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Abstract:
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(OBR) estimation method (Hampel et al. [5]) for the parameters of the generalized
half-normal (GHN) distribution. After given the robust estimators, we provide a
small simulation study to compare its performance with the estimators obtained from
maximum likelihood (ML) estimation method. We also give a real data example to
illustrate the performance of the proposed estimators.
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1. INTRODUCTION

The GHN distribution was introduced by Cooray and Ananda [3] as an

alternative lifetime distribution. It is observed by Cooray and Ananda [3] that

the cumulative distribution function (cdf) of the new family is very similar to

the cdf of the half-normal distribution. Thus, they called the new family as the

“generalized half-normal (GHN) distribution”. It can be seen that the GHN dis-

tribution is a special case of the three-parameter generalized gamma distribution

given by Stacy [7] (Cooray and Ananda [3]).

Some distributional properties of the GHN distribution are given by Cooray

and Ananda [3]. In their study, the parameters of the GHN distribution are esti-

mated using the ML estimation method, and using real data sets the performance

of the ML estimator is compared with the other commonly used failure time dis-

tributions such as Weibull, gamma, lognormal and Birnbaum–Saunders.

One way of estimating the parameters of a given distribution is to use the

ML estimation method. However, this estimator can be very sensitive to the

outliers. Thus, the robust estimators may be needed as an alternative to the

ML estimators in the presence of outliers. In this paper, we will use the OBR

estimation method to obtain robust estimators for the parameters of the GHN

distribution. The OBR estimation method was introduced by Hampel et al. [5]

and used by Victoria-Feser [8] and Victoria-Feser and Ronchetti [9] to estimate the

shape parameters of the Pareto and the gamma distributions. Also, Doğru and

Arslan [4] used the OBR estimation method to estimate the shape parameters of

the Burr XII distribution. Our goal is to show that the OBR estimation method

can be used as an alternative to the ML estimation method to obtain robust

estimators for the parameters of the GHN distribution when the data includes

outliers.

The paper is organized as follows. In Section 2, we briefly summarize the

properties of the GHN distribution. In Section 3, we explore the estimation of

the GHN distribution. We first give the ML estimation method and then we

give the OBR estimation method. We also give the algorithm to obtain the

OBR estimates. In Sections 4 and 5, we give a simulation study and a real data

example to demonstrate the performance of the proposed estimators over the ML

estimators. Some conclusions are given in Section 6.
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2. GENERALIZED HALF-NORMAL DISTRIBUTION (GHN)

The probability density function (pdf) and the cdf of the GHN distribution

are given by

(2.1) f(x;α, θ) =
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− 1 , x ≥ 0, α > 0, θ > 0

respectively, where Φ (·) is the cdf of the standard normal distribution and α and

θ are the shape and scale parameters of the GHN distribution.
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Figure 1: Examples of the GHN pdf for different values of α and θ.

The k -th moment, expected value and the variance are given by Cooray

and Ananda [3] as follows:
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and
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where Γ (·) is the gamma function. Figure 1 shows the plots of the pdf of the

GHN distribution for some values of α and θ.

3. PARAMETER ESTIMATION

In this section, the parameters of the GHN distribution will be estimated

using the ML and the OBR estimation methods.

3.1. ML estimation method

Let X = (x1, x2, ..., xn) be a random sample from GHN distribution. The

log-likelihood function is

logL(α, θ) =
n

2
log

(
2

π

)
+ n logα− nα log θ(3.1)

+ (α− 1)
n∑

i=1

log(xi) − 1

2

n∑

i=1

(
xi

θ

)2α

.

Taking the derivatives of the log-likelihood function with respect to α and θ and

setting to zero give the following equations

(3.2)
n
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and

(3.3) θ̂ =

(
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n
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i=1

x2bα
i

)1

2bα
.

Note that the same equations are also given by Cooray and Ananda [3].

There is not an analytical solution to the system formed by equations (3.2) and

(3.3). This system can be only solved using numerical methods.

