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Abstract:
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carried out and we use some goodness-of-fit statistics to study the flexibility of the
new distribution, proving empirically that this model can be appropriate for lifetime
applications.
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1. INTRODUCTION

In applications involving lifetime models such as survival analysis, demog-

raphy, reliability, actuarial study and others, the distributions with positive real

supports play a fundamental role. Because of this, in recent years, there is a grow-

ing interest in constructing new distributions to model aging phenomena [15, 14].

The method that has received most attention by researchers to generate new

models is that one by compounding existing distributions, usually referred to

as generalized G families of distributions [28]. The principal reason for this is

the ability of these generalized distributions to be more flexible than the base-

line G distribution to provide better fits to skewed data and good control of the

tails [23]. The second reason is the powerful computational and analytical facili-

ties available in several software packages, which facilitate handling and comput-

ing complex mathematical expressions. Some of the generalized G families best

known are: the Marshall–Olkin extended (MOE) family [18], the exponentiated-

generated (exp-G) family [13, 8], the beta-generated (beta-G) family [9], the

Kumaraswamy-generated (Kw-G) family [7], the gamma-generated (gamma-G)

families [29, 25, 22] and the McDonald-generated (Mc-G) family [2]. A detailed

compilation of these families is given in [28].

In this paper, we adopt the beta Marshall–Olkin generated (BMO-G) fam-

ily proposed by Alizadeh et al. [3] to define the new beta Marshall–Olkin Lomax

(BMOL) distribution obtained by taking the Lomax distribution [17] as the base-

line G model. Given that the proposed distribution has positive real support, our

objective is to define a wide flexible distribution for real lifetime applications.

The paper unfolds as follows. In Section 2, we describe some preliminar-

ies and introduce the BMOL distribution. In Section 3, we plot its density and

hazard rate functions for some parameter values. In Section 4, we obtain an ex-

pansion for the BMOL density function as a linear combination of exp-Lomax and

Lomax densities. In Sections 5–10, we present explicit expressions for the quan-

tile function (qf), moments, generating function, mean deviations, Bonferroni and

Lorenz curves, Shannon entropy and order statistics. Section 11 is devoted to the

maximum likelihood estimates (MLEs) for complete samples and, in Section 12,

we carry out a simulation study to study the performance of these estimates.

In Section 13, we consider an application of the BMOL distribution and compare

it with others related distributions and with the exponentiated Weibull (EW)

distribution [20] based on some goodness-of-fit statistics. Finally, Section 14 con-

cludes the paper.
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2. THE NEW DISTRIBUTION

Marshall & Olkin [18] pioneered a method of introducing an additional

parameter to a distribution. If G(x; ξ) is a baseline distribution with parameter

vector ξ, then the cumulative distribution function (cdf) given by

F (x; c, ξ) =
G(x; ξ)

c+ (1 − c)G(x; ξ)
, c > 0,(2.1)

defines a new distribution with an extra shape parameter c. As commented by

Marshall & Olkin [18], “By various methods, new parameters can be introduced

to expand families of distributions for added flexibility or to construct covariate

models”.

The cdf of the beta-G family (for a, b > 0) is defined by

F (x; a, b, ξ) =
B(G(x; ξ); a, b)

B(a, b)
=

1

B(a, b)

∫ G(x;ξ)

0
wa−1(1 − w)b−1 dw,(2.2)

where B(a, b) =
∫ 1
0 w

a−1(1 − w)b−1 dw is the beta function and B(z; a, b) =
∫ z
0 w

a−1(1 − w)b−1 dw is the incomplete beta function. In this case, the gen-

erated distribution F (x; a, b, ξ) has two extra shape parameters a and b. The

beta G family was introduced by Eugene et al. [9], who studied the properties

of the beta-normal distribution. If the baseline G(x; ξ) in (2.2) is the Lomax

distribution, we obtain the beta-Lomax (BL) distribution as defined in [24].

A generalization of these concepts, introduced in [4], follows by considering

the T−X method. Let R(x;γ) be a cdf with support [d, e] and density r(x;γ).

For a given baseline distribution G(x; ξ), let W (·) be a function satisfying the

following properties











W [G(x; ξ)] ∈ [d, e],

W [G(x; ξ)] is differentiable and monotonically non-decreasing,

limx→−∞W [G(x; ξ)] = d, limx→∞W [G(x; ξ)] = e.

Then, the cdf

F (x; δ,γ, ξ) =

∫ W [G(x;ξ)]

d
r(t;γ) dt(2.3)

defines a new distribution, where the link function W (·) = W (·; δ) possibly de-

pends on a parameter vector δ. We say that the distribution R(x;γ) is ‘trans-

formed’ by the ‘transformer’ W [G(x; ξ)].

Following this idea, Alizadeh et al. [3] introduced the BMO-G family by

considering in (2.3) the function W (z) = z/[c+ (1 − c)z], c > 0, and the beta
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distribution as the ‘transformed’ distribution R(x;γ). Notice that, in this case,

the ‘transformer’ W [G(x; ξ)] is given by (2.1).

