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Abstract:

• Pooling individual samples for batch testing is a common procedure for reducing costs.
The recent use of multidimensional array algorithms, due to the emergence of robotic
pooling, is an innovative way of pooling. We show that the two-dimensional array-
based group tests can provide accurate estimates for the prevalence rate even for
situations in which the traditional estimators, applied to one-dimensional arrays, are
not valid. Hence, a computational script was developed to determine which prevalence
rate estimate minimizes the sum of the squared deviations between the number of
observed and expected rows and columns whose pooled sample had a positive test
result.
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1. INTRODUCTION

Evidences of using pooled samples for batch testing date as far back as

1915 (cf. [8]). However, its use in order to reduce costs started only in 1943 with

Dorfman’s seminal work [4] on the detection of the syphilis antigen in U.S. soldiers

during World War II. Dorfman entailed pooling together biological specimens

from different individuals and testing the resulting pools of specimens rather

than testing each individual.

When the aim is the detection of some binary characteristic, Dorfman’s

process comprehends two stages. In its first stage a pool of n individuals is

homogeneously mixed and a portion of the mixed sample is analyzed. A negative

result in the pooled mixture indicates that none of the n individuals has that

characteristic. On the other hand, a positive result implies that at least one of

the n individuals possesses the characteristic under investigation. And, in this

last case, a second stage takes place in which an individual test is performed to

each one of the n suspected individuals. The optimal batch size n∗ is the pool size

which minimizes the expected number of tests since the cost of mixing samples

is, in general, negligible comparing to the cost of the experimental tests, as [13]

points out.

Since Dorfman’s work, the research on methodologies involving pooled sam-

ple tests has been quite active. Thence, some improvements to his work have been

proposed, for instance, by [6, 22, 23]. The common idea of all these algorithm

improvements was to divide each positive pool into smaller subpools until even-

tually all specimens are individually tested. These kind of algorithms are called

hierarchical algorithms with a number of stages equal to the number of times each

individual may be tested. All of them are called one-dimensional since they use

non-overlapping pools. More recent works, considering the experimental errors

measured by the test sensitivity and test specificity, are available in [9, 11, 19, 24].

Another branch in this area has been the application to quantitative character-

istics (only reliable for underlying heavy tailed distributions). More details may

be found, for instance, in [5, 15, 20, 21]. Moreover, the use of pooled samples

does not refer only to the classification problem (identifying all the individuals

which possess some characteristic), since it may also be useful in estimating its

prevalence rate p (estimation problem), as [22] stated.

As different procedures may be applied in a problem involving pooled sam-

ple tests, the expected number of experimental tests per individual is a good

measure of the savings obtained with each procedure. Hence, the relative cost of

a procedure M is defined as

(1.1) RC (M) =
E (TN )

N
,
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where TN stands for the number of experimental tests performed to screen a

sample with N individuals.

When the purpose is to estimate the prevalence rate, the performing of

individual tests is only optional, since the goal is no longer to identify who has

the characteristic under investigation. Thus, this may lead to a lower relative cost.

Furthermore, the estimators obtained by applying compound tests have, under

certain conditions, better performance than the traditional estimators based on

individual tests, cf. [7, 14, 22]. Hence, group testing can be more efficient as well

as more accurate than individual testing.

The use of more complex schemes of mixing samples, i.e., dividing the

amount of sample in two or more parts and using them in different batches had

not been a reasonable choice since the complexity of the process could be itself

another significant source of error. However, in the beginning of this century

the emergence of the robotic and automatic pooling has turned the array-based

group testing into a reliable alternative to hierarchical group testing (cf. [12]).

Our purpose is to show that in the context of a prevalence rate estima-

tion the use of two dimensional arrays may be a reasonable alternative to the

traditional one dimensional array-based procedure. We also discuss strategies to

obtain an estimate from each of the possible ambiguous results of a two dimen-

sional array. A first attempt to solve those ambiguities was performed in [17].

For this goal, an improvement of an algorithm firstly proposed in [16] is provided

and a small simulation study is carried out. It is also claimed that for some low

sensitivity tests, such as some enzyme immunoassays to screen for Clostridium

difficile in fecal specimens described in [1], the performance of one dimensional

arrays procedures may provide prevalence rate estimates outside the interval [0, 1]

whereas the two dimensional arrays procedures always provide valid estimates.