3.2. OBR estimation method

The OBR estimator introduced by Hampel et al. [5] belongs to the class

of M-estimators (Huber [6]). Let η = (α, θ). The class of M-estimator for the
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parameter η is defined as the minimum of the following objective function

n∑

i=1

ρ(xi,η) .

If the ρ function is differentiable the M-estimator will be the solution of the

following equation
n∑

i=1

ψ(xi,η) = 0 ,

where ψ = ρ′ with ψ : X×R
p → R

p. There are many ρ functions in literature.

In this paper, we will use the Huber’s ρ function defined as

ρb(x) =

{
x2

2 , |x| ≤ b

b |x| − 1
2 b

2 , |x| > b .

Here, b is the robustness tuning constant and the derivative of ρ is ψb(x) with

ψb(x) =

{
x , |x| ≤ b

sgn(x) b , |x| > b .

In general, the influence function (IF) for an M-estimator is defined as

(3.4) IF =
ψ(x,η)

−
∫

∂
∂η
ψ(x,η) dFη(x)

and it is used to measure the local robustness of an estimator. It is desired that

IF is bounded. The estimators with bounded IF are called the OBR estimators.

The IF of an ML estimator is

IF = J(η)−1 s(x,η) ,

where J(η) is the Fisher information matrix and s(x,η) =
(

∂
∂η

)
log fη(x) is the

score function. It can be seen that the IF of an ML estimator is proportional to

the score functions, so the score function should be bounded for a bounded IF

for the ML estimator.

Concerning the GHN distribution, we take logarithm of f(x;α, θ) given in

(2.1) to obtain the score functions
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Then, taking the derivatives of the log
(
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)
with respect to α and θ we

obtain the following equations
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(3.6)
∂
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After some straightforward simplifications, the score functions for the parameters

α and θ are given

s(x;α, θ) =

[
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) (
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]
.

It is clear that the score functions are not bounded functions of x (see

Figures (2) and (3)). Thus, the IF of the ML estimator for the GHN distribution

will be unbounded. This implies that the ML estimators will be very sensitive

to the outliers. Therefore, robust estimation methods will be needed to estimate

the parameters of the GHN distribution.
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Figure 2: Score function for α parameter with α = 1 and θ = 2.
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Figure 3: Score function for θ parameter with α = 1 and θ = 2.
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There are several versions of the OBR estimators defined in Hampel et al.

[5, p. 243], depending on the method of choosing to bound IF. In this study,

we used the standardized OBR estimator which is defined as follows

(3.7)
n∑

i=1

ψ
(
A(η)

(
s(xi,η) − a(η)

))
=

n∑

i=1

Wb(xi,η)
{
s(xi,η) − a(η)

}
= 0 ,

where

(3.8) Wb(x,η) = min

{
1;

b∥∥A(η)
{
s(xi,η) − a(η)

}∥∥

}
,

is the weight function and ‖ · ‖ shows the Euclidian norm. Also the nonsingular

p×p matrix A(η) and the p×1 vector a(η) are defined implicitly by

(3.9) E
{
ψ(x,η)ψ(x,η)T

}
=
{
A(η)TA(η)

}−1
,

(3.10) E
{
ψ(x,η)

}
= 0 .

The weight will be 1, if ‖A(η){s(xi,η) − a(η)}‖ ≤ b, otherwise it will be
b

‖A(η){s(xi,η)−a(η)}‖ , which bounds the score function for the outlying observa-

tions. Thus, the corresponding OBR estimator will be less sensitive to the outliers

in the data.

To obtain the OBR estimates the following algorithm can be applied. Note

that this algorithm was proposed by Victoria-Feser and Ronchetti [9].

Algorithm:

Step 1 . Let ǫ be a stopping rule. Take initial values for the parameter η.

Set a = 0 and A = J
1

2 (η)−T , where

J(η) =

∫
s(x,η) s(x,η)T dFη(x) .

