14.8, 11.7) (14.2, 9.4) (13.6, 7.9)
0.5 (1.416, 0.2487) (19.3, 2775.4) (7.9, 15.3) (6.9, 5.3) (6.5, 4.0) (6.4, 3.6) (6.3, 3.4)
0.7 (1.044, 0.3474) (5.0, 20.6) (4.1, 3.3) (3.9, 2.4) (3.8, 2.1) (3.7, 2.0) (3.7, 1.9)
1.0 (0.721, 0.4976) (2.4, 2.0) (2.2, 1.3) (2.2, 1.2) (2.2, 1.1) (2.1, 1.1) (2.1, 1.1)
1.5 (0.399, 0.7493) (1.3, 0.6) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5)
2.0 (0.140, 0.9999) (1.0, 0.2) (1.0, 0.2) (1.0, 0.1) (1.0, 0.1) (1.0, 0.1) (1.0, 0.1)

• Moreover, the practical result referred in Quesenberry (1993), that an

overall sample of size n×m = 400 enables to design control charts with

estimated control limits with a similar performance to the corresponding

chart with true limits does not hold in the case of CUSUM-X̃ charts (see,

for instance, the ARL1,m and SDRL1,m values for small values of δ and,

in particular, for δ = 0.1).

• However, as the number of samples m increases the ARL1,m and SDRL1,m

values converge to the values of the known parameters case, for each

shift, although very slowly. In particular, when δ becomes large, the

difference between the ARL1,m and SDRL1,m values in the known and

estimated parameters cases tends to be non-significant. But the CUSUM

charts are more attractive and efficient than the Shewhart charts for
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detecting small changes, and thus, it is important to determine optimal

parameters H ′ and K ′ in order to guarantee the desired performance

even for m or δ small.

For completeness, in Table 3 we also present the in-control ARL0,m and

SDRL0,m values for the same pairs (H, K) considered in Table 2. As in Table 2,

we observe again that, as m increases, the ARL0,m and SDRL0,m values converge

very slowly to the known parameters case values. As we can observe more than

m = 100 samples are often needed to implement charts with known and estimated

parameters with similar performance.

Table 3: ARL0,m, SDRL0,m, H, K values for several pairs of n and m

when the process is in-control.

n = 3
(H, K)

m = 5 m = 10 m = 20 m = 50 m = 100

(8.003, 0.0501) (> 105, > 105) (> 105, > 105) (> 105, > 105) (15540.8, > 105) (1429.9, 16918.4)
(6.003, 0.0999) (> 105, > 105) (> 105, > 105) (> 105, > 105) (2989.3, > 105) (865.0, 3768.4)
(4.813, 0.1497) (> 105, > 105) (> 105, > 105) (70529.8, > 105) (1517.3, 17422.5) (682.9, 1905.6)
(3.444, 0.2489) (> 105, > 105) (> 105, > 105) (5501.3, > 105) (853.9, 3474.9) (544.3, 1032.7)
(2.666, 0.3478) (> 105, > 105) (48309.8, > 105) (2109.7, 49864.4) (663.5, 1754.4) (488.1, 777.8)
(1.965, 0.4951) (> 105, > 105) (5812.4, > 105) (1114.4, 7639.5) (548.4, 1066.1) (447.5, 622.0)
(1.319, 0.7432) (20921.5, > 105) (1593.5, 24654.9) (704.3, 2093.0) (470.9, 717.4) (416.6, 515.1)
(0.934, 0.9963) (3608.3, > 105) (952.1, 4648.1) (572.8, 1184.7) (437.6, 587.0) (402.1, 466.6)

n = 5
(H, K)