In this paper, we study the BMOL distribution by considering the base-

line G(x; ξ) in (2.3) as the Lomax distribution [17], which has cdf given by

G(x;α, λ) = 1 −
(

1 +
x

λ

)−α
, x ≥ 0, α > 0, λ > 0(2.4)

and probability density function (pdf)

g(x;α, λ) =
α

λ

(

1 +
x

λ

)−(α+1)
.(2.5)

For the sake of simplicity, we will write sometimes the Lomax distribution with

cdf G(x) and pdf g(x), respectively, without explicit mention to the parameters α

and λ.

It is clear that a generalized G distribution has more parameters than the

baseline G distribution. Generally, the use of four parameters should be sufficient

for most practical purposes. In addition, notice that if X ∼ Lomax(α, λ), then

X/λ ∼ Lomax(α, 1) and, consequently, λ is just a scale parameter. Henceforth,

we consider the BMOL distribution with only four parameters by taking, without

loss of generality, λ = 1 in equations (2.4) and (2.5). Thus, if θ = (a, b, c, α)⊤ is

the parameter vector, we define the BMOL cdf by

F (x;θ) =
B(W [G(x)]; a, b)

B(a, b)
=

1

B(a, b)

∫ W [G(x)]

0
wa−1(1 − w)b−1 dw,(2.6)

where W [G(x)] is given by (2.1). From equations (2.1) and (2.4) (with λ = 1),

we have

W [G(x)] =
(1 + x)α − 1

(1 + x)α + c− 1
.(2.7)

The BMOL pdf follows from (2.6) as

f(x;θ) =
1

B(a, b)
g(x)w[G(x)] {W [G(x)]}a−1 {1 −W [G(x)]}b−1 ,(2.8)

where w(z) = W ′(z) = c/ [c+ (1 − c)z]2. Thus, we obtain the BMOL pdf

from (2.4), (2.7) and (2.8) as

f(x;θ) =
α cb (1 + x)−bα−1 [1 − (1 + x)−α]a−1

{

c+ (1 − c)
[

1 − (1 + x)−α]}a+b
B(a, b)

.(2.9)

Hereafter, a random variable X with density function (2.9) will be denoted by

X ∼ BMOL(a, b, c, α).
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In lifetime analysis, a very useful function is the hazard rate function

(hrf) h(x). Therefore, the hrf of X ∼ BMOL(a, b, c, α) is given by

h(x) =
α cb (1 + x)−bα−1 [1 − (1 + x)−α]a−1

{

c+ (1 − c)
[

1 − (1 + x)−α]}a+b
[B(a, b) −B(W [G(x)], a, b)]

.(2.10)

A random variable X with pdf (2.9) is easily simulated as follows:

if U ∼ Beta(a, b), then

X =

[

(

1 − (1 − c)U

1 − U

)1/α

− 1

]

∼ BMOL(a, b, c, α).

For specific values of the parameters a, b and c, some known sub-models of

the BMOL distribution are given in Table 1.

Table 1: Some BMOL sub-models. MOEL: Marshall–Olkin extended Lomax,
Kw-GL: Kumaraswamy-Generalized Lomax, BL: beta Lomax.

a b c Model Reference

1 1 1 Lomax(α, 1) [17]

1 1 — MOEL(c, 1, α) [10]

1 — 1 Kw−GL(1, b, α, 1) [27]

— — 1 BL(a, b, α, 1) (with µ = 0) [24]

3. SHAPES OF THE DENSITY AND HAZARD RATE FUNC-

TIONS

The shapes of the pdf (2.9) can be described analytically by examining

the roots of the equation f ′(x) = 0 and analyzing its limits in (2.9) when x→ 0

or x→ ∞. Clearly, since f(x) ≥ 0 is integrable, then limx→∞ f(x) = 0. The

behavior of f(x) when x→ 0 is governed by the parameter a, which is inherited

from the properties of the beta distribution. For a ≤ 1, we have that f(x) is

convex and strictly decreasing. For a = 1, limx→0 f(x) = b α/c and, for a < 1,

limx→0 f(x) = ∞. For a > 1, f(0) = 0 and it is unimodal with mode at

x0 = − 1 +











Aa,b,c,α +
[

A2
a,b,c,α − 4 (c− 1) (α− 1) (b α+ 1)

]1/2

2 (b α+ 1)











1/α

,
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where Aa,b,c,α = 2− c−α+ b α+ a cα. All parameters allow extensive control on

the right tail, providing, when a > 1, more light or heavy tails, according to the

parameters decrease or increase, respectively, and conversely when a ≤ 1. Some

plots in Figure 1 display possible shapes of the pdf for selected parameter values.

These plots confirm the above analysis.

(a) α = 1.0 (b) b = 2.0, c = 0.8

(c) a = 7.0, b = 0.5 (d) a = 15.0, α = 1.5

Figure 1: Plots of the pdf (2.9) for selected parameters.

The corresponding hrf can have the classical shapes such as decreasing or

unimodal, as shown in Figure 2. Therefore, the new distribution can be appro-

priate for different applications in lifetime analysis.



