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Abstract:

e We propose two-sample gradual change analysis motivated by gender differences ob-
served in a real data set containing jumping speeds of 432 girls and 364 boys aged 6
to 19 years. Looking at this data set from the point of view of change-point analysis
is more natural and it leads to more precise estimators than application of standard
two-sample t-test in each age group. Apart of establishing the asymptotic distribu-
tion of the proposed two-sample change-point estimator, we also investigate its small
sample properties in a simulation study.
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1. INTRODUCTION

In Table 5 and Figure 3, we present summary statistics of jumping speeds
observed in a sample of 432 girls and 364 boys between 6 and 19 years measured
by Leonardo Mechanograph Ground Reaction Force Plate (Summ’k et al., 2013).
In this data set, one is naturally interested in investigating the location of the
unknown change point: looking at the p-values of two-sample t-tests calculated
for each of the thirteen age categories, it seems that jumping speeds for boys and
girls are about the same from 6 to 10 years and boys’ jumping speeds are clearly

higher from 13 years on.

Unfortunately, applying the two-sample t-test thirteen times cannot be rec-
ommended without multiple testing corrections. Therefore, Table 5 contains also
the p-values adjusted for multiple comparisons using Bonferroni and Benjamini—
Hochberg (BH) method. The conclusions based on these two multiple comparison
methods are similar although the Bonferroni method controls the family-wise er-
ror rate while the Benjamini—-Hochberg method (Benjamini and Hochberg, 1995)
controls the false discovery rate. It is interesting that also other standard multi-
ple comparisons methods (Holm, 1979; Hommel, 1988; Hochberg, 1988; Benjamini
and Yekutieli, 2001) implemented in the function p.adjust () in R (R Core Team,
2015) detect statistically significant differences at the same age category (13 years
and above) while statistically significant differences are not detected for the two
most “suspicious” un-adjusted p-values (0.061 and 0.047 for 11 and 12 years,
respectively).

In Section 2, we study this two-sample testing problem from the point of
view of change-point analysis using a simple model of gradual change (Huskov4,
1999) so that instead of many independent two-sample t-tests we only estimate
a single change-point. In Sections 3 and 4, we investigate the asymptotic prop-
erties of the proposed estimators under various assumptions (motivated by the
application to the jumping speeds data set) and we show that the wild bootstrap
provides both confidence intervals and p-values controlling the overall significance
level.

Section 5 contains a small simulation study to check the behavior for finite
sample situations. The jumping speeds data set is analyzed in Section 6 and we
will see that the change-point approach detects statistically significant differences
earlier (i.e., for younger children) than the two-sample t-tests. A short summary
is given in Section 7.
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2. PROCEDURES

We assume that our observations fall into two distinct subgroups that are
further split into n distinct ordered categories and that the n;; observations in the

j-th subgroup and i-th category are summarized by their sample mean ?ﬂ and
sample variance 3]2-1.,
could naturally apply n independent two-sample t-tests in order to compare the

je{1,2}, i=1,...,n. Under additional assumptions one

two subgroups within each category and use some of the multiple test procedures
as discussed above.

However, we propose another approach based on ideas of the change point
analysis. Particularly, motivated by the above data set on the jumping speeds,
we introduce a simple two sample model with gradual changes:

(A1) Observations Yj, (j =1,2; k=1,...,n4) are obtained at time i
(it=1,...,n).

(A2) All observations are independent.

(A3) E(Yy—Yo) = p+06((i—ko)/n)y (i=1,..,n), where pu, § are un-
known parameters and kg = nfy for some 6y € (0,1).

(Ad) Var(Yi) =03, >0 (j=1,2; i=1,...,n; k=1,....,n5).

We use the notation Yj; = Zzzl Yjir/nji, ay = max(a,0) with ko denoting the
unknown location of the change point, © the unknown expectation of difference
before the change, and d,, the slope (speed) of the gradual change after ky. Notice

that, generally, variances of the single observations need not be the same.

Assumptions (A1)—(A4) are motivated by the application in Section 6: par-
ticularly, in this case, Assumption (A2) is satisfied since we observe only one
measurement per subject. In other applications, Assumptions (A2) and (A3)
may require some modifications to cover panel (longitudinal) data or time series.
Also the trend after the change may not necessarily be linear; more generally, it
can be some nondecreasing function strictly increasing after the change point.

We propose to estimate the unknown parameters by the least squares
method. In the following, we deal separately with the homoscedastic case (Sec-
tion 3) and the heteroscedastic case (Section 4).
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3. HOMOSCEDASTIC CASE

Here we deal with a two sample homoscedastic model with gradual changes
assuming additionally:

(A4*) Var(Yy; — Yo;) = 0%/m (i = 1,...,n), where 02 > 0 is an unknown
parameter and m can depend on n.

One-sample homoscedastic models with various gradual changes were stud-
ied by a number of authors, e.g., Hinkley (1971); Feder (1975); Shaban (1980);
Jaruskova (1998); Huskova (1999); Huskova and Steinebach (2000, 2002). They
constructed procedures for testing the null hypothesis no change versus the al-
ternative there is a change, derived the least squares estimators, and studied its
limit behavior for n — co. We use the same method for our problem.