m = 5 m = 10 m = 20 m = 50 m = 100

(5.903, 0.0500) (> 105, > 105) (> 105, > 105) (> 105, > 105) (7577.1, > 105) (1192.1, 9102.0)
(4.269, 0.0999) (> 105, > 105) (> 105, > 105) (> 105, > 105) (1883.9, 25530.6) (747.4, 2380.3)
(3.349, 0.1496) (> 105, > 105) (> 105, > 105) (11797.0, > 105) (1092.2, 6198.7) (605.9, 1346.7)
(2.329, 0.2487) (> 105, > 105) (33318.5, > 105) (2239.1, 38019.5) (691.1, 1873.1) (498.4, 812.6)
(1.767, 0.3473) (> 105, > 105) (5584.4, > 105) (1183.7, 7401.6) (565.8, 1128.0) (454.9, 643.8)
(1.270, 0.4949) (17364.4, > 105) (1774.2, 22295.1) (756.6, 2351.7) (485.6, 767.9) (423.1, 534.6)
(0.812, 0.7467) (2555.9, 62815.4) (872.2, 3340.4) (555.7, 1078.3) (433.5, 571.3) (400.4, 461.0)
(0.511, 0.9990) (1497.0, 14155.3) (696.7, 1890.8) (500.9, 824.3) (416.6, 511.7) (392.6, 435.7)

n = 7
(H, K)

m = 5 m = 10 m = 20 m = 50 m = 100

(4.749, 0.0500) (> 105, > 105) (> 105, > 105) (> 105, > 105) (5134.7, > 105) (1060.8, 6361.6)
(3.348, 0.0999) (> 105, > 105) (> 105, > 105) (33886.4, > 105) (1474.5, 12982.1) (683.9, 1848.5)
(2.586, 0.1496) (> 105, > 105) (> 105, > 105) (5777.0, > 105) (918.3, 3825.0) (564.8, 1115.2)
(1.762, 0.2487) (> 105, > 105) (10278.2, > 105) (1538.4, 13243.4) (619.3, 1401.7) (474.6, 715.3)
(1.316, 0.3472) (48309.2, > 105) (2766.0, 57099.5) (921.1, 3705.8) (521.7, 913.9) (438.0, 583.3)
(0.926, 0.4963) (4897.4, > 105) (1170.3, 6580.6) (638.6, 1505.7) (457.4, 656.4) (411.1, 495.0)
(0.557, 0.7484) (1671.5, 17793.4) (734.8, 2135.8) (514.2, 880.8) (421.0, 526.9) (394.7, 442.4)
(0.286, 0.9998) (1282.1, 9130.3) (652.2, 1599.9) (485.7, 760.6) (411.7, 494.9) (390.3, 428.3)

n = 9
(H, K)

m = 5 m = 10 m = 20 m = 50 m = 100

(4.007, 0.0500) (> 105, > 105) (> 105, > 105) (> 105, > 105) (3935.5, > 105) (974.1, 4940.8)
(2.770, 0.0999) (> 105, > 105) (> 105, > 105) (17455.0, > 105) (1253.9, 8409.7) (642.6, 1558.6)
(2.114, 0.1496) (> 105, > 105) (> 105, > 105) (3795.7, > 105) (819.6, 2826.8) (538.3, 983.3)
(1.416, 0.2487) (> 105, > 105) (5549.9, > 105) (1230.8, 7364.1) (576.9, 1169.2) (459.4, 657.7)
(1.044, 0.3474) (14888.5, > 105) (1880.1, 19722.5) (790.3, 2495.0) (494.9, 799.0) (427.2, 546.5)
(0.721, 0.4976) (2879.4, 59731.6) (946.2, 3818.3) (580.8, 1186.6) (441.5, 598.3) (404.1, 472.5)
(0.399, 0.7493) (1428.2, 11824.2) (685.3, 1800.5) (497.4, 808.7) (415.6, 508.2) (392.2, 434.3)
(0.140, 0.9999) (1233.9, 8245.2) (641.1, 1533.9) (481.7, 744.4) (410.4, 490.3) (389.7, 426.3)
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Since the out-of-control ARL1,m values are clearly different in the known

and in the estimated parameters case, it is important to determine the number

m of Phase I samples we should consider to get approximately the same out-

of-control ARL1,m values in both cases, using the same optimal control chart

parameters H and K displayed in Table 2. Thus, with

∆ =
|ARL1,m − ARL1,∞|

ARL1,∞

denoting the relative difference between the out-of-control ARL1,m (estimated

parameter case) and ARL1,∞ (known parameter case) values, we computed the

minimum value of m satisfying ∆ ≤ 0.05 or ∆ ≤ 0.01. The obtained minimum

number m of Phase I samples is given in Table 4 for some values of n and δ. From

this table we observe that:

• The value of m satisfying ∆ < 0.05 or ∆ < 0.01 can be very large, for

instance, m > 100 if δ ≤ 0.3. In particular, for δ = 0.1 and n = 9, to

have ∆ < 0.05 we must consider at least 417 samples.

