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Abstract:

• In Bayesian analysis, the prior distribution and the likelihood can conflict, in the
sense that they can carry diverse information about the parameter of interest. The
most common form of conflict is the presence of outliers in the data. Usually, prob-
lems of conflicts are solved by assigning heavy-tailed distributions to that source of
information which may be causing the conflict. However, the class of heavy-tailed
distributions is not well defined, therefore there are many ways to define heavy tails.
The class O-regularly varying distributions is rather unknown in Statistics, it basi-
cally embraces those distributions whose tails decay oscillating between two power
functions. In this work we study a new distribution which has this property and,
as a consequence, yields robust models for location and for scale parameter models
separately. We provide explicit expressions for some relevant quantities concerning
the distribution, such as the moments, distribution function, etc. Besides, we show
how conflicts can be resolved using this distribution.
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1. INTRODUCTION

In Bayesian analysis, two sources of information are used to study a phe-

nomenon of interest: the prior distribution and the likelihood function. In this

way we combine, through Bayes’ theorem, the evidences from both the data and

some relevant subjective knowledge about the parameter of interest. However,

since models are only a try to describe the reality, which is much more complex,

the modelling process is inevitably subject to errors. In fact, the model misspec-

ification can lead to wrong conclusions, since it can strongly affect the posterior

distribution. The conflict of information can arise from a model not prepared to

deal with diverse information, e.g. outliers, leading to different evidences about

the parameters, one coming from the prior and the other coming from the like-

lihood. The most common form of conflict are the outliers, since they will carry

information far apart from the prior distribution and the rest of the data.

This behaviour was first identified by Lindley (1968), who suggest the use

of the Student-t distribution to resolve the conflicts. Dawid (1973) established

conditions on the data and the prior distributions which yields robust posterior

distributions for the location parameters. Several works followed this thread, ba-

sically improving Dawid’s conditions as, for instance, O’Hagan (1979, 1988 and

1990) and O’Hagan & Le (1994). All these works concerned only location pa-

rameter models. In order to solve conflict of information in scale and location

parameter structures separately, Andrade & O’Hagan (2006) study a class of

heavy-tailed distributions different from the ones considered by Dawid (1973) and

O’Hagan (1979), namely the class of regularly varying distributions. A more gen-

eral approach for location-scale structures was proposed by Andrade & O’Hagan

(2011). Andrade et al. (2013) proposed alternative conditions for the location

and the scale parameter models which are slightly easier to verify. Andrade &

Omey (2013) give several new conditions using different classes of distributions,

such as the subexponential and L classes. For a more complete literature review

on robustness modelling, see O’Hagan & Pericchi (2012). The papers of Andrade

& O’Hagan showed that, working within the regularly varying class, the outlying

information will be only partially rejected, in the sense that it exerts an initial

influence which, even though is constant, does not vanish as the outlier becomes

large. Thus, concerning this aspect Desgagné (2013, 2015) proposes a new class

of distributions which allow to resolve conflicts in scale (and location-scale) pa-

rameter(s) models by fully rejecting the conflicting information (full robustness).

However, this led to rather complex conditions and distributions, which can limit

the applications. Andrade & Omey (2016) proposes to use the class of O-regularly

varying distributions (ORV ), which are much more intuitive and also allows full

robustness in scale parameter models.

The robustness we are treating is related to the conflict of information, the

thread initiated by Dawid (1973), in which some of the sources of information
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(prior/likelihood) carries some information that is away from the rest of the

information (See Andrade & O’Hagan, 2006).

One important thing to notice is that, although there are many new distri-

butions which could be used for robustness modelling, for the best of our knowl-

edge, no other distribution has this tail behaviour, with oscillating decay between

two regularly varying distributions. This peculiar behaviour of the floor distribu-

tion, besides being heavy tail, also can motivate the creation of new distributions

involving some sort of waving functions.

In this work we study the Floor distribution, which is in the O-regularly

varying class of heavy-tailed distributions. It was firstly suggested by Andrade &

Omey (2016), however here we compute all the relevant quantities of the distri-

bution, such as moments, distribution function, random numbers generator, etc.