Step 2 . Solve the following equations for a and A

AAT = M−1
2

and

a =

∫
Wb(x,η) s(x,η) dFη(x)∫

Wb(x,η) dFη(x)
,

where

Mk =

∫
Wb(x,η)k

{
s(x,η)− a

}{
s(x,η)− a

}T
dFη(x) , k= 1, 2 .

The current values of η, a and A are used as starting values to

solve the given equations.
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Step 3 . Compute M1 and ∆η = M1
−1

(
1
n

n∑
i=1
Wb(x,η)

{
s(x,η) − a

})
.

Step 4 . If |∆η| > ǫ then η → η + ∆η and return to step 2, else stop.

Note that for the finite sample case the integrals in the equations will be replaced

by the summations.

The ML estimator can be taken as initial value for the parameter η. In our

simulation study, we have used several different initial points including the ML

and true parameter values. We have also used robust starting values suggested by

Victoria-Feser and Ronchetti [9]. As pointed out by Victoria-Feser and Ronchetti

[9] the algorithm is convergent depending on the initial values. Other estimators

such as moment estimators can also be used as starting values. However, for this

distribution it is not possible to obtain explicit form of the moment estimators.

Therefore, it is not tractable to use them as initial values for the algorithm.

4. SIMULATION STUDY

In this section, we will give a simulation study to compare the perfor-

mance of the OBR estimators with the ML estimators with and without out-

liers in the data. The data are randomly generated from GHN distribution

for different values of α and θ parameters. The data generation is conducted

as follows. Let U ∼ Uniform(0, 1). Then, X ∼ θ
(
Φ−1

(
U+1

2

))1

α will have GHN

distribution with the parameters α and θ. To evaluate the performance of

the estimators bias and root mean square error (RMSE) are computed over

1000 replications for the sample sizes n = 25, 50, 100 and the parameter values

(α, θ) = (0.75, 1) , (1, 1) , (2, 1) , (0.75, 2) , (1, 2) , (2, 2). Here, the bias and RMSE

are defined as

bias(α̂) = α− α , bias(θ̂) = θ − θ ,

RMSE (α̂) =

√√√√ 1

N

N∑

i=1

(α̂i − α)2 , RMSE (θ̂) =

√√√√ 1

N

N∑

i=1

(θ̂i − θ)2 ,

where α = 1
N

N∑
i=1
α̂i, θ = 1

N

N∑
i=1
θ̂i and N = 1000. For all simulation cases, the stop-

ping rule ǫ is taken as 10−6. The simulation study and real data example are

conducted using MATLAB R2013a.

In the OBR estimation method, the robustness tuning constant should be

chosen in order to gain the desire efficiency. The most robust estimator can be

obtained by choosing b as the squared of the number of parameters. In our case,

we can take b =
√

2. For this value of b one can approximately gain 60% efficiency
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for the resulting estimators. When we increase the value of b, the efficiency will

also increase. Therefore, we have taken b = 2 to have efficiency more than 60%.

For more details about the selection of the robustness tuning constant, see Hampel

et al. [5, p.247] and Victoria-Feser and Ronchetti [9].

Concerning the starting value for the algorithm given in Section 3.2 we use

the robust starting values suggested by Victoria-Feser and Ronchetti [9] which is

described as follows.

i) Find the ML estimates.

ii) Take b = 3.5 to get OBR estimates.

iii) Use the OBR estimates obtained at step ii) as new initial values and

set b = 2 to obtain OBR estimates again.

In this simulation study, we consider two types of outlier model to the right

and the left in the X direction. These models are

Case I . (n− r)GHN (x;α, θ) + rUniform
(
max(x) + 5σ, max(x) + 10σ

)
,

Case II . (n− r)GHN (x;α, θ) + rUniform(0, 0.0001) ,

where max (x) is the largest observations in the sample, σ is standard deviation of

a randomly generated sample from GHN distribution and r is chosen by multiply-

ing the sample sizes by 0.1. That is, we add two outliers for n = 25, five outliers

for n = 50 and ten outliers for n = 100. Further, in Case I, we add outliers in

the upper tail of the distribution. In the second case, the outliers are added in

the lower tail of the distribution to see the performance of the estimators for this

type of outliers. As suggested by a referee, this type of outliers may represent

severely shorted life-lengths.