328 C.J. Tablada and G.M. Cordeiro

(a) b = 2.0, c = 0.8, α = 1.5 (b) a = 2.0

(c) a = 0.5, b = 0.5, c = 1.0 (d) a = 0.8, α = 2.0

Figure 2: Plots of the hrf (2.10) for selected parameters.

4. USEFUL REPRESENTATION

Using the generalized binomial expansion, Alizadeh et al. [3] reveal that

the cdf (2.6) admits the following power series

F (x) =
∞
∑

k=0

sk G
k(x),(4.1)
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where G(x) is the baseline cdf (2.4) (with λ = 1) and, for k ≥ 0,

sk =
∞
∑

i,j=0

∞
∑

l=k

(−1)i+l+k(1 − c)i

(

b− 1

i

)(

−a− i

j

)(

a+ i+ j

l

)(

l

k

)

ca+i+j (a+ i)B(a, b)
.(4.2)

We note that (4.2) is valid only for c > 1, it does not converge for c < 1 and it is

not applicable for c = 1. Differentiating (4.1) term by term, we obtain

f(x) =
∞
∑

k=0

sk+1 hk+1(x),(4.3)

where hk+1(x) = (k+1) g(x)Gk(x) denotes the exp-G density function with power

parameter k + 1. Therefore, from (4.3), several properties of the new model can

be derived from those exp-G properties [13].

It is possible to go a step further in (4.1). Using the binomial expansion

in (4.1) gives

F (x) =

∞
∑

k=0

k
∑

j=0

(−1)j

(

k

j

)

sk (1 + x)−jα.

By exchanging the indices j and k in the sums, we can write

F (x) =
∞
∑

j=0

∞
∑

k=j

(−1)j

(

k

j

)

sk (1 + x)−jα.(4.4)

Finally, differentiating (4.4) term by term, we obtain

f(x) =
∞
∑

j=0

pj g(x; (j + 1)α, 1),(4.5)

where g(x; (j + 1)α, 1) is given in (2.5) and, for j = 0, 1, ...,

pj =
∞
∑

k=j+1

(−1)j

(

k

j + 1

)

sk.(4.6)

From equation (4.5), we note that f(x) is given by a linear combination of

Lomax densities. Therefore, several properties of the BMOL distribution can be

obtained from those of the Lomax distribution [17].

5. QUANTILE FUNCTION

Let Qa,b(z) denote the qf of the beta distribution with parameters a and b.

Then, the qf of the BMOL distribution is given by

Q(z) =

[

1 − (1 − c)Qa,b(z)

1 −Qa,b(z)

]1/α

− 1.(5.1)
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An expansion up to third order about z = 0 for the beta qf is given by

Qa,b(z) =

3
∑

i=1

qi z
i/a + O(z4/a),

where qi = di [aB(a, b)]i/a, i = 1, 2, 3, with d1 = 1,

d2 =
b− 1

a+ 1
, d3 =

(b− 1) (a2 + 3ab− a+ 5b− 4)

2(a+ 1)2(a+ 2)
.

The skewness and kurtosis measures are determined by α3 = µ3/σ
3 and

α4 = µ4/σ
4, respectively, where µj is the j-th central moment and σ is the stan-

dard deviation. For some generalized distributions obtained by the T−X method

defined by (2.3), as noted by Alzaatreh et al. [4], it could be difficult to determine

the third and fourth moments. Alternative measures for the skewness and kurto-

sis based on the qf are sometimes more appropriate. The measures of skewness

S of Bowley [12] and kurtosis K of Moors [19] are defined by

S =
Q(6/8) +Q(2/8) − 2Q(4/8)

Q(6/8) −Q(2/8)
,(5.2)

K =
Q(7/8) −Q(5/8) +Q(3/8) −Q(1/8)

Q(6/8) −Q(2/8)
.(5.3)

These measures are more robust and they exist even for distributions without

moments.

(a) Skewness (b) Kurtosis

Figure 3: Plots of S of Bowley skewness (5.2) and of K of Moors kurtosis (5.3)
measures for selected parameters (c = 2.0).
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The plots in Figure 3 display the skewness (5.2) and kurtosis (5.3) as func-

tions of the parameter a for some values of the parameters b, c and α. Note that,

as pointed in Section 3, the BMOL pdf does not have mode when a ≤ 1, which

implies a greater skewness for these values of the parameter a, as illustrated in

Figure 3(a). Similarly, note that the skewness increases when b > 1, obtaining

negative values when b, α > 2. In addition, note that the kurtosis decreases when

the values of the parameters b and α increase, as illustrated in Figures 3(b), 1(c)

and 1(d).

6. MOMENTS

The moments ofX with cdf given by (2.6) can be expressed from the (r, k)-th

probability weighted moment (PWM) of a random variable Y with baseline cdf

G(x) and pdf g(x), which is defined, for r, k = 0, 1, ..., by

ωr,k = E

[

Y r Gk(Y )
]

=

∫ ∞

0
yr Gk(y) g(y) dy.

Setting u = G(y), we obtain

ωr,k =

∫ 1

0
Qr

G(u)uk du,(6.1)

where QG(u) is the qf of G(x).

