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1. INTRODUCTION

Admissibility of estimator is an important problem in statistical decision

theory; Consequently, this problem has been considered by many authors un-

der various type of loss functions both in an exponential and in a non-regular

family of distributions. For example under squared error loss function (Kar-

lin (1958), Ghosh & Meeden (1977), Ralescu & Ralescu (1981), Sinha & Gupta

(1984), Hoffmann (1985), Pulskamp & Ralescu (1991), Kim (1994) and Kim &

Meeden (1994)), under entropy loss function (Sanjari Farsipour (2003,2007)) and

under LINEX loss function (Tanaka (2010,2011,2012)) and squared-log error loss

function (Zakerzadeh & Moradi Zahraie (2015)).

A Bayesian approach to a statistical problem requires defining a prior dis-

tribution over the parameter space. Many Bayesians believe that just one prior

can be elicited. In practice, it is more frequently the case that the prior knowl-

edge is vague and any elicited prior distribution is only an approximation to the

true one. So, we elect to restrict attention to a given flexible family of priors and

we choose one member from that family, which seems to best match our personal

beliefs.

A gamma-admissible (Γ-admissible) approach is used which allows to take

into account vague prior information on the distribution of the unknown param-

eter θ. The uncertainty about a prior is assumed by introducing a class Γ of

priors. If prior information is scarce, the class Γ under consideration is large and

a decision is close to a admissible decision. In the extreme case when no infor-

mation is available the Γ-admissible setup is equivalent to the usual admissible

setup. If, on the other hand, the statistician has an exactly prior information

and the class Γ contains a single prior, then the Γ-admissible decision is an usual

Bayes decision. So it is a middle ground between the subjective Bayes setup and

full admissible.

Eichenauer-Herrmann (1992) gained a sufficient condition for an estimator

of the form (aX + b)/(cX + d) to be Γ-admissible under the squared error loss in

a one-parameter exponential family.

The most popular convex and symmetric loss function is the squared error

loss function which is widely used in decision theory due to its simple mathe-

matical properties. However in some cases, it does not represent the true loss

structure. This loss function is symmetric in nature i.e. it gives equal weightage

to both over and under estimation. In real life, we encounter many situations

where over-estimation may be more serious than under-estimation or vice versa.

As an example, in construction an underestimate of the peak water level is usually

much more serious than an overestimation.
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The squared-log error loss function was introduced by Brown (1968). For

an estimator δ of estimand h(θ), it is given by

(1.1) L(h(θ), δ) = L(∇) := (ln(∇))2,

where both h(θ) and δ are positive and ∇ := δ/h(θ).

We need the following definitions to express properties of the loss (1.1).

Definition 1.1. A real function g(x) is quasi-convex, if for any given real

number r, the set of all x such that g(x) ≤ r is convex. Any convex function is

quasi-convex, but the converse is not necessarily true.

Definition 1.2. A loss function L(h(θ), δ) is (for any ε > 0):

– downside damaging if L(δ − ε, δ) ≥ L(δ + ε, δ),

– upside damaging if L(δ − ε, δ) ≤ L(δ + ε, δ),

– symmetric if the loss function is both downside and upside damaging.

Remark 1.1. With downside damaging loss function, under-estimation is

penalized more heavily, per unit distance, than over-estimation and with upside

damaging loss function it is reversed.

Remark 1.2. If a loss function be downside damaging or upside damag-

ing, then it is called asymmetric. By using asymmetric loss functions one is able

to deal with cases where it is more damaging to miss the target on one side than

the other.

Definition 1.3. The L(h(θ), δ) is a precautionary loss function if and only

if

(1) L(h(θ), δ) is downside damaging, and

(2) for each fixed θ, L(h(θ), δ) → ∞ as δ → 0.

Definition 1.4. The L(h(θ), δ) is a balanced loss function, if L(h(θ), δ) →

∞ as δ → 0 or δ → ∞. A balanced loss function takes both error of estimation

and goodness of fit into account but the unbalanced loss function only considers

error of estimation.
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From Figure 1, we see that the loss (1.1) has the below properties:

(i) It is asymmetric.