Simulation results are given in Tables 1–3. In the tables, the estimates of

the parameters, bias and RMSE are presented. Table 1 shows the results for

the case without outliers in the data. From this table, we can observe that the

performance of the ML seems slightly better than the performance of the OBR

estimators. In Table 2, we give the simulation results for the outlier Case I. The

results of this table show that the OBR estimators have smaller bias and RMSE

values than the corresponding values for ML estimators in all the simulation

configurations. Finally, in Table 3 the simulation results for the outlier Case

II are displayed. Similar to the outlier Case I the OBR estimators outperform

the ML estimators in terms of bias and RMSE in all the simulation scenarios.

Overall when the data has outliers the OBR estimators should be used instead

of ML estimators to obtain robust estimators for the parameters of interest.
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Table 1: Estimates of parameters, bias and RMSE
for different sample sizes without outlier.

n θ α
Parameter(α) Parameter(θ)

ML OBR ML OBR

α 0.7995 0.8808 θ 0.9915 0.9109
0.75 Bias(bα) 0.0495 0.1308 Bias(bθ) −0.0085 −0.0891

RMSE(bα) 0.1503 0.2061 RMSE(bθ) 0.1978 0.2129

α 1.0589 1.1677 θ 0.9931 0.9310
1 1 Bias(bα) 0.0589 0.1677 Bias(bθ) −0.0069 −0.0690

RMSE(bα) 0.2000 0.2741 RMSE(bθ) 0.1548 0.1688

α 2.1412 2.3654 θ 1.0005 0.9668
2 Bias(bα) 0.1412 0.3654 Bias(bθ) 0.0005 −0.0332

RMSE(bα) 0.4112 0.5660 RMSE(bθ) 0.0767 0.0854
25

α 0.7942 0.8752 θ 2.0106 1.8402
0.75 Bias(bα) 0.0442 0.1252 Bias(bθ) 0.0106 −0.1598

RMSE(bα) 0.1503 0.2031 RMSE(bθ) 0.4057 0.4254

α 1.0671 1.1782 θ 2.0029 1.8738
2 1 Bias(bα) 0.0671 0.1782 Bias(bθ) 0.0029 −0.1262

RMSE(bα) 0.2035 0.2792 RMSE(bθ) 0.3198 0.3416

α 2.1282 2.3447 θ 1.9869 1.9207
2 Bias(bα) 0.1282 0.3447 Bias(bθ) −0.0131 −0.0793

RMSE(bα) 0.4032 0.5486 RMSE(bθ) 0.1509 0.1738

α 0.7753 0.8578 θ 1.0051 0.9142
0.75 Bias(bα) 0.0253 0.1078 Bias(bθ) 0.0051 −0.0858

RMSE(bα) 0.0990 0.1523 RMSE(bθ) 0.1471 0.1653

α 1.0245 1.1348 θ 0.9952 0.9265
1 1 Bias(bα) 0.0245 0.1348 Bias(bθ) −0.0048 −0.0735

RMSE(bα) 0.1267 0.1959 RMSE(bθ) 0.1100 0.1316

α 2.0495 2.2682 θ 0.9952 0.9598
2 Bias(bα) 0.0495 0.2682 Bias(bθ) −0.0048 −0.0402

RMSE(bα) 0.2551 0.3908 RMSE(bθ) 0.0553 0.0696
50

α 0.7722 0.8540 θ 2.0199 1.8468
0.75 Bias(bα) 0.0222 0.1040 Bias(bθ) 0.0199 −0.1532