In Section 2 we give the definitions of regular and O-regular variation. In addi-

tion we provide a rule for creating ORV distributions and show how conflicts of

information can be resolved in Bayesian analysis context. In Section 3 we present

the Floor distribution and its quantities. A simulation study comparing the floor

distribution with the exponential one, using different proportions of outliers and

sample sizes, is provided in Section 4. Section 5 provides an example in which

outlying information is automatically rejected by the model as it becomes large.

Finally, we conclude with some general remarks in Section 6.

2. HEAVY TAILS AND REGULAR VARIATION

Roughly speaking the concept of heavy tails is associated with those distri-

butions whose tails decay at least slower than the function e−x. However, there

is not a widely spread accepted definition of heavy tail. Most of the definitions

in the literature are contextualised in some area. In this work we define heavy

tail as regular variation.

The concept of regular variation was introduced by Karamata (1930). Feller

(1971) studied the application of such concept on probability theory and Andrade

& O’Hagan (2006 e 2011) used regularly varying distributions in robust Bayesian

modeling. Others studies include Landau (1911), Valiron (1913), Pólya (1917),

de Haan (1970) and Seneta (1976). The main reference about regular variation

used in this paper is the book written by Bingham et al. (1987).

Definition 2.1. (Regular variation) A measurable function f is said to be

regularly varying at infinity with index ρ, ρ ∈ R and λ > 0, if

(2.1) lim
x→∞

f(λ x)

f(x)
= λρ.

We denote it by f ∈ Rρ.
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Particularly, if ρ = 0, then f is said to be a slowly varying function, denoted

by f ∈ R0. We write the set of all regularly varying functions as R = {Rρ : ρ ∈

(−∞,∞)}. The characterisation theorem establishes that if f(x) ∈ Rρ, then f(x)

can be written as f(x) = xρℓ(x), where ℓ(x) is a slowly varying function. For

more details about Karamata’s theory and, in particular, regular variation, see

Bingham et al. (1987). Definition 2.1 can be interpreted as the tail behavior of

a probability density function, i.e., there is a relation between regular variation

and heavy tails. For example, if f ∈ R−ρ as x → ∞, then the right tail decreases

like a power function x−ρ.

The O-regular variation class (which we call ORV ) extends the concept of

regular variation and was introduced by Avakumović (1936). This class involves

distributions whose tails decrease at any behaviour between two regularly varying

functions. For example, the tails of an ORV distribution can decrease oscillating

between two power functions (Andrade & Omey, 2016).

Definition 2.2 (O-regular variation). A probability density f is said to

be O-regularly varying at infinity, denoted by f ∈ ORV, if f satisfies

(2.2) lim
x→∞

sup
f(xy)

f(x)
< ∞,∀y > 0.

Along with the definition of ORV, we have the upper and lower Matuszewska

indexes. If f ∈ ORV , the upper index of f is given by

(2.3) α(f) = lim
y→∞

log lim supx→∞ f(xy)/f(x)

log(y)
,

and the lower index of f is given by

(2.4) β(f) = α(1/f) = lim
y→∞

log lim infx→∞ f(xy)/f(x)

log(y)
.

Since the tails of ORV distributions decrease between two polynomials, it

is a broad class, thus there are many ways of constructing ORV distributions.

Andrade & Omey (2016) suggest a procedure to create ORV distributions. Let

f be a probability density function of the form

(2.5) f(x) = Cb(x)A(x),

where C is the normalizing constant, b is bounded away from zero to infinity

when x tends to infinity. For the class of distributions defined in (5), it follows

that:

(i) If xA′(x)/A(x) is bounded, then f ∈ ORV;

(ii) If A(x) ∈ RV−α, then f ∈ ORV.
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Andrade & Omey (2016) showed that the floor distribution belongs to the