The r-th ordinary moment of X, with r ∈ N, follows from (4.3), for c > 1,

as

µ′r = E(Xr) =
∞
∑

k=0

∫ ∞

0
xrsk+1 hk+1(x) dx,

where it is possible to exchange the infinite sum and the integral using the domi-

nated convergence theorem. By using (6.1) and hk+1(x) = (k+ 1) g(x)Gk(x), we

obtain

µ′r =
∞
∑

k=0

(k + 1) sk+1

∫ 1

0
Qr

G(u)uk du =
∞
∑

k=0

(k + 1) sk+1 ωr,k.(6.2)

Equation (6.2) reveals that the moments of the BMOL distribution can be ex-

pressed as an infinite weighted sum of the baseline PWMs.

If G(x) is the Lomax cdf (with λ = 1), we obtain, using the binomial ex-

pansion,

Qr
G(z) =

[

1

(1 − z)1/α
− 1

]r

=
r
∑

j=0

(

r

j

)

(−1)r+j

(1 − z)j/α
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and therefore, from equation (6.1),

ωr,k =
r
∑

j=0

(−1)r+j

(

r

j

)
∫ 1

0

uk

(1 − u)j/α
du.(6.3)

As a result, from (6.2) and (6.3), we obtain that µ′r <∞ for r < α and µ′r = ∞

for 0 < α ≤ r, a condition that also holds for the Lomax distribution.

We can express the r-th ordinary moment of X as a linear combination of

the r-th ordinary moments of Lomax random variables. In fact, for j = 0, 1, ...,

let αj = (j + 1)α. By applying the dominated convergence theorem and using

equation (4.5), we can write, for c > 1,

µ′r =
∞
∑

j=0

pj

∫ ∞

0
xrg(x;αj , 1) dx =

∞
∑

j=0

pj E(Y r
j ),

where Yj ∼ Lomax(αj , 1).

From the equality E(Y r
j ) = Γ(r + 1)Γ(αj − r)/Γ(αj), for r < αj , (see [16]),

we obtain

µ′r = Γ(r + 1)
∞
∑

j=0

pj
Γ(αj − r)

Γ(αj)
, r < αj , ∀j.(6.4)

Equations (6.2) and (6.4) are the main results of this section. However, the

moments of X can be determined from (6.4) more easily than from (6.2).

7. GENERATING FUNCTION

A formula for the moment generating function (mgf) M(t) = E(etX) of

X ∼ BMOL(a, b, c, α) follows from (4.3) as

M(t) =

∞
∑

k=0

(k + 1) sk+1 ρk(t),(7.1)

where

ρk(t) =

∫ ∞

0
etx g(x)Gk(x) dx.

We can obtain an expansion for ρk(t), with t < 0 and α ∈ N, using the

upper incomplete gamma function, which is defined as

Γ(υ, z) =

∫ ∞

z
xυ−1 e−x dx, υ ∈ R, z > 0.(7.2)
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In fact, setting w = 1 + x, we have

ρk(t) =

∫ ∞

1
et(w−1) g(w − 1)Gk(w − 1) dw = α

∫ ∞

1
et(w−1)w−α−1 (1 − w−α)k dw.

Using the binomial expansion, we have

(1 − w−α)k =
k
∑

j=0

(−1)j

(

k

j

)

w−jα,

which leads to

ρk(t) = α
k
∑

j=0

(−1)αj−j+1

(

k

j

)

tαj+1 e|t|
∫ ∞

1
e−|t|w (|t|w)−αj−1 dw, t < 0, α ∈ N,

Since α ∈ N, then αj = (j + 1)α ∈ N for all j, which ensures that the quantity

(−1)αj−j+1 in the above expression is a real number. Finally, using (7.2), we

obtain

ρk(t) = α
k
∑

j=0

(−1)αj−j

(

k

j

)

tαj e|t| Γ(−αj , |t|), t < 0, α ∈ N.(7.3)

Equations (7.1) and (7.3) are the main results of this section.

8. MEAN DEVIATIONS AND BONFERRONI AND LORENZ

CURVES

As before, for j = 0, 1, ..., let Yj ∼ Lomax(αj , 1). The mean deviations

of X ∼ BMOL(a, b, c, α) about the mean, δ1 = E|X − µ′1| (with 1 < αj , ∀j), and

about the median, δ2 = E|X −M |, can be expressed as

δ1 = 2µ′1 F (µ′1) − 2m
(1)
X (µ′1), δ2 = µ′1 − 2m

(1)
X (M),

where µ′1 is the first ordinary moment of X given by (6.4), m
(1)
X (z) =

∫ z
0 xf(x) dx

denotes the first incomplete moment of X, M = Q(0.5) is the median of X and

Q(·) is given by (5.1). The mean deviations δ1 and δ2 are used frequently as

dispersion measures.