(ii) It is quasi-convex.

(iii) It is a balanced loss function.

(iv) It is a precautionary loss function.

(v) When 0 < ∇ < 1, it rises rapidly to infinity at zero; it has a unique

minimum at ∇ = 1 and when ∇ > 1 it increases sublinearly.

Figure 1: Plot of the squared-log error loss function.

For estimation under (1.1), see Sanjari Farsipour and Zakerzadeh (2005,

2006), Mahmoudi and Zakerzadeh (2011), Kiapour and Nematollahi (2011),

Nematollahi and Jafari Tabrizi (2012) and Zakerzadeh and Moradi Zahraie (2015).

In this paper we consider the Γ-admissibility of generalized Bayes estimators

in a non-regular family of distributions under the loss (1.1) where class Γ consists

of all distributions which are compatible with the vague prior information. To this

end, in Section 2, we state some preliminary definitions and results. In Section

3, we will obtain main theorem. Finally, in Section 4, we give an application of

the Γ-admissibility in proving the Γ-minimaxity of estimators. Some examples

are given.
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2. PRELIMINARIES

2.1. Definition of Γ-admissibility

In the present paper it is assumed that vague prior density on the distribu-

tion of the unknown parameter θ is available. Let Π denote the set of all priors,

i.e. Borel probability measures on the parameter interval Θ and Γ be a non-empty

subset of Π. Suppose that the available vague prior information can be described

by the set Γ, in the sense that Γ contains all prior which are compatible with the

vague prior information.

Eichenauer-Herrmann (1992) defined the Γ-admissibility of an estimator as

follows.

Definition 2.1. An estimator δ∗ is called Γ-admissible, if

r(π, δ) ≤ r(π, δ∗), π ∈ Γ,

for some estimator δ implies that

r(π, δ) = r(π, δ∗), π ∈ Γ,

where r(π, δ) is the Bayes risk of δ.

Remark 2.1. From Definition 2.1, it is obvious that

– A Π-admissible estimator is admissible;

– A {π}-admissible estimator is simply a Bayes strategy with respect to

the prior π;

– In general neither Γ-admissibility implies admissibility nor admissibility

implies Γ-admissibility.

Hence, the available results on admissibility cannot be applied in order to

prove the Γ-admissibility of an estimator. Consequently, it is necessary to study

the problem of Γ-admissibility of estimators.

2.2. A non-regular family of distributions

Let X be a random variable whose probability density function with respect

to some σ-finite measure µ is given by

fX(x; θ) =

{

q(θ)r(x) θ < x < θ,
0 otherwise,
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where θ ∈ Θ := (θ, θ̄) and Θ is a nondegenerate interval (possibly infinite) on the

real line. Also r(x) is a positive µ-measurable function of x and

q−1(θ) =

∫ θ

θ
r(x)dµ(x) < ∞

for θ ∈ Θ. This family is known as a non-regular family of distributions.

Suppose π(θ) be a prior (possibly improper) by its Lebesgue density pπ(θ)

over Θ which is positive and continuous. Let h(θ) be a continuous function to be

estimated from Θ to R and the loss to be (1.1). The generalized Bayes estimator

of h(θ) with respect to π(θ) is given by δπ(X), where

(2.1) δπ(x) = exp

{

∫ θ̄
x {ln(h(θ))}q(θ)pπ(θ)dθ

∫ θ̄
x q(θ)pπ(θ)dθ

}

for θ < x < θ̄, provided that the integrals in (2.1) exist and are finite.

3. MAIN RESULTS

In this section, the main results will obtain.

For some real number λ0 let a, b : [λ0,∞) 7→ Θ be continuously differentiable

functions with a(λ0) < b(λ0), where a and b are supposed to be strictly decreasing

and strictly increasing, respectively. For λ ≥ λ0 a prior πλ is defined by its

Lebesgue density pπλ
of the form

pπλ
(θ) :=

(

∫ b(λ)

a(λ)
pπ(t)dt

)

−1

I[a(λ),b(λ)](θ)pπ(θ).