• For the most common subgroup sample size n = 5, the number of sub-

groups must be 569 for very small shifts (say, for δ = 0.1), and con-

sequently n × m will be 2845, much larger than 400, as suggested by

Quesenberry (1993).

• The number of the required samples decreases with the increase shift size

δ. We also observe that the number of subgroups m that are needed

decreases with the sample size n, but the number of observations of the

overall sample needed for the estimation, n × m, also increases.

Table 4: Minimum number m of Phase I samples required to satisfy
∆ = 0.05 (left value) and ∆ = 0.01 (right value) when
the process is out of control.

∆ = (0.05, 0.01)
δ

n = 3 n = 5 n = 7 n = 9

0.1 (711, 3339) (569, 2669) (479, 2241) (417, 1945)
0.2 (319, 1485) (237, 1101) (191, 881) (159, 737)
0.3 (181, 835) (129, 597) (101, 467) (83, 385)
0.5 (81, 371) (55, 257) (43, 197) (35, 159)
0.7 (45, 209) (31, 141) (23, 107) (19, 87)
1.0 (25, 109) (17, 73) (13, 55) (9, 45)
1.5 (11, 51) (7, 35) (5, 27) (5, 21)
2.0 (7, 33) (5, 21) (3, 11) (3, 5)

As a conclusion, we observe that in most of the cases a very large number

m of Phase I samples is needed so that the charts with known and estimated

parameters have the same ARL performance. But this requirement is in general



362 P. Castagliola, F.O. Figueiredo and P. Maravelakis

very hard to handle in practice for economical and logistic reasons. Therefore, for

fixed values of m and n, the determination of adequate control chart parameters,

taking into consideration the variability introduced by the parameters estimation

is very challenging.

Table 5: Optimal values for H ′, K ′, ARL1 and SDRL1

subject to the constraint ARL0 = 370.4.

n = 3
δ

m = 5 m = 10 m = 20 m = 50 m = 100

0.1
(1.747, 0.01) (2.739, 0.01) (3.976, 0.01) (5.886, 0.01) (7.379, 0.01)

(121.6, > 105) (101.3, 32840.0) (88.0, 3910.3) (81.9, 444.6) (84.6, 151.3)

0.2
(1.747, 0.01) (2.739, 0.01) (3.976, 0.01) (5.886, 0.01) (7.024, 0.02)

(45.2, 55017.6) (35.7, 4544.5) (32.7, 441.4) (35.6, 55.1) (40.5, 32.8)

0.3
(1.747, 0.01) (2.739, 0.01) (3.976, 0.01) (5.679, 0.02) (5.197, 0.09)

(19.9, 11098.1) (17.1, 682.8) (18.0, 63.5) (22.4, 17.2) (25.0, 17.5)

0.5
(1.747, 0.01) (2.739, 0.01) (3.976, 0.01) (3.678, 0.16) (3.517, 0.21)
(6.9, 493.1) (7.7, 24.1) (9.7, 6.8) (11.9, 7.6) (12.6, 7.8)

0.7
(1.747, 0.01) (2.739, 0.01) (2.960, 0.15) (2.805, 0.27) (2.671, 0.32)
(4.0, 28.2) (5.2, 3.8) (6.5, 4.0) (7.4, 4.3) (7.7, 4.5)

1.0
(1.747, 0.01) (2.197, 0.16) (2.050, 0.35) (1.997, 0.44) (1.938, 0.48)

(2.7, 2.0) (3.5, 2.0) (4.1, 2.3) (4.4, 2.4) (4.5, 2.4)

1.5
(1.476, 0.18) (1.406, 0.49) (1.331, 0.64) (1.329, 0.70) (1.346, 0.71)

(1.8, 0.9) (2.1, 1.1) (2.3, 1.2) (2.4, 1.2) (2.4, 1.2)