Using (4.5), we can write

m
(1)
X (z) =

∞
∑

j=0

pj

∫ z

0
x g(x;αj , 1) dx =

∞
∑

j=0

pj m
(1)
Yj

(z),(8.1)

where m
(1)
Yj

=
∫ z
0 x g(x;αj , 1) dx denotes the first incomplete moment of Yj and pj

is given by (4.6). For computing δ1 and δ2, we use (2.6), (6.4) and (8.1).
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The incomplete moments can be applied to obtain the Bonferroni and

Lorenz curves [1], which are useful in several areas. The Bonferroni and Lorenz

curves are defined, respectively, by

B(π) =
m

(1)
X (q)

πµ′1
, L(π) = π B(π),

where q = Q(π) is evaluated from (5.1) for 0 < π < 1.

9. ENTROPY

Entropy is a measure of disorder or uncertainty. Two variants of entropy are

generally used, the Shannon and Rényi entropies [5]. The latter is a generalization

of the first.

For a random variable X ∼ BMOL(a, b, c, α), it is easier to obtain an ex-

plicit expression for the Shannon entropy than for the Rényi entropy. The Shan-

non entropy of an absolutely continuous random variable X with pdf f(x) is

defined by

ηX = Ef{− log[f(X)]} = −

∫ ∞

0
log[f(x)] f(x) dx.

Considering that W [G(x)] is an absolutely continuous distribution with

density g(x)w[G(x)], where G(x) is the baseline distribution and w(z) = W ′(z)

(see Section 2), it can be proved that the density f(x) satisfies

Ef{log (W [G(X)])} = −ξ(a, b),

Ef{1 − log (W [G(X)])} = −ξ(b, a),

Ef{log (w[G(X)])} + Ef{log[g(X)]} − EU{log[w(U)]} − EU{log (g[QG(U)])} = 0,

where ξ(a, b) = − ∂
∂a log[B(a, b)] = ψ(a+ b) − ψ(a), ψ(·) denotes the digamma

function and U ∼ Beta(a, b).

From the equalities w(z) = c/[c+ (1 − c)z]2 (with c 6= 1) and g(QG(u)) =

α(1 − u)(α+1)/α, we obtain

EU{log[w(U)]} = log c− 2 EU{log[c+ (1 − c)U ]},

EU{log(g[QG(U)])} = logα+
α+ 1

α
EU [log(1 − U)].
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Further, we have

EU{log(1 − U)} =
1

B(a, b)

∫ 1

0
log(1 − u)ua−1 (1 − u)b−1 du

= −ξ(b, a),

EU{log[c+ (1 − c)U ]} =
1

B(a, b)

∫ 1

0
log[c+ (1 − c)u]ua−1 (1 − u)b−1 du

= log c− Ia,b,c 3F2(1, 1, 1 + a; 2, 1 + a+ b;
c− 1

c
),

where Ia,b,c = a (c−1)
c (a+b) and pFq(a1, ..., ap; b1, ..., bq; z) is the generalized hypergeo-

metric function.

Thus, we can write

ηX = log[B(a, b)] + (a− 1) ξ(a, b) +

(

b− 1 +
α+ 1

α

)

ξ(b, a) + log c− logα

− 2 Ia,b,c 3F2(1, 1, 1 + a; 2, 1 + a+ b;
c− 1

c
).

The Shannon entropy is relevant because it is related to other notions of

entropy in various areas such as probability theory, computer sciences, dynamical

systems and statistical physics.

10. ORDER STATISTICS

LetX1, ..., Xn be a random sample of size n from a distribution F (x). Then,

the pdf of the m-th order statistic, X(m), is given by [26, p. 218]

f(m)(x) = K Fm−1(x)(1 − F (x))n−mf(x),

where K = n!/[(m− 1)! (n−m)!].

For 1 ≤ m ≤ n, we obtain

f(m)(x) = K f(x)
n−m
∑

j=0

(−1)j

(

n−m

j

)

Fm+j−1(x).

Based on (4.1) and (4.2) and using an expansion for power series raised to positive

integer powers [11, p. 17], we have, for c > 1,

Fm+j−1(x) =

(

∞
∑

k=0

sk G
k(x)

)m+j−1

=
∞
∑

k=0

vj,k G
k(x),
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where G(x) is the baseline distribution given in (2.4) (with λ = 1), vj,0 = sm+j−1
0

and, for i ≥ 1,

vj,i =
1

i s0

i
∑

l=1

[(m+ j)l − i] sl vj,i−l.

Therefore, we obtain

f(m)(x) = Kf(x)

n−m
∑

j=0

∞
∑

k=0

(−1)j

(

n−m

j

)

vj,k G
k(x),

where the density f(x) is given in (2.9).

Considering the BMO-G family, Alizadeh et al. [3] propose other expansion

for f(m)(x) given by

f(m)(x) =
∞
∑

r,k=0

pr,k hr+k+1(x),(10.1)

where hr+k+1(x) denotes the exp-G density function with parameter r + k + 1,

pr,k =
n! (r + 1) (m− 1)! sr+1

r + k + 1

n−m
∑

j=0

(−1)j vj,k

(n−m− j)! j!
,

and sr is given in (4.2) for c > 1.

Equation (10.1) reveals that, for the BMO-G family, the density function

f(m)(x) of the m-th order statistic X(m) can be expressed as a linear combination

of exp-G densities. Therefore, some structural properties of X(m) can be obtained

from those of the exp-G distribution [13].