RMSE(bα) 0.0912 0.1442 RMSE(bθ) 0.2936 0.3245

α 1.0281 1.1389 θ 1.9890 1.8519
2 1 Bias(bα) 0.0281 0.1389 Bias(bθ) −0.0110 −0.1481

RMSE(bα) 0.1250 0.1966 RMSE(bθ) 0.2157 0.2613

α 2.0556 2.2803 θ 1.9988 1.9276
2 Bias(bα) 0.0556 0.2803 Bias(bθ) −0.0012 −0.0724

RMSE(bα) 0.2587 0.4011 RMSE(bθ) 0.1100 0.1350

α 0.7631 0.8464 θ 1.0023 0.9102
0.75 Bias(bα) 0.0131 0.0964 Bias(bθ) 0.0023 −0.0898

RMSE(bα) 0.0647 0.1209 RMSE(bθ) 0.0993 0.1328

α 1.0147 1.1271 θ 1.0004 0.9284
1 1 Bias(bα) 0.0147 0.1271 Bias(bθ) 0.0004 −0.0716

RMSE(bα) 0.0859 0.1593 RMSE(bθ) 0.0755 0.1038

α 2.0420 2.2686 θ 0.9998 0.9627
2 Bias(bα) 0.0420 0.2686 Bias(bθ) −0.0002 −0.0373

RMSE(bα) 0.1827 0.3371 RMSE(bθ) 0.0379 0.0545
100

α 0.7617 0.8459 θ 1.9975 1.8107
0.75 Bias(bα) 0.0117 0.0959 Bias(bθ) −0.0025 −0.1893

RMSE(bα) 0.0658 0.1212 RMSE(bθ) 0.2069 0.2772

α 1.0179 1.1312 θ 1.9992 1.8563
2 1 Bias(bα) 0.0179 0.1312 Bias(bθ) −0.0008 −0.1437

RMSE(bα) 0.0837 0.1614 RMSE(bθ) 0.1591 0.2141

α 2.0287 2.2560 θ 1.9944 1.9192
2 Bias(bα) 0.0287 0.2560 Bias(bθ) −0.0056 −0.0808

RMSE(bα) 0.1720 0.3221 RMSE(bθ) 0.0730 0.1107
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Table 2: Estimates of parameters, bias and RMSE
for different sample sizes for Case I.

n θ α
Parameter(α) Parameter(θ)

ML OBR ML OBR

α 0.5243 0.6119 θ 1.3713 1.0104
0.75 Bias(bα) −0.2257 −0.1381 Bias(bθ) 0.3713 0.0104

RMSE(bα) 0.2342 0.1588 RMSE(bθ) 0.4695 0.2186

α 0.6296 0.7430 θ 1.3592 1.0278
1 1 Bias(bα) −0.3704 −0.2570 Bias(bθ) 0.3592 0.0278

RMSE(bα) 0.3771 0.2723 RMSE(bθ) 0.4174 0.1751

α 0.9279 1.1280 θ 1.3321 1.0777
2 Bias(bα) −1.0721 −0.8720 Bias(bθ) 0.3321 0.0777

RMSE(bα) 1.0766 0.8813 RMSE(bθ) 0.3486 0.1264
25

α 0.5273 0.6148 θ 2.7406 2.0185
0.75 Bias(bα) −0.2227 −0.1352 Bias(bθ) 0.7406 0.0185

RMSE(bα) 0.2307 0.1550 RMSE(bθ) 0.9204 0.4217

α 0.6331 0.7475 θ 2.7256 2.0636
2 1 Bias(bα) −0.3669 −0.2525 Bias(bθ) 0.7256 0.0636

RMSE(bα) 0.3736 0.2676 RMSE(bθ) 0.8336 0.3359

α 0.9323 1.1327 θ 2.6779 2.1652
2 Bias(bα) −1.0677 −0.8673 Bias(bθ) 0.6779 0.1652

