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extreme ship motion data. Finally, several approaches to uncertainty reduction are
also considered.

Key-Words:

• exceedance probability; quantiles; confidence intervals; peaks over threshold; general-

ized Pareto distribution; threshold selection; uncertainty reduction.

AMS Subject Classification:

• 62G32, 62P30, 62F25, 62G15.



538 Glotzer, Pipiras, Belenky, Campbell and Smith



Confidence Intervals for Exceedance Probabilities... 539

1. INTRODUCTION

We describe first the real-life application which sets the directions and

frames the questions pursued in this work (Section 1.1). We then outline the

contributions and the structure of this work (Section 1.2).

1.1. Motivation

This work is motivated by applications to ship motions and, more specifi-

cally, their stability in irregular seas. See, for example, Lewis [25], Benford [7],

Belenky and Sevastianov [4], Neves et al. [28] for more information on this re-

search area. When it comes to ship stability, the focus is on several variables

characterizing the ship motion including roll and pitch angles, which are, respec-

tively, the rotational movements around longitudinal (stern-to-bow) and lateral

(starboard-to-port side or right-to-left side) axes, as well as vertical and lateral

accelerations in various locations on the ship. See Figure 1. The ship stability

failures are related directly to the exceedance of certain values by these vari-

ables. For example, the exceedance of a certain roll angle can lead to a cargo

shift (which then can lead to capsizing), loss or damage of cargo in containers on

deck, or down-flooding internal volumes of a ship. A large enough acceleration

can lead to serious injuries or even death of a crew and passengers, as well as

cargo damage. Such occurrences are well known not only among the researchers

working in the area but also often make it to the popular media.1
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Figure 1: The motions of the ship.

1Recent examples of accidents related to intact stability failures include: Ro/Ro Ferry Aratere

on 3rd March 2006 (Maritime New Zealand, 2007), Cruise ship Pacific Sun on 30 July 2008 (Ma-
rine Accident Investigation Branch, 2009), Ferry Ariake on 13 November, 2009 (Transportation
Safety Board, 2011), to name but a few.
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The measured variables of interest to stability are understandably affected

by the geometry and loading of the ship, the operational parameters and the

surrounding sea. The operational side includes the heading (the angle between

the vector of ship speed and predominant direction of wave propagation) and the

value of speed of the ship. The state of the sea is usually described by a spectrum

of wave elevations. Note that a wide range of conditions (the values of the above

descriptors) are possible. What can be expected under a particular condition

is often suggested from the understanding of the dynamics governing the ship

motion.

An appealing but also critical feature of the research area is the availability

of computer programs simulating ship motions, see the recent state-of-the-art

review by Reed et al. [30]. In this work, we use a fast volume-based ship motion

simulation algorithm developed in Weems and Wundrow [37]. The developed

code does not incorporate finer hydrodynamics features of ship motions such

as the influence of a ship motion on wave pressure field (i.e. wave diffraction

and radiation; cf. Large Amplitude Motion Program or LAMP, see Lin and Yue

[26]). But it is considered qualitatively representative of ship motions and their

extremes. Moreover, the code is fast enough (in fact, the only such realistic

method available) to be used in validation, where very long time histories of ship

motions are necessary (see Section 3 below).
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Figure 2: The roll and pitch angle series for 10 minutes.

Figure 2 depicts the time series of roll and pitch angles obtained by the

above referenced code for a 10 minute time window at 0.5 second measurement

intervals. The ship geometry is that of the ONR tumblehome top (Bishop et al.

[8]). The heading is at 45 degrees, the speed is 6 knots, the waves are character-

ized by significant height of 9m and mean zero-crossing period of 10.65s which

corresponds to 15s of the modal period, using Bretschneider spectrum in open

ocean (Lewis [25]).



Confidence Intervals for Exceedance Probabilities... 541

A basic problem is to estimate the probability of roll, pitch or other variable

of interest exceeding a critical value, as well as to provide a confidence interval.

For example, in the condition of Figure 2, one could be interested in the roll angle

exceeding 60 degrees (in either positive or negative direction). Inference would

have to be made from the roll series of, for example, 100 hours, which would

typically not contain such extreme occurrences. Again, the critical angle is often

suggested from real-life considerations.

A method suggested for the problem above (and, more specifically, the

associated confidence intervals) can be assessed through a validation procedure.

The computer code mentioned above can be used to generate millions of hours

of ship motion data which would contain exceedances of the target of interest.

The “true” exceedance probability can then be estimated directly from this long

history of the ship motion. In the validation procedure, the performance of the

suggested method could be checked against the “true” exceedance probability at

hand. See Section 3 for further details and a solution to the estimation problem.

1.2. Description of work and contributions

A natural mathematical framework to address the problem of estimating

exceedance probabilities described above is the peaks-over-threshold (POT) ap-

proach (see, for example, Embrechts et al. [18], Coles [9], Beirlant et al. [2], as well

as de Carvalho et al. [11], Ferreira and de Haan [19] for more recent related work).

According to this approach, the probability of exceeding a given target of interest

is computed as the product of the probability of exceeding a smaller threshold

and the (conditional) probability of exceeding the target above the threshold.

The former probability is estimated simply as the proportion of data above the

chosen threshold. The peaks over the threshold are modeled using the generalized

Pareto distribution (GPD), whose complementary distribution function has the

form

(1.1)

Fµ,ξ,σ(x) :=
(
1 +

ξ(x − µ)

σ

)−1/ξ

+
:=





(
1 + ξ(x−µ)

σ

)−1/ξ
, µ<x, if ξ>0,

e−
x−µ

σ , µ<x, if ξ=0,(
1 + ξ(x−µ)

σ

)−1/ξ
, µ<x<µ− σ

ξ , if ξ<0,

where ξ is the shape parameter, σ is the scale parameter and µ is a threshold.

Note that the GPD has an upper bound (−σ/ξ) (above the threshold) for a

negative shape parameter ξ < 0. When ξ = 0, the GPD is the usual exponential

distribution.