2.0
(1.122, 0.46) (1.040, 0.74) (0.977, 0.88) (0.952, 0.95) (0.947, 0.97)

(1.3, 0.6) (1.5, 0.7) (1.5, 0.7) (1.6, 0.7) (1.6, 0.8)

n = 5
δ

m = 5 m = 10 m = 20 m = 50 m = 100

0.1
(1.536, 0.01) (2.294, 0.01) (3.230, 0.01) (4.684, 0.01) (5.827, 0.01)

(104.2, 46570.9) (82.1, 7398.7) (68.8, 1439.2) (64.1, 232.1) (67.4, 92.9)

0.2
(1.536, 0.01) (2.294, 0.01) (3.230, 0.01) (4.684, 0.01) (4.642, 0.05)
(34.4, 8053.3) (26.1, 916.8) (24.3, 136.6) (27.7, 27.7) (31.4, 23.8)

0.3
(1.536, 0.01) (2.294, 0.01) (3.230, 0.01) (3.791, 0.06) (3.511, 0.11)
(14.4, 1446.5) (12.6, 128.4) (13.8, 20.3) (17.3, 12.0) (18.8, 12.4)

0.5
(1.536, 0.01) (2.294, 0.01) (2.671, 0.08) (2.429, 0.19) (2.378, 0.22)
(5.3, 57.0) (6.1, 6.3) (7.6, 4.8) (8.8, 5.3) (9.1, 5.3)

0.7
(1.536, 0.01) (2.044, 0.07) (1.898, 0.22) (1.811, 0.30) (1.806, 0.32)

(3.3, 4.3) (4.2, 2.5) (4.9, 2.9) (5.4, 3.0) (5.5, 3.0)

1.0
(1.457, 0.05) (1.328, 0.31) (1.314, 0.40) (1.282, 0.46) (1.295, 0.47)

(2.3, 1.2) (2.8, 1.5) (3.0, 1.6) (3.2, 1.6) (3.2, 1.6)

1.5
(0.948, 0.38) (0.858, 0.59) (0.835, 0.67) (0.816, 0.72) (0.805, 0.74)

(1.5, 0.7) (1.6, 0.8) (1.7, 0.8) (1.7, 0.8) (1.7, 0.9)

2.0
(0.680, 0.62) (0.613, 0.80) (0.563, 0.90) (0.553, 0.94) (0.510, 0.99)

(1.1, 0.4) (1.2, 0.4) (1.2, 0.4) (1.2, 0.4) (1.2, 0.4)
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Table 6: (Cont’d) Optimal values for H ′, K ′, ARL1 and SDRL1

subject to the constraint ARL0 = 370.4.

n = 7
δ

m = 5 m = 10 m = 20 m = 50 m = 100

0.1
(1.355, 0.01) (1.988, 0.01) (2.771, 0.01) (3.987, 0.01) (4.940, 0.01)

(88.9, 19453.2) (67.5, 3754.2) (56.1, 844.7) (53.4, 147.8) (57.2, 65.7)

0.2
(1.355, 0.01) (1.988, 0.01) (2.771, 0.01) (3.987, 0.01) (3.597, 0.06)
(26.4, 2921.9) (20.2, 389.8) (19.6, 65.3) (23.3, 18.3) (26.0, 18.5)

0.3
(1.355, 0.01) (1.988, 0.01) (2.771, 0.01) (2.862, 0.08) (2.671, 0.12)
(10.8, 464.4) (10.1, 48.2) (11.6, 10.9) (14.2, 9.4) (15.2, 9.7)

0.5
(1.355, 0.01) (1.988, 0.01) (1.917, 0.13) (1.842, 0.20) (1.829, 0.22)
(4.3, 16.0) (5.2, 3.5) (6.3, 3.9) (7.0, 4.1) (7.3, 4.1)

0.7
(1.355, 0.01) (1.488, 0.14) (1.397, 0.25) (1.346, 0.31) (1.326, 0.33)

(2.9, 2.0) (3.6, 2.0) (4.0, 2.2) (4.3, 2.3) (4.4, 2.3)

1.0
(1.038, 0.18) (0.997, 0.34) (0.943, 0.43) (0.933, 0.47) (0.936, 0.48)