11. MAXIMUM LIKELIHOOD ESTIMATION

Several approaches for parameter estimation were proposed in the statistical

literature but the maximum likelihood method is the most commonly employed.

The MLEs enjoy desirable properties for constructing confidence intervals. In

this section, we estimate the parameters of the BMOL distribution by maximum

likelihood for complete data sets. Let x = (x1, ..., xn)⊤ be a sample of size n

from X ∼ BMOL(a, b, c, α) and θ = (a, b, c, α)⊤ the parameter vector. The log-

likelihood for θ corresponding to the sample x, denoted by ℓf (θ;x), is given

by

ℓf (θ;x) = − n log[B(a, b)] + (a− 1)

n
∑

i=1

log{W [G(xi)]}

+ (b− 1)
n
∑

i=1

log{1 −W [G(xi)]} +
n
∑

i=1

log{w[G(xi)]} + ℓg(α;x),
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where ℓg(α;x) =
∑n

i=1 log[g(xi)] is the log-likelihood for the Lomax parameters

(with λ = 1). From (2.4) and (2.7), we can write

log{W [G(xi)]} = log

[

(1 + x)α − 1

(1 + x)α + c− 1

]

,

log{1 −W [G(xi)]} = log

[

c

(1 + x)α + c− 1

]

,

log{w[G(xi)]} = log

{

c (1 + x)2α

[(1 + x)α + c− 1]2

}

.

Then,

ℓf (θ;x) = − n log[B(a, b)] + (a− 1)
n
∑

i=1

log

[

(1 + xi)
α − 1

(1 + xi)α + c− 1

]

(11.1)

+ (b− 1)
n
∑

i=1

log

[

c

(1 + xi)α + c− 1

]

+
n
∑

i=1

log

{

c (1 + xi)
2α

[(1 + xi)α + c− 1]2

}

+ ℓg(α;x).

The MLE θ̂n of θ can be obtained by maximizing (11.1) directly by using

SAS (PROC NLMIXED), R (optim and MaxLik functions) or Ox program (sub-routine

MaxBFGS). Details for fitting univariate distributions using maximum likelihood

in R for censored or non censored data can be obtained at

http://www.inside-r.org/packages/cran/fitdistrplus/docs/mledist

[Accessed 28 02 2017].

Alternatively, we can obtain the components of the score vector Uθ =

(Ua, Ub, Uc, Uα)⊤ and set them to zero. They are given by

Ua =
∂

∂a
ℓf (θ;x) =n[ψ(a+ b) − ψ(a)] +

n
∑

i=1

log

[

(1 + xi)
α − 1

(1 + xi)α + c− 1

]

,

Ub =
∂

∂b
ℓf (θ;x) =n[ψ(a+ b) − ψ(b)] +

n
∑

i=1

log

[

c

(1 + xi)α + c− 1

]

,

Uc =
∂

∂c
ℓf (θ;x) =

1

c

n
∑

i=1

b [(1 + xi)
α − 1] − c− a+ 1

(1 + xi)α + c− 1
,

Uα =
∂

∂α
ℓf (θ;x) =

n

α
−

n
∑

i=1

log(1 + xi)

+

n
∑

i=1

log(1 + xi)

(1 + xi)α + c− 1
[2(c− 1) − (b− 1)(1 + xi)

α]

+ c(a− 1)
n
∑

i=1

(1 + xi)
α log(1 + xi)

[(1 + xi)α − 1] [(1 + xi)α + c− 1]
.
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The MLE θ̂n is obtained by solving the equations Ua = Ub = Uc = Uα = 0 simul-

taneously. Because they can not be solved in closed-form, numerical iterative

Newton–Raphson type algorithms can be applied.

Under general regularity conditions, we have (θ̂n − θ)
a
∼ N4(0,K(θ)−1),

where K(θ) is the 4 × 4 expected information matrix and
a
∼ denotes asymptotic

distribution. For n large, K(θ) can be approximated by the observed information

matrix. This normal approximation for the MLE θ̂n can be used for construing

approximate confidence intervals and for testing hypotheses on the parameters

a, b, c and α.

Suppose that the parameter vector is partitioned as θ = (ψ⊤
1 ,ψ

⊤
2 )⊤, where

dim(ψ1) + dim(ψ2) = dim(θ). The likelihood ratio (LR) statistic for testing the

null hypothesis H0 : ψ1 = ψ
(0)
1 against the alternative hypothesis H1 : ψ1 6= ψ

(0)
1

is given by LRn = 2 {ℓf (θ̂n)−ℓf (θ̃n)}, where θ̂n = (ψ̂
⊤

1 , ψ̂
⊤

2 )⊤, θ̃n = (ψ
(0)⊤

1 , ψ̃
⊤
2 )⊤,

ψ̂i and ψ̃i are the MLE’s under the alternative and null hypotheses, respectively,

and ψ
(0)
1 is a specified parameter vector. Based on the first-order asymptotic

theory, we know that LR
a
∼ χ2

k, where k = dim(ψ1). Thus, we can compute the

maximum values of the unrestricted and restricted log-likelihoods to obtain LR

statistics for testing some sub-models of the BMOL distribution (see Table 1).