The outline of this article is as follows. Section 2 describes some general

assumptions and additional notation usually used in this research field. Sub-

sequently, Section 3 describes the use of one-dimensional and two-dimensional

array-based group testing in the context of the estimation problem. The core of

this work is Section 4 where it is analyzed the performance of the proposed al-

gorithm for computing an estimate to the prevalence rate based on the results of

two dimensional arrays. In particular, some possible drawbacks of the algorithm

are discussed. Finally, some conclusions are provided in Section 5.

2. FRAMEWORK SETTING

Let us consider a large population of individuals and let p stand for the

probability of randomly choosing an individual infected with some disease. The
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value p is called the prevalence rate of the disease.

When dealing with an estimation problem, i.e., the problem of estimating

the value of p, the most basic and common pooled sample methodology is to di-

vide the individuals among the sample into groups with size n – one dimensional

arrays. For simplicity, admit that n is a divisor of the sample size N (otherwise,

one would have
[

N
n

]
groups with n individuals and one group with N −

[
N
n

]
× n

individuals, where [x] stands for the highest integer lower than x). Then, it is

required to perform TN = N
n tests. Let us also assume that the individual status

(infected/not infected) within a pooled sample are independent. The probabil-

ity of having an infected pooled sample is πn = 1 − (1 − p)n. Hence, the total

number of infected pooled samples is described by a binomial random variable

I ⌢ Bin (TN , πn), where TN is the trials number and πn the success probability.

Thus, the maximum likelihood (ML) estimator of πn is given by

(2.1) π̂n =
I

TN
.

As p is given by a simple transformation of πn, it is straightforward to

show, applying the proprieties of the ML estimators, that the ML estimator of p

is given by

(2.2) p̂ = 1 −

(
1 −

I

TN

)1/n

.

For n = 1, p̂ = 1−
(
1− I

TN

)
= I

TN

is an unbiased estimator of p. For n > 1,

the estimator is positively biased . Expressions for the expected value and vari-

ance of the estimator can be found in [10].

As screening errors may occur, the above binomial model is, in practice,

unrealistic. Let Xji = 1 denote an infected individual and Xji = 0 denote a non-

infected individual concerning the i-th individual of the j-th pooled sample where

i = 1, ..., n and j = 1, ..., TN . In addition, X+
ji denotes a positive test result and

X−

ji a negative test result performed with a sample collected only from that

individual. The probability ϕs = P
(
X+

ji |Xji = 1
)

is called the test sensitivity

and ϕe = P
(
X−

ji |Xji = 0
)

is called the test specificity. [19] extended the concepts

of specificity and sensitivity to a specific procedure M. These measures assess the

quality of a result provided by M. The procedure sensitivity is the probability

of an infected individual being correctly identified by the procedure M, that is,

ϕM
s = PM

(
X+

ji |Xji = 1
)
. The procedure specificity stands for the probability

of a non-infected individual being correctly classified by the procedure M, that

is, ϕM
e = PM

(
X−

ji |Xji = 0
)
.

As some interaction between the pooled specimens may occur, some general
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assumptions underlying our work must be settled (more details may be found in

[18]).

• Assumption 1 – Any specimen Xji, where i = 1, ..., TN and i = 1, ..., n,

may be described by a Bernoulli random variable Xji where P (Xji = 1)

= p (infected) and P (Xji = 0) = q = 1 − p (non-infected).

• Assumption 2 – The methodology sensitivity equals the test sensitivity,

i.e., ϕM
s = ϕs. Note that this may not always be true as individually

defective specimens may generate a negative result when tested in a

batch. This is called an antagonism effect.

• Assumption 3 – The methodology specificity equals the test specificity,

i.e., ϕM
e = ϕe. As in the last assumption, in some situations the inter-

action between non-infected specimens may produce a positive pooled

sample test result. This phenomenon is called synergism.

• Assumption 4 – Given the true status of any pool, its test result is inde-

pendent of the true status and test result of any other non-overlapping

pool.

3. ARRAY-BASED GROUP TESTING

We will briefly describe how to deal with the estimation problem concerning

two different procedures. In the first one, the individuals are divided into non-

overlapping groups (one-dimensional arrays). In the second one, a one-stage

two-dimensional array procedure, the individuals will be tested twice.