O-regular class. We say that the random variable X is distributed according to

a floor distribution with parameter a, denoted by X
d
∼ floor(a), if its probability

density function is given by

(2.6) f(x) = C(a)x−a e⌊log x⌋ , 1 ≤ x < ∞,

where C(a) is the normalizing constant, a > 2 and ⌊.⌋ is the floor function. In

other words,

f(x) = C(a)x−a+1e⌊log x⌋−log x,

for x ≥ 1. Such authors also prove that the floor distribution belongs to the

O-regularly varying class of distribution. Note that this satisfies (2.5), where

A(x) = xa−1 and b(x) = e⌊log x⌋−log x. It is easy to see that A(x) is regularly

varying with index −a + 1. Since ⌊log x⌋ ≤ log x ≤ ⌊log x⌋+ 1, we also have that

−1 ≤ log x ≤ 0, which shows that e−1 ≤ b(x) ≤ 1. Thus we have that the floor

distribution is a O-regularly varying. We also have that the Matuszewska indices

for the floor distribution are given by α(f) = β(f) = −a + 1.

Consider x = (x1, ..., xn)|θ
iid
∼ f(x|θ) = θ−1h(x/θ), θ ∼ p(θ), and h and p

bounded continuous probability densities. Following the notation in Andrade

& Omey (2016), the data are partitioned in two sets, called x
L and x

U , defined

by L = f(xL|θ) =
∏k

i=1 h(xi|θ) and U = f(xU |θ) =
∏n

i=k+1 h(xi|θ), where x
L are

the outliers. In other words, f(x|θ) = θ−n ×L×U , and the posterior distribution

is given by

p(θ|x) =
θ−n × L × U × p(θ)

∫ ∞
0 θ−n × L × U × p(θ)dθ

.

Andrade & Omey (2016) showed that, if the following conditions hold,

(i) h ∈ ORV with α(h) < 0 ,

(ii)
∫ 1
0 y−kα−n × U × p(y)dy < ∞ ,

(iii)
∫ ∞
1 y−n−kβ × U × p(y)dy < ∞ ,

(iv)
∫ ∞
x y−np(y)dy = O(1)Πk

i=1x
β−ǫ
i ,

then

(2.7) 0 < lim inf
x→∞

p(θ|x)

U p(θ)
≤ lim sup

x→∞

p(θ|x)

U p(θ)
< ∞

The result in (2.7) establishes that, as x tends to infinity, the posterior

distribution will be bounded by two quantities independent of x. Thus, the

posterior distribution will be based on the prior information and the observations

that are not outliers.
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3. THE FLOOR DISTRIBUTION

To define the location-scale floor family of distributions, let us consider the

linear transformation Z = σX + µ where µ ∈ R, σ > 0 and X
d
∼ floor(a).

3.1. The probability density function

Consequently, the density of Z is given by

h(z) = C(a)
1

σ

(

z − µ

σ

)−a

e⌊log( z−µ
σ

)⌋ , µ + σ ≤ z < ∞,

where µ ∈ R and σ > 0. Figure 1 shows plots of the density for different values

of a, µ, and σ.
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Figure 1: Floor density for different values of a, µ, e σ.

3.2. The normalising constant

Note that (2.6) will be a density function if

∫ ∞

1
C(a)x−a e⌊log x⌋ dx = 1.(3.1)
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Applying the transformation t = log(x),

1

C(a)
=

∫ ∞

0
e−a t e⌊t⌋ et dt

=

∫ ∞

0
e−t(a−1) e⌊t⌋ dt

=

∫ 1

0
e−t(a−1) e0 dt +

∫ 2

1
e−t(a−1) e1 dt + ···(3.2)

=
∞

∑

n=0

en

∫ n+1

n
e−t(a−1) dt

=
1

a − 1

[

∞
∑

n=0

e−n(a−2) −
∞

∑

n=0

e−(n+1)(a−1)+n

]

.

The two sums in (3.2) are geometric series with ratio e−(a−2), hence

C(a) =
(a − 1)(e2 − ea)

e − ea
, a > 2.