(2.0, 1.1) (2.3, 1.2) (2.4, 1.3) (2.5, 1.3) (2.5, 1.3)

1.5
(0.668, 0.46) (0.600, 0.62) (0.573, 0.69) (0.581, 0.71) (0.568, 0.73)

(1.3, 0.5) (1.3, 0.6) (1.4, 0.6) (1.4, 0.6) (1.4, 0.6)

2.0
(0.429, 0.69) (0.386, 0.82) (0.316, 0.93) (0.320, 0.95) (0.318, 0.96)

(1.0, 0.2) (1.1, 0.2) (1.1, 0.2) (1.1, 0.2) (1.1, 0.2)

n = 9
δ

m = 5 m = 10 m = 20 m = 50 m = 100

0.1
(1.220, 0.01) (1.774, 0.01) (2.459, 0.01) (3.521, 0.01) (4.350, 0.01)

(76.9, 11291.0) (57.1, 2426.2) (47.5, 568.6) (46.4, 103.4) (50.3, 50.5)

0.2
(1.220, 0.01) (1.774, 0.01) (2.459, 0.01) (3.143, 0.03) (2.889, 0.07)
(21.0, 1482.2) (16.5, 210.2) (16.7, 37.5) (20.3, 15.3) (22.4, 15.5)

0.3
(1.220, 0.01) (1.774, 0.01) (2.459, 0.01) (2.226, 0.10) (2.224, 0.12)
(8.6, 208.6) (8.6, 23.5) (10.1, 7.4) (12.2, 8.0) (12.9, 7.8)

0.5
(1.220, 0.01) (1.685, 0.03) (1.532, 0.15) (1.465, 0.21) (1.438, 0.23)

(3.8, 6.7) (4.6, 2.7) (5.4, 3.2) (5.9, 3.3) (6.1, 3.4)

0.7
(1.220, 0.01) (1.164, 0.18) (1.095, 0.27) (1.056, 0.32) (1.061, 0.33)

(2.6, 1.4) (3.1, 1.7) (3.4, 1.8) (3.6, 1.9) (3.6, 1.9)

1.0
(0.825, 0.23) (0.758, 0.38) (0.724, 0.45) (0.736, 0.47) (0.735, 0.48)

(1.8, 0.9) (1.9, 1.0) (2.0, 1.1) (2.1, 1.1) (2.1, 1.1)

1.5
(0.519, 0.48) (0.446, 0.63) (0.401, 0.71) (0.382, 0.75) (0.379, 0.76)

(1.1, 0.4) (1.2, 0.4) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5)

2.0
(0.315, 0.68) (0.250, 0.82) (0.205, 0.90) (0.206, 0.92) (0.213, 0.92)

(1.0, 0.1) (1.0, 0.1) (1.0, 0.1) (1.0, 0.1) (1.0, 0.1)

In this paper we computed, for fixed values of m and n, new chart param-

eters denoted as (H ′, K ′), in order to achieve the desired in-control performance,

i.e. such that, for fixed values of m and n, we have ARL(m, n, H ′, K ′, δ = 0) =

370.4 and, for a fixed value of δ, ARL(m, n, H ′, K ′, δ) is the smallest out-of-control

ARL1,m. These new pairs of constants are given in Tables 5 and 6 for various
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combinations of n, m and δ, and might be used as the chart parameters in the

CUSUM-X̃ charts defined in (3.8) and (3.7), i.e., we might choose h−

g = h+
g = H ′

and k−

g = k+
g = K ′. In each cell of Tables 5 and 6, the two numbers in the first

row are new chart parameters (H ′, K ′), and the two numbers in the second row

are the ARL1,m and SDRL1,m values. As we can observe, with these constants

(H ′, K ′) determined with the unconditional run length distribution, we can guar-

antee the same performance of the corresponding chart implemented with known

process parameters, or even a better performance, except in the cases of m = 5, 10

and δ = 0.1. For the shift size δ that must be quickly detected, the values pre-

sented in Tables 5 and 6 allow the practitioners to easily implement the most

efficient median CUSUM control chart. For instance, if n = 5 and m = 20, the

optimal CUSUM-X̃ chart to detect a shift of size δ = 1 must be designed with

the constants H ′ = 1.314 and K ′ = 0.40. With these chart parameters we get the

values ARL1,m = 3 and SDRL1,m = 1.6.