3.1. One-dimensional arrays

One-dimensional arrays are the most common arrays used for batching

individuals into groups in order to perform pooled sample tests. Each individual

is allocated to one and only one group and some amount of its sample is mixed

with the same amount of sample from other individual(s). This procedure will

be represented by D (n).

Given the j-th pooled sample of size n, the probability of it being positively

classified is given by

P
(
X+

j |
∑n

i=1
Xji ≥ 1

)
(1 − (1 − p)n) + P

(
X+

j |
∑n

i=1
Xji = 0

)
(1 − p)n(3.1)

= ϕs + (1 − ϕs − ϕe) (1 − p)n .
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Therefore, a ML estimator of p is

(3.2) p̂ = 1 −

(
ϕs −

I
TN

ϕs + ϕe − 1

)1/n

.

The estimator only assumes a value in the interval [0, 1] if

(3.3) 1 − ϕe ≤
I

TN
≤ ϕs.

Whenever this condition is not fulfilled, we are not able to provide a rea-

sonable estimate. For instance, suppose p = 0.01 and that a D(3) procedure is

performed with 50 pools where the test verifies ϕe = 0.98 and ϕs = 0.6. There

is a chance of about 15% of condition (3.3) not be fulfilled. The proportion of

positive samples is not an option as it may be a very biased estimator of the

prevalence rate.

3.2. Two-dimensional arrays

Two-dimensional arrays are an alternative to the one dimensional arrays

which uses overlapping pools. This approach is frequently employed in genetics,

cf. [11], but it is rarely applied in the infectious disease setting. In its simplest

two-stage version (square array), denoted by A (n), a sample of size n2 is placed

in a n × n matrix in the following way. Each individual is allocated to one

and only one matrix position. Then, all the individuals within the same row are

gathered for batch testing, and the same procedure is applied to all the individuals

within the same column. Thus, the two-stage version involves Tn2 ≥ 2n tests as

subsequent individual tests can be performed to the ones lying in a row and/or

column which tested positively. A variant of this methodology (a three-stage

procedure) consists in performing a priori a pooled sample test on all the n2

individuals (master pool). If the master pool test result is negative no further

testing is needed as the individuals are all classified as negative.

The expected number of tests for all these two-dimensional array group

testing procedures is derived in [18] when a classification problem is dealt. In [11]

are computed the operating characteristics of these procedures (with or without

a master pool). An extension to higher-dimensional arrays assuming no test

errors may be found in [3]. More recently, [12] introduced the possibility of

misclassification.

The performance of subsequent individual tests is required to avoid ambi-

guities. For instance, it is possible to have a row tested positive but all columns
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tested negative (the number of infected individuals can be any integer from zero

to n, since certainly there is at least one misclassification error) or to have two

positive rows and columns (the number of infected individuals can be two, three

or four even considering that there was no misclassification). However, it won’t be

required to identify who is infected or either if a row or column has infected ele-

ments when the next proposed methodology for an estimation problem is applied.

Hence, this one-stage procedure is expected to decrease the relative cost.

4. PREVALENCE RATE ESTIMATION

Two-dimensional array-based group testing allows the inclusion of each

individual into two different batches. However, as previously discussed, some

ambiguities may arise due to the experimental test errors described by the test

sensitivity and by the test specificity.

In this case, the use of the proportion of defective individuals (without

performing any individual tests) is not advised as it may lead to an underesti-

mation of the prevalence rate or to an increase of the relative cost as [16] points

out. [16] also provides some guidelines of how to compute a ML estimate of the

prevalence rate using a computational script. Moreover, it computes an exact

expression for the ML estimator, assuming possible test errors, for an one stage

and two-dimensional array procedure A (2).

The inputs of that script are the test sensitivity ϕs, the test specificity

ϕe and the number of arrays that have i − 1 positive rows and j − 1 positive

columns for i = 1, 2, ..., r + 1 and j = 1, 2, ..., c + 1. These values may be recorded

in a (r + 1) × (c + 1) matrix O which resumes the experimental results required

to compute a ML estimate.

To compute the ML function value at p0 it is also required to compute the

probability of observing i − 1 positive rows and j − 1 positive columns, where

i = 1, 2, ..., r + 1 and j = 1, 2, ..., c + 1, given p0. Let us denote this matrix of

probabilities by Pp0
. An approximation to these probabilities can be computed

by the performance of a simple simulation.