RMSE(bα) 1.0726 0.8773 RMSE(bθ) 0.7115 0.2578

α 0.4948 0.5619 θ 1.4738 1.0876
0.75 Bias(bα) −0.2552 −0.1881 Bias(bθ) 0.4738 0.0876

RMSE(bα) 0.2584 0.1947 RMSE(bθ) 0.5188 0.1880

α 0.5922 0.6792 θ 1.4617 1.1146
1 1 Bias(bα) −0.4078 −0.3208 Bias(bθ) 0.4617 0.1146

RMSE(bα) 0.4103 0.3258 RMSE(bθ) 0.4886 0.1719

α 0.8816 1.0447 θ 1.4194 1.1690
2 Bias(bα) −1.1184 −0.9553 Bias(bθ) 0.4194 0.1690

RMSE(bα) 1.1201 0.9590 RMSE(bθ) 0.4269 0.1844
50

α 0.4952 0.5628 θ 2.9648 2.1899
0.75 Bias(bα) −0.2548 −0.1872 Bias(bθ) 0.9648 0.1899

RMSE(bα) 0.2582 0.1941 RMSE(bθ) 1.0550 0.3858

α 0.5941 0.6820 θ 2.9364 2.2459
2 1 Bias(bα) −0.4059 −0.3180 Bias(bθ) 0.9364 0.2459

RMSE(bα) 0.4086 0.3231 RMSE(bθ) 0.9911 0.3639

α 0.8813 1.0444 θ 2.8429 2.3387
2 Bias(bα) −1.1187 −0.9556 Bias(bθ) 0.8429 0.3387

RMSE(bα) 1.1206 0.9596 RMSE(bθ) 0.8586 0.3711

α 0.4859 0.5522 θ 1.4969 1.0990
0.75 Bias(bα) −0.2641 −0.1978 Bias(bθ) 0.4969 0.0990

RMSE(bα) 0.2656 0.2009 RMSE(bθ) 0.5205 0.1547

α 0.5842 0.6704 θ 1.4783 1.1255
1 1 Bias(bα) −0.4158 −0.3296 Bias(bθ) 0.4783 0.1255

RMSE(bα) 0.4170 0.3321 RMSE(bθ) 0.4925 0.1573

α 0.8676 1.0268 θ 1.4262 1.1696
2 Bias(bα) −1.1324 −0.9732 Bias(bθ) 0.4262 0.1696

RMSE(bα) 1.1333 0.9752 RMSE(bθ) 0.4301 0.1783
100

α 0.4863 0.5525 θ 3.0158 2.2161
0.75 Bias(bα) −0.2637 −0.1975 Bias(bθ) 1.0158 0.2161

RMSE(bα) 0.2653 0.2006 RMSE(bθ) 1.0648 0.3280

α 0.5816 0.6675 θ 2.9503 2.2433
2 1 Bias(bα) −0.4184 −0.3325 Bias(bθ) 0.9503 0.2433

RMSE(bα) 0.4196 0.3349 RMSE(bθ) 0.9773 0.3060

α 0.8687 1.0303 θ 2.8523 2.3440
2 Bias(bα) −1.1313 −0.9697 Bias(bθ) 0.8523 0.3440

RMSE(bα) 1.1321 0.9715 RMSE(bθ) 0.8595 0.3591
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Table 3: Estimates of parameters, bias and RMSE
for different sample sizes for Case II.

n θ α
Parameter(α) Parameter(θ)

ML OBR ML OBR

α 0.5872 0.6849 θ 0.6495 0.6564
0.75 Bias(bα) −0.1628 −0.0651 Bias(bθ) −0.3505 −0.3436

RMSE(bα) 0.1780 0.1194 RMSE(bθ) 0.3800 0.3772

α 0.6906 0.8318 θ 0.7023 0.7167
1 1 Bias(bα) −0.3094 −0.1682 Bias(bθ) −0.2977 −0.2833