Throughout this paper, we restrict estimators to the class

∆ := {δ|(A1) and (A2) are satisfied},

where

(A1) Eθ[{ln(δ(X))}2] < ∞ for all θ ∈ Θ;

(A2)
∫ b(λ)
a(λ) Eθ[{ln( δ(X)

h(θ) )}2]pπ(θ)dθ < ∞ for a(λ) < b(λ) and λ ≥ λ0 .

Remark 3.1. In the statistical game (Γ, ∆, r), a Γ-admissible estimator

is an admissible strategy of the second player.

The next lemma is essential to obtain our results.
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Lemma 3.1. Let S(θ) be a continuous and non-negative function over

Θ = (θ, θ̄) and G(λ) :=
∫ b(λ)
a(λ) S(θ)dθ. Suppose that there exists a positive function

R(θ) such that

G(λ) ≤ 4(min{R(b(λ))b′(λ),−R(a(λ))a′(λ)})−1/2(G′(λ))1/2

for λ ≥ λ0. If
∫

∞

λ0

min{R(b(λ))b′(λ),−R(a(λ))a′(λ)}dλ = ∞,

then S(θ) = 0 for a.a. θ ∈ Θ.

Proof: See Eichenauer-Herrmann (1992).

Theorem 3.1. Suppose that δπ ∈ ∆ and put

K(x, θ) :=

∫ θ

x
{ln(

δπ(x)

h(t)
)}q(t)pπ(t)dt,

and

γ(θ) :=
1

pπ(θ)q(θ)

∫ θ

θ
r(x)K2(x, θ)dµ(x).

If πλ ∈ Γ for all λ ≥ λ0 and
∫

∞

λ0

min{γ−1(b(λ))b′(λ),−γ−1(a(λ))a′(λ)}dλ = ∞,(3.1)

then δπ(X) is Γ-admissible under the loss (1.1).

Proof: Let δ ∈ ∆ be an estimator such that r(π, δ) ≤ r(π, δπ) for every

prior π ∈ Γ. Since πλ ∈ Γ for λ ≥ λ0, we must have

0 ≤

(

∫ b(λ)

a(λ)
pπ(t)dt

)

{r(πλ, δπ) − r(πλ, δ)}

=

∫ b(λ)

a(λ)
Eθ[L(δπ, h(θ)) − L(δ, h(θ))]pπ(θ)dθ

for all θ ∈ Θ. From Condition (A1), we see that it is equivalent to

0 ≤

∫ b(λ)

a(λ)
Eθ

[

{

ln

(

δ(X)

δπ(X)

)}2
]

pπ(θ)dθ

≤ 2

∫ b(λ)

a(λ)
Eθ

[{

ln

(

δπ(X)

h(θ)

)}{

ln

(

δπ(X)

δ(X)

)}]

pπ(θ)dθ,

for all θ ∈ Θ.
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An application of the Fubini’s theorem gives

0 ≤

∫ b(λ)

a(λ)

∫ θ

θ

{

ln

(

δ(x)

δπ(x)

)}2

r(x)q(θ)pπ(θ)dµ(x)dθ

≤ 2

∫ b(λ)

θ

[

∫ b(λ)

x

{

ln

(

δπ(x)

h(θ)

)}

pπ(θ)q(θ)dθ

]

{

ln

(

δπ(x)

δ(x)

)}

r(x)dµ(x)

− 2

∫ a(λ)

θ

[

∫ a(λ)

x

{

ln

(

δπ(x)

h(θ)

)}

pπ(θ)q(θ)dθ

]

{

ln

(

δπ(x)

δ(x)

)}

r(x)dµ(x),

which is guaranteed by Condition (A2).

Applying the Cauchy-Schwartz inequality, the first term of the right-hand

side in the above equation, is less than

2

{

∫ b(λ)

θ

{

ln

(

δ(x)

δπ(x)

)}2

r(x)dµ(x)

}1/2{
∫ b(λ)

θ
r(x)K2(x, b(λ))dµ(x)

}1/2

.