The ML function value at p0 knowing O is given by

(4.1) ML(p0|O) =
∏

i,j

Pp0
(i, j)O(i,j).

However, it is necessary to account some special cases which can lead to

inaccurate estimates. For instance, if for some value p0 and some values i and

j, Pp0
(i, j) is high and O(i, j) is zero then the process could converge to a value
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near p0 whereas its “likelihood” is low.

To avoid having to account for this problem, we propose using the sum

of the square of the differences between the values of the matrix O and the

expected values for O, computed using the probabilities of the matrix P , as a

quality measure for comparing different estimates, i.e.,

(4.2) Dif(p0|O) =
∑

i,j

(O(i, j) − s × Pp0
(i, j))2 ,

where s is the total number of two-dimensional arrays (i.e., s =
∑

i,j O(i, j)).

In the next subsections, we provide some guidelines of an algorithm to find

the minimum of the function defined in (4.2) as well as a small simulation study.

4.1. A computational script

As only for a small number of rows and columns it is possible to compute

an exact expression for the function Dif defined in (4.2), in general, it is just

possible to find the minimum of that function using some computational method.

Next, we describe the script which was implemented and highlight the pos-

sible drawbacks due to working with very low values. Some of the issues are

shared by the implementation of the well-known chi-square test of independence

of two random variables.

Our script comprehends the following steps.

• Step 1 – Consider an increasing sequence of possible values for p, say

p1 < p2 < ··· < pm.

We used the golden section search optimization method, cf. [2], as it

presents optimal properties in the numerical search of a maximum when

no expression for the function of interest is available. This method uses

m = 4 and two inner points given at each step by p2 = p4 −ϕ ∗ (p4 − p1)

and p3 = p1 + ϕ ∗ (p4 − p1) where ϕ ≈ 0.61803 is known as the golden

ratio.

• Step 2 – Simulate a large number of individuals (say, equal to r× c× rep

with rep large) extracted from a population with a prevalence rate pi for

i = 1, ..., m where r and c stand for the number of rows and columns of

the array and rep is the number of arrays. These arrays will be used to

obtain an estimate for the values of the matrix P . We used rep = 100

and our simulations have shown that higher values for rep do not change

significantly the final outcome of the simulation.

• Step 3 – For each pi and for each replicate compute the (estimated)
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probability of observing an array corresponding to each position of the

matrix O (the matrix of the experimental results). Add that value to

the position (i, j) of the matrix P .

Note that regardless of the number of infected individuals in the array,

it is always possible to span all possible number of positive rows and

columns due to the presence of the test errors.

• Step 4 – Compute the Dif function given the matrix O.

• Step 5 – Compare the Dif function at p1, ..., pm and choose the two

estimates which minimize the function, say pmin and pmax where pmin <

pmax.

• Step 6 – Consider a new increasing sequence of possible values for p

starting on pmin and finishing on pmax.

In our case, p2 = p4 −ϕ ∗ (pmax − pmin) and p3 = p1 +ϕ ∗ (pmax − pmin).

• Step 7 – Repeat the procedure from step two up to step six until the

distance between the two estimates is lower than some tolerance tol.

4.2. Possible drawbacks

Expression (4.2) for the Dif function involves very small quantities which

are not a problem for the most recent software. However, for avoiding the null

estimate we advise the initial choice of p1 to be equal or higher than tol.

One possible problematic situation that must be taken into account in or-

der to avoid underestimation occurs when the expected number of arrays with i

positive rows and j positive columns, s×P (i, j), is higher than zero and less than

one. Note that, theoretically, all values of the matrix P are higher than zero but

as we are not computing the exact matrix P , as there are some computational

restraints, it is possible to have zero in some entry of P .

In that case, we suggest adding some of those low probabilities till eventu-

ally the sum of the expected number of arrays be at least one.