12. SIMULATION STUDY

In this section, we perform a Monte Carlo simulation experiment to eva-

luate the behavior of the MLE θ̂n = (ân, b̂n, ĉn, α̂n) in finite samples and estimate

the relative biases and mean squared errors (MSEs) of the estimates for differ-

ent sample sizes n. We consider 10,000 Monte Carlo replications and use the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm with analytical deriva-

tives to maximize the log-likelihood function (11.1). We set the parameter values

a = 0.5, c = 0.25 and vary b and α. All computations are performed using the

C programming language and the GNU Scientific Library (version 2.1).

The results given in Table 2 reveal that, generally, the relative bias and

MSE values decrease when n increases, which is to be expected since the MLEs

are asymptotically unbiased. The minimum absolute values for the relative biases

and MSEs are equal to 0.003. In counterpart, the maximum absolute values for

the relative biases and MSEs are, respectively, 0.930 and 2.182. Further, it can be

noted in Table 2 that the parameter c was underestimated in some cases (negative

relative bias).
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Table 2: Relative bias and MSE values of the MLE θ̂n = (ân, b̂n, ĉn, α̂n)
(with a = 0.5 and c = 0.25).

relative bias MSE
b α n

ân b̂n ĉn α̂n ân b̂n ĉn α̂n

0.5

100 0.115 0.170 −0.003 0.326 0.035 0.184 0.037 0.268
0.5 200 0.052 0.119 −0.017 0.165 0.008 0.099 0.016 0.118

300 0.034 0.081 −0.013 0.114 0.004 0.059 0.010 0.075

100 0.113 0.180 0.015 0.297 0.040 0.187 0.045 0.544
0.75 200 0.051 0.118 −0.013 0.161 0.008 0.096 0.016 0.260

300 0.033 0.084 −0.011 0.110 0.004 0.060 0.010 0.167

0.75

100 0.093 0.092 0.080 0.598 0.035 0.382 0.170 0.602
0.5 200 0.044 0.060 −0.015 0.333 0.006 0.161 0.016 0.257

300 0.029 0.059 −0.024 0.219 0.004 0.124 0.009 0.149

100 0.090 0.113 0.118 0.544 0.036 0.424 0.241 1.166
0.75 200 0.042 0.065 −0.009 0.312 0.006 0.160 0.016 0.533

300 0.029 0.060 −0.021 0.209 0.004 0.122 0.009 0.323

1.0

100 0.089 0.032 0.183 0.930 0.027 0.577 0.175 1.131
0.5 200 0.046 0.010 0.011 0.551 0.005 0.256 0.022 0.504

300 0.031 0.010 −0.008 0.388 0.003 0.191 0.012 0.295

100 0.083 0.071 0.251 0.835 0.024 1.279 0.404 2.182
0.75 200 0.044 0.023 0.018 0.506 0.005 0.260 0.024 0.999

300 0.030 0.015 −0.006 0.363 0.003 0.186 0.012 0.609

13. APPLICATION

In this section, the potentiality of the BMOL distribution is proved em-

pirically by means of one lifetime application. We use an uncensored data set

corresponding to 84 observations on service times for failured windshields [21,

Table 16.11] and fit the BMOL distribution and its sub-models (see Table 1) to

these data. All computations are performed using the R software (version 3.0.2,

AdequacyModel package). The descriptive statistics for the current data are given

in Table 3.

Table 3: Descriptive statistics for the service times data.

min. 1st quantile median mean 3rd quantile max.

0.040 1.839 2.354 2.557 3.393 4.663
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For maximizing the log-likelihood function (11.1), we use the BFGS algo-

rithm with numerical derivatives. The MLEs are given in Table 4 (with standard

errors in parentheses). For purposes of comparison, we compute some goodness-

of-fit statistics: Akaike Information Criterion (AIC), Bayesian Information Cri-

terion (BIC), Hannan–Quinn Information Criterion (HQIC), Cramér–von Mises

Criterion (W*) and Anderson–Darling Criterion (A*) [6]. In general, small val-

ues of these statistics suggest a better fit. We also include in the comparison the

exponentiated-Weibull (EW) distribution [20], since it is a widely used lifetime

model. Its cdf and pdf are given, respectively, by

R(x) =

[

1 − e−( x
α)

β
]η

and r(x) =
βη

α

(x

α

)β−1
[

1 − e−( x
α)

β
]η−1

e−( x
α)

β

,

where x ≥ 0 and α, β, η > 0.

Table 4: MLEs and standard errors for the service times data.

MLE
Distribution

â b̂ ĉ α̂ β̂
η̂

Lomax(α, 1) — — —
0.824

— —
(0.090)

MOEL(c, 1, α) — —
441.875 4.957

— —
(242.694) (0.424)

BL(a, b, α, 1)
6.664 38.687

—
0.133

— —
(1.055) (79.332) (0.254)

Kw−GL(a, b, α, 1)
4.378 244.216

—
0.254

— —
(0.517) (213.820) (0.083)

BMOL(a, b, c, α)
1.377 6.243 209.269 2.954

— —
(0.356) (5.526) (143.799) (0.627)

EW(α, β, η) — — —
3.972 5.958 0.271

(0.136) (0.255) (0.036)

The goodness-of-fit values for the fitted distributions are listed in Table 5.