RMSE(bα) 0.3191 0.2047 RMSE(bθ) 0.3205 0.3104

α 0.9338 1.2509 θ 0.7824 0.8082
2 Bias(bα) −1.0662 −0.7491 Bias(bθ) −0.2176 −0.1918

RMSE(bα) 1.0690 0.7619 RMSE(bθ) 0.2279 0.2050
25

α 0.5722 0.6708 θ 1.3063 1.3240
0.75 Bias(bα) −0.1778 −0.0792 Bias(bθ) −0.6937 −0.6760

RMSE(bα) 0.1890 0.1196 RMSE(bθ) 0.7534 0.7460

α 0.6686 0.8115 θ 1.3783 1.4127
2 1 Bias(bα) −0.3314 −0.1885 Bias(bθ) −0.6217 −0.5873

RMSE(bα) 0.3390 0.2182 RMSE(bθ) 0.6625 0.6358

α 0.8923 1.2055 θ 1.5442 1.5966
2 Bias(bα) −1.1077 −0.7945 Bias(bθ) −0.4558 −0.4034

RMSE(bα) 1.1098 0.8049 RMSE(bθ) 0.4779 0.4320

α 0.5378 0.6285 θ 0.5867 0.6050
0.75 Bias(bα) −0.2122 −0.1215 Bias(bθ) −0.4133 −0.3950

RMSE(bα) 0.2165 0.1364 RMSE(bθ) 0.4245 0.4088

α 0.6226 0.7527 θ 0.6420 0.6695
1 1 Bias(bα) −0.3774 −0.2473 Bias(bθ) −0.3580 −0.3305

RMSE(bα) 0.3800 0.2562 RMSE(bθ) 0.3669 0.3419

α 0.8051 1.0570 θ 0.7423 0.7843
2 Bias(bα) −1.1949 −0.9430 Bias(bθ) −0.2577 −0.2157

RMSE(bα) 1.1956 0.9453 RMSE(bθ) 0.2621 0.2221
50

α 0.5235 0.6171 θ 1.1691 1.2111
0.75 Bias(bα) −0.2265 −0.1329 Bias(bθ) −0.8309 −0.7889

RMSE(bα) 0.2301 0.1457 RMSE(bθ) 0.8524 0.8152

α 0.6013 0.7334 θ 1.2692 1.3312
2 1 Bias(bα) −0.3987 −0.2666 Bias(bθ) −0.7308 −0.6688

RMSE(bα) 0.4008 0.2741 RMSE(bθ) 0.7462 0.6889

α 0.7680 1.0162 θ 1.4733 1.5639
2 Bias(bα) −1.2320 −0.9838 Bias(bθ) −0.5267 −0.4361

RMSE(bα) 1.2326 0.9856 RMSE(bθ) 0.5351 0.4489

α 0.5347 0.6231 θ 0.5881 0.6071
0.75 Bias(bα) −0.2153 −0.1269 Bias(bθ) −0.4119 −0.3929

RMSE(bα) 0.2176 0.1346 RMSE(bθ) 0.4173 0.3995

α 0.6210 0.7494 θ 0.6386 0.6686
1 1 Bias(bα) −0.3790 −0.2506 Bias(bθ) −0.3614 −0.3314

RMSE(bα) 0.3802 0.2547 RMSE(bθ) 0.3659 0.3371

α 0.8044 1.0536 θ 0.7414 0.7869
2 Bias(bα) −1.1956 −0.9464 Bias(bθ) −0.2586 −0.2131

RMSE(bα) 1.1959 0.9475 RMSE(bθ) 0.2608 0.2164
100

α 0.5217 0.6134 θ 1.1642 1.2106
0.75 Bias(bα) −0.2283 −0.1366 Bias(bθ) −0.8358 −0.7894

RMSE(bα) 0.2301 0.1428 RMSE(bθ) 0.8465 0.8029

α 0.5996 0.7300 θ 1.2627 1.3292
2 1 Bias(bα) −0.4004 −0.2700 Bias(bθ) −0.7373 −0.6708

RMSE(bα) 0.4014 0.2736 RMSE(bθ) 0.7451 0.6810

α 0.7640 1.0079 θ 1.4676 1.5634
2 Bias(bα) −1.2360 −0.9921 Bias(bθ) −0.5324 −0.4366

RMSE(bα) 1.2363 0.9931 RMSE(bθ) 0.5365 0.4426
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5. REAL DATA EXAMPLE

In this section, we will analyze the data set used by Cooray and Ananda [3].