We are interested here in what confidence intervals should be used for an ex-

ceedance probability. As indicated above, in the POT approach, this exceedance
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probability is the product of two probabilities, one of them being the exceedance

probability for GPD. The questions then is what confidence intervals should be

used for the exceedance probability in the GPD framework. The probability of

the GPD exceeding a fixed target c (above the threshold), and its estimator are

given by:

(1.2) pc = pc(ξ, σ) =
(
1 +

ξc

σ

)−1/ξ
, p̂c = pc(ξ̂, σ̂) =

(
1 +

ξ̂c

σ̂

)−1/bξ
,

where ξ̂ and σ̂ are some estimators of the shape and scale parameters, respectively.

Somewhat surprisingly, the question of confidence intervals for the exceedance

probability in (1.2) has apparently not been considered in much depth in the

literature on extreme values. The paper by Smith [33], which laid the mathe-

matical foundations for the ML estimators of the GPD, considers the problem

of estimating the exceedance probability and provides the asymptotic normality

result for the probability estimator (Section 8 of Smith [33]). This can in turn

be used for confidence intervals but the normality assumption is not particularly

appropriate (see Section 2 below).

Estimation of exceedance probabilities has also been considered by others

but with different goals in mind. For example, Smith and Shively [34] are in-

terested in trends for exceedance probabilities. Exceedance probabilities in the

spatial context appear in Draghicescu and Ignaccolo [16]. Considerable interest

in exceedance (also sometimes referred to as failure) probabilities is when working

with multivariate extremes. See, for example, de Haan and Sinha [13], de Haan

and de Ronde [12], Heffernan and Tawn [20], Drees and de Haan [17].

Much of the focus in the extreme value analysis, on the other hand, has

been on the related inverse problem of quantile estimation (see, for example,

Embrechts et al. [18], Coles [9], Beirlant et al. [2]). The quantiles have been of

greater practical interest in many applications driving the extreme value analy-

sis, including finance (VaR calculations), insurance and hydrology (1-in-T years

event). A closer look at the confidence intervals for quantiles can be found in

Hosking and Wallis [22], Tajvidi [36] and also Section 4.3.3 of Coles [9], Section

5.5 of Beirlant et al. [2].

In applications to ship motions, as indicated in Section 1.1, it is common

to look at the probabilities of exceeding a particular target rather than quantiles.

Though perhaps not surprisingly, the two perspectives are also complementary.

In fact, one of our findings is that the confidence intervals for exceedance prob-

abilities perform well if constructed from those for quantiles. Another reason to

focus on probabilities rather than quantiles is that probabilities can be aggregated

naturally into “lifetime” probabilities, when integrated over a set of conditions of

interest (as discussed, for example, in Section 1 of Belenky and Sevastianov [4]).

We study a number of ways to construct confidence intervals for the ex-
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ceedance probability of the GPD and, more generally, in the POT framework in

Section 2. We consider both direct methods, which are based on the functional

form of exceedance probability (1.2) and the sampling distribution of the under-

lying estimators ξ̂, σ̂, and indirect (inverse) methods, which construct confidence

intervals from those for quantiles.

The application of the considered confidence intervals to ship motions can

be found in Section 3. In the validation procedure, the performance of the con-

fidence intervals is analogous to that found under the idealized GPD framework.

In particular, the methods recommended under the GPD framework also perform

well and best in the application to ship motions. It should also be noted that the

proposed solution is the first to address satisfactorily the estimation problem of

the exceedance probabilities in ship stability. Some earlier attempts include Be-

lenky and Campbell [5] who used the Weibull distribution (instead of the GPD)

to fit peaks over threshold, and McTaggart [27].

Finally, in Section 4, we discuss the issue of uncertainty (the size of confi-

dence intervals) and its reduction. Conclusions can be found in Section 5.

2. CONFIDENCE INTERVALS FOR EXCEEDANCE PROBABIL-

ITIES

2.1. Methods for GPD

We study and assess here several ways to construct confidence intervals

for the exceedance probability pc of the GPD given in (1.2). The probability is

estimated through p̂c in (1.2) where we use the ML estimators ξ̂ and σ̂ computed

from the sample y1, ..., yn of size n. The large sample asymptotics of the ML

estimators (Smith [33]) is the bivariate normal,

(2.1)
√

n
(

ξ̂ − ξ0

σ̂ − σ0

)
d→ N (0, W−1),

where ξ0, σ0 denote the true values and

(2.2) W−1 =

(
1 + ξ0 −σ0

−σ0 2σ2
0

)
.

In practice, the limiting covariance matrix can be estimated by replacing ξ0 and

σ0 with their respective estimators ξ̂ and σ̂. Another common choice is to ap-

proximate nW through the observed information matrix

(2.3) nŴ =

(
− ∂2

∂ξ2 l(ξ, σ) − ∂2

∂ξ∂σ l(ξ, σ)

− ∂2

∂ξ∂σ l(ξ, σ) − ∂2

∂σ2 l(ξ, σ)

)

(ξ,σ)=(bξ,bσ)

,
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where l(ξ, σ) =
∑n

i=1 ln fξ,σ(yi) is the log-likelihood and fξ,σ(y) denotes the den-

sity of the GPD. Strictly speaking, the asymptotic result (2.1) holds for ξ > −1/2

only (Smith [33]). It should also be noted that other estimation methods than

the MLE are possible for ξ0 and σ0. See, for example, a review paper by de Zea

Bermudez and Kotz [14, 15] and references therein. Some of these estimators

outperform the ML estimators for small samples. For the sample sizes relevant

to our problem of interest, the ML estimators seem to perform quite well and,

in particular, to be approximately normal as stated in (2.1), and will be used

throughout this work.