Based on the figures in Table 5, we note that the EW distribution presents

the smaller values of the AIC, BIC and HQIC statistics. On the other hand,

the BMOL distribution presents the smaller values of the W* and A* statistics.

Since the BMOL and EW distributions are non-embedded models, a comparison

between them is more appropriate by means of these statistics. Also, note that

the BMOL model presents the smaller value of the AIC statistic among all its

sub-models and the smaller values of the BIC and HQIC statistics comparatively

with the Lomax, BL and Kw-GL distributions. Therefore, we can conclude that
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the BMOL distribution gives the best fit to the current data. If a minimum

number of parameters is taken into account, the MOEL or EW distributions can

be chosen, since these also has less parameters.

Table 5: Goodness-of-fit statistics for the service times data.

Statistic
Distribution

AIC BIC HQIC W* A*

Lomax(α̂, 1) 406.442 408.873 407.419 0.562 3.786
MOEL(ĉ, 1, α̂) 266.987 271.849 268.942 0.068 0.650

BL(â, b̂, α̂, 1) 312.806 320.098 315.737 0.553 3.737

Kw−GL(â, b̂, α̂, 1) 282.938 290.230 285.869 0.175 1.463

BMOL(â, b̂, ĉ, α̂) 265.694 275.417 269.602 0.0480.0480.048 0.4870.4870.487

EW(α̂, β̂, η̂) 261.208261.208261.208 268.501268.501268.501 264.140264.140264.140 0.129 0.831

To analyze how significant are the parameters of the BMOL distribution in

modeling the current data, we use the LR statistic, as discussed in Section 11, for

testing the BMOL model versus its sub-models listed in Table 1. The results are

given in Table 6. Based on the figures in this table, we note that the rejection of

the null hypotheses for the Lomax, MOEL, BL and Kw-GL models (at the 10%

significance level) is significant. So, we have evidence of the potential need for

including the parameters a, b and c to model the current data.

Table 6: LR tests for the service times data.

Models Hypotheses LR statistic p-value

Lomax vs. BMOL H0: a = b = c = 1 vs. H1: H0 is false 146.748 1.33 × 10−31

MOEL vs. BMOL H0: a = b = 1 vs. H1: H0 is false 5.294 7.09 × 10−2

BL vs. BMOL H0: c = 1 vs. H1: H0 is false 49.112 2.42 × 10−12

Kw−GL vs. BMOL H0: a = c = 1 vs. H1: H0 is false 19.244 6.63 × 10−5

The plots of the estimated densities for the EW, MOEL and BMOL distri-

butions are displayed in Figure 4. Based on these plots, it is possible to assess

the best overall fit of the BMOL distribution to the current data.
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Figure 4: Comparison of the EW, MOEL and BMOL estimated densities
for the service times data.

14. CONCLUSION AND FINAL REMARKS

In this chapter, we introduce a new four-parameter model, called the beta

Marshall–Olkin Lomax (BMOL) distribution, as a member of the beta Marshall–

Olkin generated (BMO-G) family [3] when the parent model is the Lomax dis-

tribution [17] (with λ = 1). Some sub-models of the BMOL distribution are

presented. The new distribution has simple expressions for the cumulative and

density functions. We study some of its mathematical and statistical properties.

We demonstrate that the BMOL density can be expressed as linear combinations

of Lomax and exponentiated-Lomax densities and therefore some of its struc-

tural properties can be obtained from those of these models. We present explicit

expressions for the quantile function, moments, generating function, mean de-

viations, Bonferroni and Lorenz curves, Shannon entropy and order statistics.

We obtain the maximum likelihood estimates for complete samples and perform

a Monte Carlo simulation in order to evaluate the behavior of these estimates

in finite samples. We compare the performance of the new model with other

related distributions including the exponentiated Weibull model using classical

goodness-of-fit statistics. The results confirm that the BMOL distribution is very

appropriate for lifetime applications.
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[25] Ristić, M.M. and Balakrishnan, N. (2012). The gamma-exponentiated ex-
ponential distribution, Journal of Statistical Computation and Simulation, 82(8),
1191–1206.

[26] Severini, T. (2005). Elements of Distribution Theory, Cambridge Series in Sta-
tistical and Probabilistic Mathematics, Cambridge University Press.

[27] Shams, T.M. (2013). The Kumaraswamy-Generalized Lomax distribution,
Middle-East Journal of Scientific Research, 17, 641–646.

[28] Tahir, M.H. and Nadarajah, S. (2015). Parameter induction in continu-
ous univariate distributions: Well-established G families, Anais da Academia
Brasileira de Ciências, 87(2), 539–568.

[29] Zografos, K. and Balakrishnan, N. (2009). On families of beta- and general-
ized gamma-generated distributions and associated inference, Statistical Method-
ology, 6(4), 344–362.