Hence, suppose you inspect all the values of P (i, j) in some logic sequence

and you find h values of P , say P (r1, c1), ...,P (rh, ch), for which the sum of the

expected values verifies s
∑h−1

i=1 P (ri, ci) < 1 and s
∑h

i=1 P (ri, ci) ≥ 1. Then,

add all those h probability estimates P ∗ =
∑h

i=1 P (ri, ci) and do the same for

the matrix O, i.e., O∗ =
∑h

i=1 O (ri, ci). Replace the position (rh, ch) in the

matrix P and in the matrix O by P ∗ and O∗, respectively. All the positions

(r1, c1), ..., (rh−1, ch−1) for both matrices should be replaced by zero. This is a

process with some resemblances to the one applied to contingency tables in order

to improve the chi-square test performance.
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In that logic sequence of inspection of all positions it is possible to get a

sequence of values of P for which the sum of the expected values does not achieve

1 due to end of the inspection process. In this case, we suggest a similar process,

however, the sum P ∗ and O∗ should be added to some value of P whose expected

value is at least one. Our simulations showed that the choice of this value is not

relevant.

4.3. A simulation study

A small simulation was performed to assess the algorithm performance.

The chosen measure to assess the accuracy of the estimates was the absolute

value of the bias.

The one-stage square array-based group procedure, A (2n), was compared

to the one-dimensional alternative D (n). Note that both procedures present the

same relative cost.

We considered four different experimental tests with the sensitivity and

specificity described in Table 1.

Table 1: Test sensitivity and test specificity.

Test ϕs ϕe

A 0.99 0.99
B 0.80 0.98
C 0.60 0.98
D 0.99 0.80

It was considered four different prevalence rates: 0.01, 0.05, 0.10 and 0.25.

For each one of them, 20 square arrays were simulated (s = 20) for applying

A(4) and A(6) procedures. The one-dimensional alternative for each of these two

procedures was D (2), with 160 pools, for the first case and D (3), with 240 pools,

for the last one. In each pair of procedures (one and two-dimensional) the number

of tests performed is the same. For all cases, the number of replicates was 100.

The results are summarized in the Table 2.

In some cases, condition (3.3) was not fullfield leading to negative estimates.

Thus, some values are not displayed (the symbol “—” is displayed instead of a

numerical value) since it was observed more than 20 (in 100) negative estimates.

All estimates displayed for a prevalence rate p = 0.01 do not use all 100 estimates
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since 1 to 6 of them were negative and excluded from the calculus of the mean of

the absolute bias.

Table 2: Mean of the absolute bias (multiplied by 102) of 100 estimates
obtained by A (4) (D (2))|A (6) (D (3)) procedures.

p = 0.01 p = 0.05 p = 0.10 p = 0.25

A 0.48(0.34)|0.25(0.16) 0.81(0.33)|0.60(0.28) 0.96(0.49)|0.83(0.40) 1.82(0.94)|1.38(0.86)
B 0.51(—)|0.34(0.35) 0.79(0.68)|0.71(0.59) 1.12(1.03)|1.06(0.72) 2.17(1.82)|2.34(1.53)
C 0.48(—)|0.37(0.45) 0.95(1.18)|0.78(0.90) 1.24(1.41)|1.03(1.15) 2.25(2.45)|2.92(2.07)
D 0.31(0.38)|0.61(—) 1.15(1.55)|0.86(1.01) 1.46(1.61)|1.06(1.04) 1.47(1.54)|1.45(1.36)

Note that the mean of the absolute bias increases with the prevalence rate

since for low prevalence rate values the value zero is a natural limit to the esti-

mates. It is not surprising to observe A(6) procedure performing better than A(4)

since it uses more individuals. However, when the prevalence rate increases the

chance of having a very high number of positive tests greatly increases leading to

a worse performance. Regardless the square array procedure, the one-dimensional

pools generally outperform the square array procedures for moderate and high

prevalence rates (note that the interval of possible prevalence rates is ]0, 0.50]

since for values higher than 0.50 we can study q = 1 − p). For the most inaccu-

rate test considered, test C, the behavior is similar.

5. CONCLUSION

The spreading of the possibility of robotic pooling will certainly highlight

the use of arrays with dimensions higher than one as a practical alternative to the

traditional one dimensional arrays for both estimation and classification problems,

cf. [12].

In this work we address the problem of estimation and show that for very

inaccurate tests (cheaper tests) the use of square arrays assures the experimenter

a reasonable estimate (at least for low prevalence rates). However, whenever

the sample size is low and ϕs and ϕe are high we have just a few square arrays

and the results can be quite inaccurate. In this scenario the D (n) methodology

remains a more reasonable option as it could (almost certainly) provide a good

estimate. Thence, D (n) methodology can, in some situations, outperforms A(2n)

methodology whereas A(2n) works well in a wider parameter support.
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