The exceedance probability pc = pc(ξ, σ) in (1.2) is a function of ξ and

σ, and is estimated through (1.2) by replacing the two parameters ξ and σ by

their ML estimates. A confidence interval for pc can then naturally be obtained

through the standard delta method, using the asymptotic result (2.1). This is

the approach seemingly adopted by Smith [33], Section 8. However, we found the

delta method to perform poorly, in part because pc can be very small and the

normal approximation of p̂c may be sufficiently wide to include negative values.

We have also tried the delta method for log pc but the normal approximation

did not appear to provide a good fit to log p̂c. Consequently, we consider be-

low several, potentially more accurate ways to construct confidence intervals for

the exceedance probabilities: the normal and lognormal methods, the boundary

method, the bootstrap method, the profile likelihood method and the quantile

method. The terminology behind the normal, lognormal, boundary and quantile

methods are ours.

Normal method: The idea behind the normal method is still to use

(2.1), which as mentioned earlier provides a good approximation in practice, but

not to linearize the function pc(ξ, σ) (or log pc(ξ, σ)) as in the unsatisfactory

delta method. In fact, assuming the bivariate normal approximation for ξ̂ and σ̂

according to (2.1), we can derive the exact distribution of p̂c as follows. Observe

that the distribution function of p̂c is: for 0 ≤ z ≤ 1,

Fbpc
(z) = P

((
1 +

ξ̂c

σ̂

)−1/bξ
≤ z
)

= P
((

1 +
ξ̂c

σ̂

)−1/bξ
≤ z, 1 +

ξ̂c

σ̂
> 0
)

+ P
(
1 +

ξ̂c

σ̂
≤ 0
)
,

where we use the fact that p̂c = 0 if 1 + ξ̂c/σ̂ ≤ 0. This can further be expressed

as

Fbpc
(z) = P

(
σ̂ ≤ ξ̂c

z−bξ − 1
, σ̂ > −ξ̂c

)
+ P (σ̂ ≤ −ξ̂c),

if we assume that σ̂ takes only positive values. (Note also that ξ̂/(z−
bξ − 1) > 0

for both ξ̂ < 0 and ξ̂ > 0.) Note, however, that it is not possible to have σ̂ >

ξ̂c/(z−ξ − 1) and σ̂ ≤ −ξ̂c. Indeed, this is certainly not possible if ξ̂ > 0, since

then −ξ̂c < 0 and ξ̂c/(z−
bξ − 1) > 0. If ξ̂ < 0, on the other hand, this is not
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possible since −ξ̂c ≤ ξ̂c/(z−
bξ − 1) or, equivalently, z−

bξ < 1. Hence, we also have

(2.4) Fbpc
(z) = P

(
σ̂ ≤ ξ̂c

z−bξ − 1

)
=

∫

σ≤ξc/(z−ξ−1)
gbξ,bσ(ξ, σ)dξdσ,

where gbξ,bσ(ξ, σ) denotes the bivariate normal density of the limit law (2.1) (re-

placing ξ0 and σ0 by ξ̂ and σ̂). In practice, the distribution function Fbpc
(z) is

computed numerically and the 100(1 − α)% confidence interval is set as (z1, z2)

where zj = inf{z : Fbpc
(z) ≥ αj}, j = 1, 2, where α1 = α/2 and α2 = 1− α/2. We

use the generalized inverse in the last expression since Fbpc
(z) can have a discon-

tinuity (mass) at z = 0.

Lognormal method: In the normal method above, we assumed that σ̂

does not take negative values or that, from a practical perspective, the probability

of σ̂ being negative according to (2.1) is negligible. This may not be the case for

smaller values of σ and sample sizes n. A natural way to address this is by

parameterizing the GPD through ξ and lnσ, instead of σ. The difference is that

lnσ now takes possibly negative values. The asymptotic normality result then

becomes

(2.5)
√

n
( ξ̂ − ξ0

l̂nσ − lnσ0

)
d→ N (0, W−1

1 ),

where

(2.6) W−1
1 = diag{1, σ−1

0 }W−1diag{1, σ−1
0 }.

Arguing as in the normal method above, we have

(2.7) Fbpc
(z) = P

(
l̂nσ ≤ ln

ξ̂c

z−bξ − 1

)
=

∫

ln σ≤ln(ξc/(z−ξ−1))
gbξ,dln σ

(ξ, lnσ)dξd lnσ,

where gbξ,dln σ
(ξ, lnσ) denotes the bivariate normal density of the limit law (2.5).

The confidence interval can then be computed as in the normal method above.

We shall refer to this as the lognormal method. A nice feature of the normal

and lognormal methods is that they provide confidence intervals even in the case

when ξ̂ < 0 and the target is beyond the estimated support bound (−σ̂/ξ̂).

Boundary method: The normal and lognormal methods described above

involve a relatively intensive numerical computation of the integrals (2.4) and

(2.7). An approximate confidence interval which is fast to compute and easy to

implement, can be constructed through the following boundary method. That is,

take the confidence interval as

(2.8)
(

min
j,k=1,2

pc(ξj , σk), max
j,k=1,2

pc(ξj , σk)
)
,

where ξ1, ξ2 and σ1, σ2 are suitable critical values of the distributions of ξ̂ and

σ̂, respectively. If ξ̂ and σ̂ were asymptotically uncorrelated, it would be natural
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to consider ξj = ξ̂ ± C√
αsebξ and σk = σ̂ ± C√

αsebσ, where se stands for standard

error, Cβ denotes the 100(β/2)% quantile of the standard normal distribution and

(1 − α)% is the confidence level sought. To account for the correlation between

ξ̂ and σ̂, we take

(2.9)

(
ξj

σk

)
= V

(
ξ0,j − ξ̂
σ0,k − σ̂

)
+

(
ξ̂
σ̂

)
,

where n−1W−1 = V DV ′ with a diagonal D = diag{d1, d2} and ξ0,j = ξ̂±C√
α

√
d1

and σ0,k = σ̂ ± C√
α

√
d2. Note that the confidence intervals obtained by the

boundary method are expected to be conservative. Indeed, the region deter-

mined by the points (ξj , σk) can be thought as the 100(1−α)% confidence region

for the parameters ξ0 and σ0. But since pc(ξ, σ) is not a one-to-one function,

there are points (ξ, σ) outside the confidence region for which the value pc(ξ, σ)

falls inside the confidence interval (2.8).