5. AN ILLUSTRATIVE EXAMPLE

In order to illustrate the use of the CUSUM-X̃ chart when the parameters

are estimated, let us consider the same example as the one in Castagliola and

Figueiredo (2013), i.e. a 125g yogurt cup filling process for which the quality

characteristic Y is the weight of each yogurt cup. The Phase I dataset used in

this example consists of m = 10 subgroups of size n = 5 plotted in the left part

of Figure 1 with “◦”. From this Phase I dataset, using (3.3) and (3.4), we obtain

µ̂′

0 = 125.02 and σ̂′

0 = 0.864. According to the quality practitioner in charge of

this process, a shift of 0.5σ0 (i.e., δ = 0.5) in the process position should be

interpreted as a signal that something is going wrong in the production. For

m = 10, n = 5 and δ = 0.5, Table 5 suggests to use K ′ = 2.294 and H ′ = 0.01.

The Phase II dataset used in this example consists of m = 30 subgroups of

size n = 5 plotted in the right part of Figure 1 with “•”. The first 15 subgroups

are supposed to be in-control while the last 15 subgroups are supposed to have

a smaller yogurt weight, and thus, to be out-of-control. In Figure 2, we plotted

the statistics G−

i and G+
i corresponding to (3.5) and (3.6). This figure shows

that the 7th first subgroups are in-control but, from subgroups #8 to #15, the

process experiences a light out-of-control situation (increase) as the points“•”cor-

responding to the G+
i ’s are above the upper limit K ′ = 2.294. During subgroups

#16 and #17, the process returns to the in-control state but, as expected, sud-

denly experiences a new strong out-of-control situation (decrease) as the points

“◦” corresponding to the G−

i ’s are now below the lower limit −K ′ = −2.294.
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Figure 1: Phase I and Phase II samples corresponding to
the 125g yogurt cup filling process.
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Figure 2: CUSUM-X̃ chart corresponding to
the Phase II sample of Figure 1.
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6. CONCLUSIONS

Although the CUSUM-X̃ chart has already been proposed by Yang et al.

(2010) and Nazir et al. (2013a), in both of these papers the authors have only

investigated the performance of this chart through simulations and compared its

performance with other charts in terms of robustness. Moreover, in the implemen-

tation of the chart Yang et al. (2010) assumed the process parameters known, and

Nazir et al. (2013a) also considered them fixed and known, after a prior estima-

tion of such parameters through the use of different location and scale estimators.

But they really did not analyze the effect of the parameters estimation in the per-

formance of the chart in comparison with the performance of the corresponding

chart implemented with true parameters, the main objective of our paper. We

used a Markov chain methodology to compute the run length distribution and

the moments of the CUSUM-X̃ chart in order to study its performance when

the parameters are known and estimated. In this paper we present several tables

that allow us to observe that the chart implemented with estimated parameters

exhibits a completely different performance in comparison to the one of the chart

implemented with known parameters. We also provide modified chart parameters

that allow the practitioners to implement the CUSUM-X̃ chart with estimated

control limits with a given desired in-control performance. More specifically, the

main conclusions are: a) if the shift size δ or the number of samples m used in

the estimation is small, there is a large difference between the ARL1,m and the

SDRL1,m values obtained in the known and estimated parameters cases, b) for

δ small, even if m is relatively large, the ARL1,m values are larger than the ones

obtained in the case of known parameters, c) the ARL1,m and SDRL1,m values

converge to the values of the known parameters case as the number of samples m

increases, d) the number of subgroups m to have a relative difference between the

out-of-control ARL values in the known and estimated parameters cases less than

5% or 1% can be very large, and depends on the value of δ, e) it is possible to

obtain new chart parameters in order to achieve a desired in-control performance.

As a general conclusion, the CUSUM-X̃ chart can be a valuable alternative chart

for practitioners since it is simpler than the CUSUM-X̄ chart. The fact that it

is robust against outliers, contamination or small deviations from normality is

another advantage.
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