3.3. Cumulative distribution function

The cumulative distribution function of X ∼ Floor(a) is given by:

F (x) = C(a)

∫ x

1
t−a e⌊log t⌋ dt

Using the transformation ν = log t,

F (x) =
C(a)

a − 1





⌊log x⌋
∑

n=0

e−n(a−2) − e1−a

⌊log x⌋−1
∑

n=0

e−n(a−2) − e(1−a) log x+⌊log x⌋



(3.3)

The two sums in (3.3) are partial geometric series with ratios e−(a−2) e e−a,

respectively. It follows that

F (x) = −
C(a)

a − 1

{

e− log(x)(a−1)+⌊log(x)⌋ + (e−1 − 1)

[

1 − e−(a−2)⌊log x⌋

ea−2 − 1

]

− 1

}

,

for x > 1 and a > 2. Note that the cumulative distribution involving the location

and scale parameters can be obtained by simple variable transformation, that is

letting Z = σX + µ, we have the expression FZ(z) = P (X ≤ z−µ
σ ).
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3.4. Moment of order r

The moment of order r is calculated replacing a for (a − r) in (3.1). Thus,

(3.4) E(Xr) = C(a)

∫ ∞

1
x−(a−r) e⌊log x⌋ dx =

C(a)

C(a − r)
,

which exists only when r < a − 2.

3.5. Summaries

Proposition 3.1. If X is a random variable following the standard floor

distribution with parameter a, then

(i) The expectation of X, given straightforwardly by (3.4), is given by

E(X) = C(a)/C(a − 1), a ≥ 3.

(ii) Variance. Using (3.4), the variance is

(3.5) V ar(X) =
C(a)[C2(a − 1) − C(a)C(a − 2)]

C(a − 2)C2(a − 1)
, a > 4.

(iii) Quantiles can be obtained by numerically inverting the cumulative

distribution function.

(iv) The coefficient of skewness is given by

γ1(X) =
C3(a − 1)C(a − 2) − 3C(a)C2(a − 1)C(a − 3) + 2C2(a)C(a − 2)C(a − 3)

C1/2(a)C(a − 3)[C2(a − 1) − C(a)C(a − 2)]3/2

× C1/2(a − 2), a > 5.

(v) It can be shown that the excess kurtosis can be written as

K(X) = C(a − 1)C(a − 2){C3(a − 1)
3

∏

i=2

C(a − i) − 4C(a − 4)

×
2

∏

i=0

C(a − i) + 6C2(a)C(a − 1)
4

∏

i=3

C(a − i) − 4C(a)

×
4

∏

i=0

C(a − i) + C2(a)
4

∏

i=2

C(a − i)}{C(a)C(a − 3)C(a − 4)}−1

× {C2(a − 1) − C(a)C(a − 2)}−2 − 3, a > 6.
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Proof: To prove (iv), note that the Pearson’s moment coefficient of skew-

ness is given by

γ1(X) =
mX,3

σ3
X

,

where mX,3 = E[X − E(X)]3, i.e., the 3th central moment of the random vari-

able X and σX is the standard deviation of X. Thus, using the properties of

expectation and (3.4), it can be shown that

mX,3 =
C(a)[C3(a − 1)C(a − 2) − 3C(a)C2(a − 1)C(a − 3) + 2C2(a)C(a − 2)C(a − 3)]

C3(a − 1)C(a − 2)C(a − 3)

Using (3.5), [V ar(X)]3/2 = σ3
X = C3/2(a)[C2(a−1)−C(a)C(a−2)]3/2

C3/2(a−2)C3(a−1)
, so that the

coefficient can be calculated.

To prove (v), note that the excess kurtosis is calculated by K(X)= mX,4/σ
4

X−3.

The computation of the fourth central moment is analogous to that of the coeffi-

cient of skewness, and the denominator σ4
X is simply the squared variance given

in (3.5).

Figure 2 shows how the expectation and variance behave as the parameter

a changes. Note that as the parameter a increases, both the expectation and vari-

ance of the standard floor distribution decrease, however the variance decreases

more rapidly.
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Figure 2: Expectation and variance for different values of a.

Figure 3 presents the behaviour of the skewness and kurtosis coefficients as

the value of a changes. Note that the value of γ1(X) will be always greater than

zero, which indicates that the floor distribution is right-skewed for any value of

a > 5.



Bayesian Robustness Modelling Using the Floor Distribution 455

5 6 7 8 9 10

1
0

2
0

3
0

4
0

5
0

a

S
k
e
w

n
e
s
s
 c

o
e
ff

ic
ie

n
t

6.0 6.5 7.0 7.5 8.0

−
1
0
0
0
0

0
5
0
0
0

a

K
u
rt

o
s
is

 c
o
e
ff

ic
ie

n
t

Figure 3: Skewness and kurtosis coefficients for different values of a.