Bootstrap method: The bootstrap method is somewhat standard with

the confidence interval determined by the 100(α/2)% and 100(1−α/2)% quantiles

of the bootstrap distribution of the exceedance probability.

Profile (likelihood) method: The profile (likelihood) method refers to

another standard method to construct confidence intervals based on the profile

likelihood. This is achieved by first expressing σ as a function of ξ and the

exceedance probability pc,

σ =
ξc

p−ξ
c − 1

,

then parameterizing the likelihood in terms of ξ and pc (instead of σ), and finally

constructing the confidence interval based on the profile likelihood in a standard

way. (See Coles [9] for the same approach when estimating a return level, instead

of an exceedance probability.) Since the exceedance probability is constrained to

be nonnegative, the use of the profile likelihood may be questionable.

Quantile method: Finally, the quantile method actually refers to a set

of methods. The basic idea is the following. Exceedance probabilities p (pc

above) are associated with respective return levels (quantiles) xp (c above) of the

GPD distribution. A return level xp can be estimated with a confidence interval

x̂p ± mp. Any of the methods discussed above (normal, lognormal, boundary,

bootstrap and profile) can be adapted to construct a confidence interval for xp –

the difference being that the function (1.2) is now the return level

(2.10) xp = xp(ξ, σ) =
σ

ξ

(
p−ξ − 1

)
.

Moreover, the plot of (− ln p, x̂p) with added confidence intervals is known as

a return level plot (e.g. Coles [9]). To indicate the underlying method used to

set confidence intervals for return levels, we will refer to the quantile method as
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quantile-boundary, quantile-lognormal, etc. A natural way to set a confidence

interval for the exceedance probability pc of the level c is then

(2.11) (p1, p2),

where p1 = inf{p : x̂p + mp ≥ c} and p2 = inf{p : x̂p −mp ≥ c} (with inf{∅} = 0).

See Figure 3. For the parameter values considered below, the functions x̂p + mp

and x̂p −mp are increasing and continuous in the argument (− ln p). The quantile

approach is appealing in that it makes estimation of exceedance probabilities and

return levels consistent.

In the reliability context and for a location-scale family of distributions, the

quantile approach was studied in Hong et al. [21] (see also Section I-C therein

for earlier uses of connections between confidence intervals for quantiles and ex-

ceedance probabilities).

x̂p

x̂p + mp

x̂p − mp

− ln p

xp

c

p1 p2p̂c

Figure 3: The quantile method to set confidence intervals
for exceedance probability.

2.2. Simulation study for GPD

We examine here the confidence intervals proposed in Section 2.1 through

a simulation study. The empirical coverage frequencies of the confidence intervals

(based on 500 Monte Carlo replications) are reported in Tables 1 and 2 for the

sample sizes n = 100 and n = 50, respectively. The sample size of approximately

n = 100 is a typical value that we encounter in the application to ship motions

described in Section 3 below. The results are also presented for the smaller sample

size n = 50, since in practice, one does not expect many peaks over a threshold

for which the GPD is used as a model.
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The first four columns in the tables present the true values of the parameters

ξ0, σ0, and also the target c and the corresponding exceedance probability pc. The

values of ξ0 = ±.1 are some of the typical values encountered in our application

of interest. When ξ0 = .6, the GPD has infinite variance but finite mean. σ0 is

just a scale parameter, which we fix at 1. For the other two true parameters, we

fix the exceedance probability pc and compute the respective target c.

The other columns of the tables correspond to the methods considered.

The normal, lognormal and boundary methods use the limiting covariance matrix

W−1/n in (2.1). It is approximated by the inverse of the observed information

matrix (2.3), which we found to yield better results than using, for example, the

expression (2.2) (with ξ0, σ0 replaced by ξ̂, σ̂). The bootstrap method is based on

500 bootstrap replications. Finally, for the quantile methods, we consider three

ways to construct confidence intervals for the return levels: lognormal, boundary

and profile.

A number of observations can be drawn from Tables 1 and 2. The nor-

mal and lognormal methods are slightly anti-conservative, with the lognormal

method preferred. The reason for the methods being anti-conservative is the es-

timation of the limiting covariance matrix W−1/n in (2.1). The intervals have

the expected coverage probability if the true covariance matrix (2.2) is taken (the

exact coverage probabilities not reported here). As claimed in Section 2.1, the

boundary method yields slightly conservative confidence intervals. The bootstrap

and profile methods do not work well, especially for the value of ξ0 close to zero

or negative. Again, we suspect that this is due to the fact that the probability

cannot be negative. Issues with bootstrap for the GPD were also reported and

studied in Tajvidi [36].

Turning to the quantile methods, the quantile-lognormal method is slightly

anti-conservative, as is the direct lognormal method. The quantile-boundary

method is, on the other hand, slightly conservative. The quantile-profile method

seems to perform best, with the coverage probabilities consistently close to the

nominal level. Note that the profile-likelihood method for return levels does not

have such pronounced limitation of the same method for exceedance probabilities

– although it is true that a return level cannot be negative, the confidence interval

would rarely reach zero. Note also that the results for n = 100 and n = 50 are

comparable. One notable difference is that the quantile methods become slightly

more anti-conservative when the sample size is reduced from n = 100 to n = 50.