This data set contains the stress-rupture life of kevlar 49/ epoxy strands failure

at 90% stress levels. The data set is given below (Andrews and Herzberg [1],

Barlow et al. [2]).

Table 4: The failure times in hours.

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08
0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20 0.23 0.24
0.24 0.29 0.34 0.35 0.36 0.38 0.40 0.42 0.43 0.52 0.54 0.56 0.60
0.60 0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73 0.79 0.79 0.80 0.80
0.83 0.85 0.90 0.92 0.95 0.99 1.00 1.01 1.02 1.03 1.05 1.10 1.10
1.11 1.15 1.18 1.20 1.29 1.31 1.33 1.34 1.40 1.43 1.45 1.50 1.51
1.52 1.53 1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80 1.80 1.81 2.02
2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20 4.69 7.89

Assume that this data set has a GHN distribution with the unknown pa-

rameters α and θ. We use the OBR estimation method to obtain the estimates

for α and θ for the failure time data set. We also find the ML estimates for these

parameters. Table 5 gives the summary of the estimates, standard error (SE)

and the 95% confidence interval for the parameters of GHN distribution. The

confidence intervals of the estimates are computed using the intervals given in

Cooray and Ananda [3]. In their paper, they use the expected Fisher information

matrix. For the ML estimators, we also use the expected Fisher information ma-

trix to compute the standard errors and the confidence intervals. For the OBR

estimators, we use the asymptotic covariance matrix given in Victoria-Feser and

Ronchetti [9] to compute the standard errors and the confidence intervals.

Table 5: ML and OBR (b = 2) parameter estimates
for the failure time data set.

Method bα SE
95% confidence
interval of α

bθ SE
95% confidence

interval of θ

ML 0.7108 0.0584 (0.5964, 0.8252) 1.2238 0.1317 (0.9657, 1.4819)
OBR 0.7811 0.0574 (0.6685, 0.8937) 1.0540 0.0794 (0.8983, 1.2097)

Figure 4 (a) shows the boxplot of the failure time data set. After some

preliminary examination of the data set, we can see from the boxplot that there
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may be four potential outliers in the data set. We give the histogram of the data

set with the fitted densities obtained from ML and OBR estimates in Figure 4 (b).

0 1 2 3 4 5 6 7 8

1

(a)
0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

 

 

data

ML

OBR

Figure 4: (a) Boxplot of the failure time data set; (b) Histogram with the
fitted densities obtained from ML and OBR estimation methods.

We also give the Q-Q plots of the fitted distribution obtained from ML and

OBR estimation methods in Figure 5. From this figure, we can see that the OBR

estimates are not badly affected by the outliers. But we can clearly see that the

ML estimators are influenced by the outliers. Furthermore, the Q-Q plot of the

fitted distribution obtained from OBR estimators is well fitted contrary to the

ML estimators.
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Figure 5: Q-Q plots for the failure time data set estimated by
the ML and OBR estimation methods.
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6. CONCLUSIONS

In this paper, we have proposed robust estimators for the parameters of

the GHN distribution, which is proposed by Cooray and Ananda [3] as a flexible

alternative lifetime distribution, using the OBR estimation method. Our limited

simulation study has shown that the ML estimators are influenced by the out-

liers, but on the other hand, the OBR estimators are resistant to the outliers.

The same results have been recorded from the real data example. Therefore,

we can conclude that for this distribution the OBR estimators can be used as

alternative estimators to the ML estimators.
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