3.6. Summaries for the floor distribution with location and scale

Proposition 3.2. If Z = σX + µ is a random variable following the floor

distribution with location and scale parameters given by µ and σ, respectively,

then

(i) The expectation of Z, given straightforwardly by (3.4), and using

properties of expectation is given by E(Z) = σE(X) + µ a ≥ 3, µ ∈

R, σ > 0.

(ii) Variance. Using (3.4), and properties of variance, we have

(3.6) V ar(Z) = σ2V ar(X) = σ2 C(a)[C2(a − 1) − C(a)C(a − 2)]

C(a − 2)C2(a − 1)
, a > 4.

(iii) The moment of order r of the variable Z can be obtained using the

binomial theorem, i.e., E(Zr) =
∑r

k=0

(

r
k

)

µr−kσk
E(Xk).

(iv) Quantiles can be obtained by numerically inverting the cumulative

distribution function.

(v) The coefficient of skewness is the same as of the standard floor dis-

tribution, i.e., γ1(Z) = γ1(X).

(vi) The excess kurtosis coefficient is the same as of the standard floor

distribution, i.e., K(Z) = K(X).

Proof: To see that the coefficient of skewness and the excess kurtosis

are the same for the standard floor distribution and the floor distribution with

location and scale parameter, note that γ1(Z) =
mZ,3

σ3

Z
, where

mZ,3 = E{(Z − E(Z))3} = E{(σX + µ − (σE(X) + µ))3}

= E{σ3(X − E(X))3} = σ3
E{(X − E(X))3} = σ3mX,3
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and σ3
Z = (σ2

Z)
3

2 = {σ2V ar(X)}
3

2 = (σσX)3. Thus

γ1(Z) =
mZ,3

σ3
Z

=
σ3mX,3

(σσX)3
=

mX,3

σ3
X

= γ1(X)

with similar computation, it can be shown that K(Z) = K(X).

3.7. Random values of the floor distribution

Through the acceptance-rejection method, values of the floor distribution

are generated (Kronmal & Peterson, 1981) using the R software. We considered

the exponential distribution with location parameter equal to 1 as the proposed

distribution, so that the support of both the exponential and floor distributions

are the same.

Consider the density of the floor distribution as f(x) and the density of

the exponential distribution as g(y). The acceptance-rejection algorithm used to

generate random values of a standard floor distribution with parameter a can be

explicitly written as follows:

1. Generate a random value of the exponential distribution with two pa-

rameters, choosing λ so that the floor and the exponential distribution

have the same expectation and fixing the location parameter as equal

to 1. Call this value y.

2. Generate a random value of the uniform distribution, u.

3. If u ≤ f(y)
cg(y) , set x=y (accept). Otherwise go back to step 1 to generate

a new value.

In the third step, we assume that the ratio between f(x) and g(x) is

bounded by c, a constant greater than zero.

Figure 4 shows a histogram with the distribution of 10,000 random val-

ues, generated through the acceptance-rejection method for a = 9, with the real

density over the histogram.
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Figure 4: Histograms of generated values with a = 9, µ = 0, σ = 1;
a = 9, µ = 4, σ = 2; a = 9, µ = 4, σ = 5, respectively.

4. SIMULATION STUDY

A simulation study was performed to compare the floor distribution to the

exponential distribution, under different sample sizes and proportion of outliers.

We used samples of sizes 20, 80 and 100, and for each sample size we considered

three proportions of outliers: 0.05, 0.10 and 0.15.

The Figure 5 shows how the posterior estimation for the location param-

eter behaved as the outlying observations increased. The floor distribution is

represented by the dashed line and the exponential distribution is represented by

the continuous line. As the Figure 5 shows, the estimation of the location pa-

rameter under the floor distribution was not so affected as under the exponential

distribution.
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Figure 5: Comparison of location parameter posterior estimation for the
floor and exponential distributions under different sample sizes
and proportions of outliers.