In conclusion, the quantile method based on profile likelihood seems to

perform best among the methods considered. The (log)normal and boundary

methods, for both direct and indirect (quantile) approaches, can also be recom-

mended but keeping in mind their (anti)conservative nature. Finally, we also

note that the direct (log)normal and boundary methods are computationally less

intensive compared to the indirect (quantile) methods.
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Table 1: Coverage frequencies for confidence intervals when n = 100.

true values direct methods quantile methods

ξ0 σ0 c pc norm logn bound boot profl logn bound profl

−.1 1 6.02 10−4 90.4 90.8 96.2 68.2 76.2 92 97 95
6.84 10−5 95.2 95.6 97.6 65.6 78.8 88.8 96.6 94.6
7.49 10−6 94 94.6 96 74.6 80.8 91.2 96.8 94.2

.1 1 15.12 10−4 92.6 93.2 98 87 98.4 89.6 97 94.2
21.62 10−5 90.6 91.2 97.2 82.8 97.6 92.4 98.6 95.2
29.81 10−6 91.2 92.6 97.6 81.2 97.8 91.2 98.4 94.6

.3 1 49.5 10−4 91.8 92.4 98 89 97.2 89.4 97.4 92.2
102.08 10−5 88.8 89.2 98.4 86.6 97.6 92.2 97.8 95
206.99 10−6 93.4 94.2 99 91.8 98.6 92.6 98.4 94.4

.6 1 416.98 10−4 90.8 90.8 97.8 91 93.8 92.4 98.6 94.2
1665 10−5 92.8 93.2 98 92.6 95.6 92.6 98.4 94

6633.45 10−6 94 93.8 98.6 92 95.8 93.4 99.4 95.2

Table 2: Coverage frequencies for confidence intervals when n = 50.

true values direct methods quantile methods

ξ0 σ0 c pc norm logn bound boot profl logn bound profl

−.1 1 6.02 10−4 90.2 91.8 96.2 65.8 78 83.6 94 92.8
6.84 10−5 96 96 94.4 69.8 71.8 89.6 95.4 93.4
7.49 10−6 95.4 95.8 93.8 74.4 75.4 88.2 94.4 92.2

.1 1 15.12 10−4 91.4 92.2 97.6 75.6 98.4 89.9 97.4 92.6
21.62 10−5 87.6 89 96.6 67 98.2 88.4 96.8 94
29.81 10−6 90.8 92.2 96.2 70 98.2 88.8 96.4 93

.3 1 49.5 10−4 88.2 91 96 88 99 90 97.2 95.8
102.08 10−5 85.8 87.8 94.4 82.6 98.6 90.2 96.8 93.4
206.99 10−6 88.4 90 96.8 85.4 98.2 90.8 96.6 93.8

.6 1 416.98 10−4 80.4 90.6 98.2 88 96.4 89.8 98.4 93.4
1665 10−5 80.8 91.4 97 89.8 98.2 89.4 96.8 93

6633.45 10−6 83.4 90.2 97.8 89.4 98 92.6 97.4 92.8

2.3. The POT framework

Suppose now that x1, ..., xN are i.i.d. observations of a general (i.e. non-

GPD) random variable X, and that we are interested in estimating the probability

P (X > xcr) of the variable X exceeding a critical value xcr. Again, in the peaks-
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over-threshold (POT) approach, the probability is written as

P (X > xcr) = P (X > u)P (X > xcr|X > u)

= P (X > u)P (X − u > xcr − u|X > u) =: Pnr · Pr,(2.12)

where u stands for an intermediate threshold, and the subscripts nr and r refer

to the non-rare and rare problems, respectively. The non-rare probability is

estimated directly from the data as the proportion of data above the threshold u,

P̂nr =
∑N

j=1 1{xj>u}/N , with the respective confidence interval based on standard

binomial calculations. The rare probability is estimated supposing that the peaks

over threshold Y = X − u follow a GPD, and setting

P̂r = p̂xcr−u,

where p̂c is the exceedance probability (1.2) in the GPD framework, estimated

from the data yi = xi′ − u of the peaks exceeding the threshold. The confidence

intervals for Pr = pxcr−u are constructed by one of the methods of Section 2.1.

The confidence interval for the original exceedance probability P (X > xcr) is

obtained by multiplying the respective endpoints of the confidence intervals of

Pnr and Pr.

Threshold selection has been discussed and studied by many authors (for

example, a review is given in Scarrott and MacDonald [32]) and is not the focus

here. A special feature of the application to ship motions discussed in Section 3

is that the threshold selection should be automated, but with the possibility of

closer examination if needed. The automatic selection is naturally sought in the

ship motion application because multiple records need to be analyzed for the

accuracy that is meaningful for practical applications.

In the automatic selection that we use, the threshold u is selected as the

maximum of the thresholds ush, ums, ume and urt chosen by the following four

automatic procedures. The thresholds ush, ums and ume are selected automat-

ically from the commonly used shape parameter, modified scale parameter and

mean excess plots, respectively. For example, the plot of the estimated shape pa-

rameters with confidence intervals (against thresholds) should be about constant

over the range where GPD fit is appropriate. The threshold ush is chosen as the

smallest threshold for which the horizontal line drawn from the corresponding

estimate passes through the confidence intervals of the shape parameter for all

the larger thresholds. The thresholds ums and ume are chosen similarly except

that the line in the mean excess plot does not need to be horizontal. The choice of

the three thresholds is illustrated in Figure 4, for one of the data sets considered

in Section 3 below.

The threshold urt, on the other hand, is selected following the Reiss and

Thomas [31], p. 137, automatic procedure (see also Neves and Fraga Alves [29]).

Let ξk,n be the estimates of the shape parameter ξ based on the k largest values
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Figure 4: Shape parameter, modified scale parameter and mean ex-
cess plots. The vertical dashed line indicates the thresh-
olds chosen with the corresponding (horizontal or arbi-
trary) lines passing through the confidence intervals for
the larger thresholds. The vertical solid line indicates the
threshold choice using the Reiss and Thomas method.

of yi (by using the moment estimation for computational efficiency). Choose k∗

as the value that minimizes

1

k

∑

i≤k

iβ|ξk,n − med(ξ1,n, ..., ξk,n)|,

where β = 1/2 (though other values of β < 1/2 can be considered as well) and

med denotes the median. In practice, after the suggestion of Reiss and Thomas,

the function above is slightly smoothed. The threshold urt is then chosen as the k∗

largest value of yi. It is depicted as a vertical solid line in Figure 4 and probably

better corresponds to a visually desired choice of threshold. In our experience,

the Reiss and Thomas choice most often provides the largest (most conservative)

value among the methods considered.