Hence, if we define

T (θ) :=

∫ θ

θ

{

ln

(

δ(x)

δπ(x)

)}2

r(x)dµ(x),

then we have

0 ≤

∫ b(λ)

a(λ)
T (θ)q(θ)pπ(θ)dθ

≤ 2{T (b(λ))b′(λ)q(b(λ))pπ(b(λ))}1/2{γ−1(b(λ))b′(λ)}−1/2

+2{−T (a(λ))a′(λ)q(a(λ))pπ(a(λ))}1/2{−γ−1(a(λ))a′(λ)}−1/2

≤ 4
(

min{γ−1(b(λ))b′(λ), γ−1(a(λ))a′(λ)}
)−1/2

×
(

T (b(λ))q(b(λ))pπ(b(λ))b′(λ) − T (a(λ))q(a(λ))pπ(a(λ))a′(λ)
)1/2

for λ ≥ λ0, where the definition of the function γ(θ) has been used. Now a

continuous, differentiable and increasing function H : [λ0,∞] → R is defined by

H(λ) :=

∫ b(λ)

a(λ)
T (θ)q(θ)pπ(θ)dθ.

So the above inequality can be written in the form

H(λ) ≤ 4
(

min{γ−1(b(λ))b′(λ),−γ−1(a(λ))a′(λ)
)−1/2

(H ′(λ))1/2

for λ ≥ λ0. Therefore, from Lemma 3.1 we obtain T (θ) = 0 for a.a.θ ∈ Θ, and

consequently from (A1), we have δ(x) = δπ(x) a.e.µ. This completes the proof.
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Remark 3.2. K(x, θ) can expressed as

K(x, θ) =

∫ θ
x

∫ θ̄
θ {ln(h(s)

h(t) )}q(s)pπ(s)q(t)pπ(t)dsdt
∫ θ̄
x q(u)pπ(u)du

by (2.1) and the symmetry of the integrand.

Example 3.1. Suppose that X be a random variable according to an

exponential distribution whose probability density function is given by

fX(x, θ) =

{

ex−θ x < θ,
0 x > θ,

where θ(∈ R) is unknown. The Generalized Bayes estimator of h(θ) = eθ with

respect to the Lebesgue prior is given by δπ(X) = exp{X +1} which is of the form

ah(X)(a > 0). A direct calculation gives K(x, θ) = e−θ(θ − x) and γ(θ) = 2. Let

class Γ0 consists of all priors with mean 0, i.e., Γ0 := {π ∈ Π|
∫

Θ θpπ(θ)dθ = 0}.

Define functions a and b by a(λ) = −λ and b(λ) = λ for λ ≥ λ0 > 0, i.e., the

prior πλ is the uniform distribution on the interval [−λ, λ]. Hence, πλ ∈ Γ0 for all

λ ≥ λ0. Since (3.1) is satisfied, Theorem 3.1 implies that δπ(X) is Γ0-admissible

under the loss (1.1).

Remark 3.3. It is difficult to express γ(θ) explicitly and it can have a

complicated form, so to apply Theorem 3.1, we have to seek the suitable upper

bound of γ(θ). For the case when h(θ) is bounded, we can get the next corollary.

Corollary 3.1. Suppose that h(θ) is bounded and δπ ∈ ∆. Put

K̃(x, θ) :=

∫ θ̄
θ q(s)pπ(s)ds

∫ θ
x q(t)pπ(t)dt

∫ θ̄
x q(u)pπ(u)du

,

and

γ̃(θ) :=
1

pπ(θ)q(θ)

∫ θ

θ
r(x)K̃2(x, θ)dµ(x).

If πλ ∈ Γ for all λ ≥ λ0 and
∫

∞

λ0

min{γ̃−1(b(λ))b′(λ),−γ̃−1(a(λ))a′(λ)}dλ = ∞,

then δπ(X) is Γ-admissible under the loss (1.1).