5. APPLICATIONS — BAYESIAN ROBUSTNESS

In this section, we illustrate how the floor distribution can resolve conflict

of information by rejecting the outlying information. We compare the behaviour

of the posterior estimates under a floor distribution and exponential distribution

models. The usual procedure to assess robustness in a Bayesian model is to make

one (or a few) observations in the data to tend to infinity, and check how the

posterior estimates behaves. Thus, modelling accordingly to conditions (i)–(iv)

which lead to the result (2.7), the posterior distribution will automatically reject

the conflicting observation.

We use the data from Kapur & Lamberson (1977, p. 240), which refers

to X: the number cycles to failure (in ten thousands) for 20 heater switches
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subject to an overload voltage. Following the same methodology used in Andrade

& Omey (2016), the data are modelled with two different densities with scale

parameter: exponential, with density given by f(x|θ) = θ−1e−x/θ, x > 0 and floor,

with density given by

f(x|θ) =
C(a)

θ

(x

θ

)−a
elog⌊x/θ⌋,

for x > θ. The conditions established by Andrade & Omey (2016) consider loca-

tion and scale parameter structures separately, thus a more complex structure,

involving location and scale parameters, will change their conditions, hence more

investigation is required in order to assess the behaviour of the posterior quanti-

ties in the location-scale parameter case, likewise to Andrade & O’Hagan (2011).

Tahir & Saleem (2011) considered a elicited prior density is which is quite

informative, in the sense that the prior variance is relatively small. Thus, θ
d
∼

Gama(8.9936, 21.5698), which we will also use for both the floor and exponential

models.

We used the package OpenBugs with zeros trick, since the floor is a new

distribution. As a result, Figure 6 was created by simulating the posterior dis-

tribution for each model, as one of the observations tends to infinity. In the case

of the exponential distribution, as the outlier becomes distant from the other ob-

servations, the posterior mean is affected by the outlying information. This does

not happen with the floor distribution, and thus we can see from this example

that the floor distribution is robust to outliers.
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Figure 6: Posterior estimates for θ.
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6. DISCUSSION

In Bayesian context, robustness modelling is becoming of high interest,

mainly to address problems due to misspecification of the model. In fact, in a

rigorous modelling process, a researcher may change the model after detecting

conflicting information such as outliers, untrusted prior information, etc. There-

fore, it is important to know about the properties of the heavy-tailed distributions

in order to model conveniently to resolve such conflicts. However, the large range

of heavy-tailed distributions leads to a great variety of behaviours of the poste-

rior distribution in the presence of conflict, some heavy-tailed distribution will

yield robust models only for the location parameter, whereas other classes of

such distributions will resolve conflicts in both location and scale parameters. In

addition, different classes can lead to different ways to resolve the conflict. For

instance, as pointed out by Andrade & O’Hagan (2006), in the scale parameter

case, the regularly varying distributions will allow only a partial rejection of the

conflicting information, whereas the class proposed by Desgagné (2013, 2015)

achieve full rejection. In this work, we follow the proposal of Andrade & Omey

(2016), in which uses the ORV class, which also lead to complete rejection the

outlier, however the ORV class is much more intuitive and easy to work than

that proposed by Desgagné (2013).

On the other hand, there are very few ORV distributions in the literature,

further work should propose new ORV distributions. The floor distribution is

an alternative to the exponential distribution, and is an example of how the tails

can oscillate leading to a new sort of heavy-tailed distributions, which has direct

applications in Bayesian Robustness.
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[6] Avakumović, V.G. (1936). Über einen O-inversionssatz, Bulletin International
de l’Academie Yougoslave des Sciences et des Beaux-Arts, 29(30), 107–117.

[7] Bingham, N.H.; Goldie, C.M. and Teugels, J.L. (1987). Regular Variation,
“Encyclopedia of Mathematics and Its Applications”, Cambridge: Cambridge Uni-
versity Press.

[8] Dawid, A.P. (1973). Posterior Expectations for Large Observations, Biometrika,
60(3), 664–667.

[9] De Haan, L. (1970). On Regular Variation and Its Application to the Weak
Convergence of Sample Extremes, Mathematical Centre Tracts 32, Mathematisch
Centrum, Amsterdam.
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