Table 3 presents the empirical coverage frequencies of the confidence inter-

vals constructed through the above POT approach for several non-GPDs. The

distributions considered are: the Weibull distribution with the CDF

F (x) = 1 − e−λxτ

, x > 0,

with parameters λ > 0, τ > 0; the Burr distribution with the CDF

F (x) = 1 −
( β

β + xτ

)λ
, x > 0,

with parameters λ > 0, τ > 0, β > 0; and the reverse Burr distribution with the

CDF

F (x) = 1 −
( β

β + (x+ − x)−τ

)λ
, x < x+,

with parameters λ > 0, τ > 0, β > 0. Two choices of the parameter τ are consid-

ered for the Weibull distribution, with τ = 1/2 (τ = 2, resp.) providing heavier
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(lighter, resp.) tails than exponential (but both associated with the shape param-

eter ξ = 0 in the POT framework). The Burr distribution has a power-law tail,

corresponding to the shape parameter ξ = 1/(τλ) in the POT framework. Simi-

larly, the reverse Burr distribution has a finite upper bound x+, and corresponds

to the negative shape parameter ξ = −1/(τλ) in the POT framework.

Table 3: Empirical coverage frequencies in the non-GPD context
using the POT approach.

non-GPD direct quantile

model parameters N n c pc logn bound logn bound profl

Weibull (λ, τ) = (1, 1/2) 2000 126 132.5 10−5 90.0 99.2 97.0 99.6 95.0
123 190.9 10−6 92.2 99.4 94.8 98.8 93.4

(λ, τ) = (1, 2) 2000 194 3.4 10−5 94.6 96.4 90.0 96.4 94.4
195 3.7 10−6 94.4 97.2 86.8 94.2 93.2

Burr (β, τ, λ) = (1, 2, 2) 2000 221 17.8 10−5 95.6 99.2 90.4 97.2 92.8
210 31.6 10−6 96.4 99.6 87.4 94.8 92.4

Reverse (β, x+) = (0.1, 10) 2000 156.5 9.8 10−5 96.8 93 83.4 92.4 90.8
Burr (τ, λ) = (2, 2) 150 9.9 10−6 98.2 92.2 80.4 90.2 89.0

Under the direct approach in Table 3, the coverage probabilities are re-

ported only for the lognormal and boundary methods. The quantile methods use

the proportion of data above the threshold to estimate Pnr but do not take the

estimation uncertainty of Pnr into account. Two of the columns also give the

sample size N and the average number of peaks over threshold n. As before, pc

is the exceedance probability and c is the corresponding critical target.

Our goal with Table 3 is not to provide an exhaustive study of the POT

approach in the non-GPD framework, but rather to make a few general comments.

First, note from the table that the approach works quite well. Second, note that

the performance of the considered methods is not as uniformly good as in the

GPD context. Thus, the performance of the methods for non-GPDs depends not

only on the way to produce confidence intervals above a threshold but also on

the non-GPD itself, as well as the (automatic) choice of the threshold.

3. APPLICATION TO EXTREME SHIP MOTIONS

We shall use the POT approach outlined in Section 2.3 to estimate the

probability of roll and pitch angle exceeding a critical value. Several issues need

to be addressed before we can apply the methods for constructing confidence
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intervals discussed in Section 2.3. An important and pressing issue is the presence

of temporal dependence as clearly seen from Figure 2. A related issue is also what

is meant by an exceedance probability and how it relates to time.

The issue of temporal dependence is addressed through the following enve-

lope approach. Motivated by the periodic nature of a ship motion, the maxima

and minima are first found between consecutive zero crossings of the series. These

are the positive and negative peaks in the series of interest. The absolute val-

ues of the peaks are then connected by a piecewise linear function producing

an envelope of the series. This is depicted in Figure 5. The left plot includes

the original roll series for 5 minutes, with the positive and negative envelope.

The right plot depicts the absolute values of the roll and the positive envelope

connecting linearly the absolute values of the peaks.
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Figure 5: The roll angle series with envelope for 5 minutes.
Left: original roll series. Right: roll series in abso-
lute value.

After the envelope is found for the whole roll time series (not just the 5

minutes shown), its average value is computed. Next, the maxima and minima

are found in the envelope between consecutive crossings of the average envelope

value. These are the envelope peaks above/below the envelope average. This is

illustrated in Figure 6, where the envelope average is plotted as a horizontal line

and the envelope peaks above/below the envelope average are indicated by small

black marks.

Note from Figure 6 that focusing on the envelope peaks (above the average)

deals, at least qualitatively, with temporal dependence. That is, the larger values

close in time are “clustered” and only the largest values in “clusters” are recorded

as envelope peaks. (A closer look at the decorrelation properties of the envelope

peak series can be found in a report by Belenky and Campbell [5].) In what

follows, we shall work only with the envelope peaks. It is also important to note

that the envelope approach is automated. This is particularly convenient when
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dealing with multiple conditions and many records.
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Figure 6: Envelope peaks above/below envelope average.
Left: 5 minutes. Right: 30 minutes.

Focusing on the envelope peaks also simplifies the notion of exceedance

and the associated exceedance probabilities. Note that the series of interest will

exceed a large target when an envelope peak will exceed the target. It is then

natural to think of an exceedance probability as that for the envelope peaks. This

is the perspective adopted throughout the paper.