Proof: It can be easily shown that there exists a constant C such that

|K(x, θ)| ≤ CK̃(x, θ) for all (x, θ) ∈ {(x, θ)|θ < x < θ < θ̄}. This completes the

proof by Theorem 3.1.
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Example 3.2. Suppose that X1, ..., Xn are independent and identically

distributed random variables according to a uniform distribution over the interval

(0, θ) where θ(∈ R
+) is unknown. Then the probability density function of the

sufficient statistic X = X(n) is given by

fX(x, θ) =

{

n
θn xn−1 0 < x < θ,

0 otherwise.

Let h(θ) be bounded and π(θ) = 1/θ. We can easily obtain

K̃(x, θ) = (1/(nθn)) {1 − (x/θ)n} ,

and

γ̃(θ) = θ/(3n2).

We assume that Γm := {π ∈ Π|
∫

Θ θpπ(θ)dθ = m}, i.e., Γm consists of all priors

with mean m. Define functions a and b by a(λ) = m ln(λ)/(λ − 1) and b(λ) =

λa(λ) for λ ≥ λ0 > 1. Since

∫

Θ

θpπλ
(θ)d(θ) =

(

∫ b(λ)

a(λ)

1

t
dt

)

−1

(b(λ) − a(λ)) = m

for all λ ≥ λ0, so that πλ ∈ Γm. A short calculation yields a′(λ) = mλ−1−λ ln(λ)
λ(λ−1)2

<

0 and b′(λ) = mλ−1−ln(λ)
(λ−1)2

> 0 for λ ≥ λ0. Because of λ − 1 − ln(λ) < λ ln(λ) −

λ + 1 for λ ≥ λ0 and limλ→∞ b(λ) = ∞, one obtains

∫

∞

λ0

min{γ̃−1(b(λ))b′(λ),−γ̃−1(a(λ))a′(λ)}dλ = (3n2)

∫

∞

λ0

min{
b′(λ)

b(λ)
,
a′(λ)

a(λ)
}dλ

= (3n2)

∫

∞

λ0

b′(λ)

b(λ)
dλ = ∞.

Hence, according to Corollary 3.1 the Generalized Bayes estimator of h(θ) with

respect to π(θ) = 1/θ is Γm-admissible under the loss (1.1).

Remark 3.4. Typically all the result in this paper go through with some

modifications for the density

fX(x, θ) =

{

q(θ)r(x) θ < x < θ̄,
0 otherwise,

where θ ∈ Θ is unknown.
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4. AN APPLICATION

In the presence of vague prior information frequently the Γ-minimax ap-

proach is used as underlying principle. In this section, we provide the definition

of the Γ-minimaxity of an estimator and then express the relation between this

concept and the Γ-admissibility. Finally, we give an example.

Definition 4.1. A Γ-minimax estimator is a minimax strategy of the sec-

ond player in the statistical game (Γ, ∆, r); δ∗ is called a Γ-minimax estimator,

if

sup
π∈Γ

r(π, δ∗) = inf
δ∈∆

sup
π∈Γ

r(π, δ),

where r(π, δ) is the Bayes risk of δ.

Definition 4.2. A Γ-minimax estimator δ∗ is said to be unique, if

r(π, δ) = r(π, δ∗), π ∈ Γ,

for any other Γ-minimax estimator δ.

Remark 4.1.

– From Definition 4.2, it is obvious that a unique Γ-minimax estimator is

Γ-admissible.

– If a Γ-admissible estimator δ is an equalizer on Γ, i.e., r(., δ) is constant

on Γ, then δ is a unique Γ-minimax estimator.

Example 4.1. In Example 3.1, we have Eθ[X] = θ− 1 and Eθ[X
2] = θ2 −

2θ + 2. Thus, from (1.1), the risk function of δπ is equal to

R(eX+1, eθ) = Eθ[{ln(eX+1) − ln(eθ)}2]

= Eθ[{X + 1 − θ}2]

= V arθ[X]

= 1.

So, δπ is an equalizer on Γ0, since its risk function is constant. Hence, δπ(X) =

eX+1 is the unique Γ0-minimax estimator for eθ.
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