We should also clarify what we mean by probabilities, which are now related

to the envelope peaks. Suppose a series contains 1, 000 envelope peaks of which

45 exceed a given threshold. Then, the estimated probability is 45/1000 = .045 of

exceeding the threshold. This probability is not informative without a reference

to time. Suppose the series is actually recorded over 15 minutes or 15 · 60 =

900 seconds. It is then more informative to consider the (probability) rate of

45/900 = .05 envelope peaks (over the threshold) per second. Though we will

continue referring to probabilities below, the results will be reported in terms of

(probability) rates, rather than probabilities themselves.

If x1, ..., xN are the envelope peaks of the series at hand, the exceedance

probability is then estimated with a confidence interval as explained in Section 2.3.

The performance of the confidence intervals can be assessed through a validation

procedure as follows. The computer code (discussed in Section 1) can be used

to generate significantly more series of ship motions, which contain rare events

of interest and from which exceedance probabilities can be estimated by direct

counting. More specifically, for the same condition used in Figures 2–6, the code

was used to generate 115, 000 hours of the ship motion. With the target roll

angle of xcr = 60 degrees, the probability rate of exceedance obtained by direct

counting based on rare events from the available records is 7.25 × 10−8 envelope

peaks per second (that is, 30 envelope peaks above 60 degrees in 115, 000 hours).
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This“true”rate estimate can be supplemented by the confidence interval obtained

by a standard binomial argument.

A typical given series (record) to make inference from covers only 100 hours

and would not contain rare events of interest. For each record, confidence inter-

vals for exceedance probabilities can be computed as in Section 2.3. The confi-

dence intervals can then be assessed by their coverage frequencies of the “true”

exceedance probability. This could be examined graphically as in Figure 7 where

the lognormal, boundary, quantile-lognormal and quantile-profile confidence in-

tervals are presented for 100 records of the total length of 100 hours. The critical

value of interest is the roll of 60 degrees as above. Note that the vertical axis for

the probability rate is in the log scale, and that we truncated the confidence in-

tervals and the probability (rate) estimates at a practically negligible probability

rate of 10−15. The horizontal dashed lines indicate the confidence bounds for the

“true” probability. The small circles are the probability rate estimates.
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Figure 7: Confidence intervals for 100 records of the length of 100 hours.
Roll series for 45◦ heading and with critical roll angle of 60◦.
Top left: lognormal method. Top right: boundary method.
Bottom left: quantile-lognormal method.
Bottom right: quantile-profile method.
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For the roll and pitch motion at 45 and 30 degree headings, we also report

the coverage frequencies for the methods of Section 2 in Table 4, based on the

results in 100 records. The columns under ξ̂ and n provide the average estimates of

the shape parameter and the number of peaks over threshold. The standard errors

are given in parentheses. In the parentheses under the coverage probabilities, we

provide the average of the sizes of the suggested confidence intervals above the

true value (supposing it is contained), which will be discussed further in Section 4

below.

Table 4: Headings of 30 and 45 degress. Roll: target is 60 at 45◦

and 35 at 30◦. Pitch: target is 10.

series direct methods quantile methods

varble head bξ n logn bound boot profl logn bound profl

roll 45 0.19 96.06 96 97 92 100 96 97 96
(0.13) (31.76) (1.19) (1.46) (1.15) (1.52) (1.18) (1.41) (1.40)

30 0.04 105.03 84 91 76 99 84 91 89
(0.13) (46.96) (0.82) (1.13) (0.87) (1.37) (0.82) (1.12) (1.07)

pitch 45 −0.06 107.06 99 100 95 98 99 100 100
(0.11) (50.92) (0.62) (0.73) (0.57) (0.73) (0.62) (0.73) (0.74)

30 −0.08 107.63 97 98 94 96 97 98 98
(0.11) (46.61) (0.43) (0.49) (0.41) (0.51) (0.43) (0.48) (0.51)

Note from Table 4 that the performance of the confidence intervals is sim-

ilar to those in Sections 2.2 and 2.3. Target values are chosen based on available

rare events in the large set of records. The performance seems also satisfactory,

validating the approach from a practical perspective. The point of using such

validation is to show that the approach works on the ship motion data generated

by a qualitatively correct computer code, before applying the methods to real

or experimental data (where a large number of records are naturally not avail-

able). Or, put differently, had the methods not passed the validation, no applied

researcher would be confident in using them.

The approach to estimate the exceedance probabilities certainly works in

part because of the mathematical justification as outlined in Section 2.3. But

this is not the whole story! Another important component to success is related

to the length of the record and the physics of the ship motion. The 100–hour

records are typical for Naval Architecture purposes. Our results show that these

records have sufficiently enough physics to allow one to extrapolate into the tail

using the POT framework.



Confidence Intervals for Exceedance Probabilities... 557

4. UNCERTAINTY REDUCTION

An interesting but also practically important question is whether the un-

certainty of the estimators or, equivalently, the size of of the confidence intervals

can be reduced. For example, in Figure 7, the right (top) endpoints of the confi-

dence intervals are about one order of magnitude above the true value. One order

seems acceptable from a practical perspective. But we also encounter conditions

where the uncertainty could be as high as two or three orders of magnitude.

Can the uncertainty (or the size of confidence intervals) be reduced? It

surely depends on the approach and model used (that is, the POT approach with

the two parameter GPD above threshold), the sample size (that is, the number of

exceedances above threshold), and the efficiency of the estimation method used.

Efficiency cannot be improved considerably since the ML estimators of the GPD

parameters are used. But several directions could be explored when it comes to

the first two points.

More specifically, in Section 4.1, we study the situation where it may be

meaningful to fix a right upper bound when a negative shape parameter is ex-

pected. A substantial uncertainty reduction is achieved with this approach but

it may not be promising to search for extensions to positive shape parameters, or

ways of fixing a bound. Section 4.2 contains a short and, in our view, informative

account of several other possibilities that we tried but which did not lead to much

of the uncertainty reduction.

4.1. Fixing upper bound

When the shape parameter of a GP distribution is negative, the distribution

has a finite upper bound. One direction for uncertainty reduction is to fix this

upper bound before estimation based on some physical considerations, e.g. limit-

ing angle for roll after which ship capsizes. Fixing the bound reduces the number

of parameters from 2 to 1, so that the reduction of uncertainty is expected.

In applications to ship stability, the pitch motion typically yields a negative

shape parameter, as can already be seen from Table 4 (3rd column). There are

physical reasons for this phenomenon which, in technical terms, have to do with

the form of the stiffness of the pitch motion. Moreover, again for physical reasons,

an upper bound for the pitch motion may be expected at about 15◦–20◦, as roll

stiffness of ONR Tumblehome becomes flat and does not support any resonance

excitation. Details of the physics of the pitch motion go beyond the scope of this

paper.
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From a statistical standpoint, deriving the GPD framework with a fixed up-

per bound is straightforward. Suppose for notational simplicity that the thresh-

old µ is 0, and denote a fixed upper bound by ymax. When the shape param-

eter ξ of the GPD (1.1) is negative, the upper bound is given by (−σ/ξ). Set-

ting ymax = −σ/ξ, solving for ξ = −σ/ymax and substituting this into (1.1) when

ξ < 0, we obtain the complementary GPD function with the upper bound ymax,

(4.1) F σ(y) =
(
1 − y

ymax

)ymax/σ
, 0 < y < ymax.

Note that the function (4.1) depends only on the scale parameter σ (with the

shape parameter of the GPD being ξ = −σ/ymax).

The parameter σ in (4.1) can be estimated using ML. Given observations

y1, ..., yn (all smaller than ymax), optimizing the log-likelihood

ℓ(σ) =
n∑

i=1

log
( 1

σ

(
1 − yi

ymax

)ymax/σ−1)

leads to the ML estimator

(4.2) σ̂ = −ymax

n

n∑

i=1

log
(
1 − yi

ymax

)
.

The inverse of the observed information matrix can easily be checked to be

(4.3)
(
− ∂2ℓ

∂σ2

)−1∣∣∣
σ=bσ =

σ̂2

n
.

A confidence interval for an exceedance probability pc = F σ0
(c) can then be given

by the boundary method as (F σ1
(c), F σ2

(c)), where σ1 = σ̂ − Cασ̂/
√

n and σ2 =

σ̂+Cασ̂/
√

n are two critical values for the distribution of σ̂ based on (4.3) (with as

before, Cα denoting the 100(α/2)% quantile of the standard normal distribution).

Figure 8 compares the confidence intervals for the exceedance probability of

the pitch motion at the 30◦ heading (under the same condition as earlier) obtained

through the lognormal method as in Section 3, and the boundary method with the

upper bound fixed at 15◦ as explained above. The left plot in Figure 8 corresponds

to the entry of Table 4 under “pitch”, “30” degree heading and “logn” method,

with the uncertainty measure of 0.43 in the parentheses. The same measure for

the right-plot of Figure 8 is 0.34. The reduction of uncertainty is also evident

from Figure 8 itself, with smaller variability of the estimators (red circles) and

the sizes of confidence intervals in the right plot.

It should also be noted that the results with the fixed upper bound are not

sensitive to the choice of the bound (suggested by physical considerations). For

example, fixing the bound at 17◦ and 20◦ leads to the same coverage frequency

of 99%, with the exception that the uncertainty measure above becomes slightly
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Figure 8: Confidence intervals for 100 records of the length of 100 hours.
Pitch 30◦. Left: lognormal method. Right: boundary method
with fixed upper bound at 15◦.

larger, 0.36 and 0.38, respectively. The conclusions are the same for the pitch

motion at the 30◦ heading (not reported here).

Remark 4.1. Whether a similar approach can be developed for a positive

shape parameter remains an open question. One idea we entertained was to

experiment with truncated GPD models in the spirit of, for example, Aban et al.

[1], Beirlant et al. [3]. (Truncation seems natural because, for example, the roll

and pitch angles are bounded by 180 degrees.) But the truncated GPD models

did not appear to fit the data well. In Belenky et al. [6], we study extreme value

methods on mathematically tractable physical models mimicking ship motion

dynamics, and expect to gain further insight into the above issues from this

approach.

4.2. Other possibilities

We explored or thought about several other possibilities for uncertainty

reduction. One natural possibility would be to view the variables describing dif-

ferent conditions as covariates and then pool the data across different conditions

by modeling covariates to reduce uncertainty. This idea is particularly relevant in

the application of interest here since naval engineers have to take measurements

regularly across a range of conditions. The idea also has a sound statistical

footing, as developed in Davison and Smith [10] and described, for example, in

Chapter 6 of Coles [9].

Following this approach, we have modeled records across a number of head-
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ings (e.g. 15◦, 22.5◦, 30◦, 37.5◦, 45◦ degrees). But we generally found the reduc-

tion in uncertainty small if any. Some of this is due to a small reduction of

uncertainty even under ideal situations (when the model incorporating the co-

variates is known). The uncertainty in the underlying model for the covariates

(entering the POT framework) also plays a role.

Finally, another possibility might be to use some of the more advanced

approaches in modeling dependent peaks over threshold, as in e.g. Smith et al.

[35]. The idea here is that this would seemingly allow for a larger sample size to

be considered. Even if the dependence structure is captured correctly by these

approaches, we also expect them to lead to little uncertainty reduction. As with

the covariates above, we view these approaches as serving different purposes and

used to answer different questions.

5. CONCLUSIONS

In this work, we studied the various methods to construct confidence in-

tervals for exceedance probabilities in the peaks-over-threshold approach. The

performance of the confidence intervals was assessed through several simulation

studies, pointing to the superior performance of some of the considered meth-

ods. The developed methods were applied to build confidence intervals for the

probabilities of extreme ship motions, leading to satisfactory results overall. Fi-

nally, several uncertainty reduction approaches were considered, with a promising

solution when a negative shape parameter is expected. Whether uncertainty re-

duction can be achieved in the case of a positive shape parameter remains an

open question.
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