The least squares estimators i, 25\, EM are defined as minimizers of the sum
of squares Y 1 {Y1; — Ya; —a — d((i—k)/n)+}2 with respect to a, d, k. Denoting
zip, = ((i —k)/n)+ and Ty =Y ;| xix/n, direct calculations give:

— = 12
~ {0 (i — ) (Yis — Yai) }
3.1 k, = arg ma = ,
(3:1) a gkG(L)T(l) Yo (@i — Tp)?
5 = Z?:l(%ﬁ - 7@) (711 - ?21)
g Z?:l(xiﬁ - 7@)2
L lG e o s
n = EZ(YVh_YVZz) _6;1%’]5
i=1

Assuming additionally that g = 0, the least squares estimators are:

v VA 2
(3 2) 7{3\0 = arg max {Z?:l xlk(}/iz - 1/21)}
ke(1,n) S xgk )
0 = 2ic1 27(Vi — Yai)
Lin1 T

Unfortunately, there are no explicit expressions for Eu and Eo and these
estimators have to be found as a solution of an optimization problem. The prop-
erties of these estimators can be studied either through asymptotics (if n is large
enough) or through a simulation study. We start with asymptotics and simula-
tions are presented in Section 5.
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Following the proofs in Jaruskova (1998) and Huskova (1998, 1999) we get
that in our homosecastic setup ((A1)—(A3) and (A4*)) for n — oo

_ 23
(nm)1/25{90(1 90)} Ky — ko 2, N.1)

o 1+ 36 n
and
1—6:)3/2 /1 /2
(nm)1/2 ( gO) ( 4‘1;00> (5M _ 5) 1, N(O’ 1) ,

where N (0, 1) denotes the standard normal distribution and 2, denotes conver-
gence in distribution. Both assertions hold true both for m fixed and m — oo
together with n — oco. The limit properties remain true even if § depends on n

—-1/2

and tends to 0 for n — oo but no faster than n loglogn. The above results

also imply consistency:

(nm)"?8(k,, — ko)/n = Op(1)  and  (nm)"? (5, — &) = Op(1) .

Quite analogously when p = 0 we get that the limit distributions of

2 A0 5, _g)

and  (nm)

(nm) n 3124

120 (1 =160 "2 Ko — ko
o 4

are standard normal N (0,1).

In Figure 1, the asymptotic distributions of %ﬂ and Eo for nine distinct values
of kg are compared to histograms obtained by 1000 Monte Carlo simulations. Very
good approximations via the limit distribution are evident for kg < 15 and, as
expected, they are slightly worse but still acceptable for kg > 15. The assumption
w1 = 0 visibly improves the precision of 750 for smaller values of k.

In case the trend in the means is not linear after the change (as in (A3))
but nondecreasing with strict monotonicity after the change point, the proposed
change point estimators may be biased (Huskova and Steinebach, 2002).

Under the assumption of homoscedasticity, we may combine the estimators
3J2-Z- observed in each category into the %andajd pooled estimator 65001%1 of the
variance o2. The assumption that Var(Y;; — Ya;) does not depend on i is rather

restrictive and a more general case of variances will be studied in the next section.
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Figure 1: Densities of asymptotic distributions and histograms of 1000
simulated values of k,, (upper plot) and ko (lower plot) in the
homoscedastic case for n =20, 02 =1, m =20, u =0, 6 = 1,
and kg € {2,4,...,18}.

4. HETEROSCEDASTIC CASE

4.1. Change-point estimators

Let us assume (Al)-(A4) with x4 =0. We may still use the estimators
introduced in the previous section: they still have the same limit distributions
but with different standardizations. Denoting by 72 = Var(Yy; — Ya;) = 02, /ny; +
03;/n2;, we define the estimator EO(T2) taking also the heteroscedasticity into

n S 2
{Zi:l Tir (Y1 — Y2z‘)/7z'2}

Z?:l $12k/7'¢2 '
2

. . /\2 _ /\2 /\2
In practice, the unknown true variances 7;° are replaced by 77 = 07, /m1; +05;/ma;

account:

ko(r2) =
o(77) argkg%%[

leading to the change-point estimator:

[{2?1 el Y2@->/a«2}2]

it xzzk/??

(4.1) ’];0(5_\2) = arg max

Jnax = arg max Th (k).

ke(1l,n)

Concerning properties of these estimators under Assumptions (A1l)—(A4)
with the additional assumption

(4.2) <t <ti/n, i=1,.,n,
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for some 0 < 72 < 7‘_% < 00, the asymptotic distribution remains normal with zero
mean but the asymptotic variance has a more complicated structure and we do
not give here explicit formulas. This can again be proved along the lines of
the proofs in Huskové (1999). To get approximation for the distribution of the
estimator k:o( 2), a proper version of the wild bootstrap provides a reasonable
approximation. The algorithm is described below.

4.2. Bootstrap approximation for the distribution of k= EO(?Q)

For simplicity, we will write k = ko(72). Under Assumptions (A1)-(A4)
and (4.2), the observed sample mean differences D; = Y3; — Ya; have zero mean
and standard deviation 7; = (07, /n1; + 03;/n2;)"/2. The distribution of k= EO(?z)
can be approximated by the wild bootstrap (Shao and Tu, 1995):

Algorithm 1. Bootstrap algorithm

Estimate parameters 0 and k.
Calculate fitted values D; = 30((2' —E)/n)Jr (i=1,..,n).
Forb=1tob=D0B
Generate D} = D; + Tier (i=1,. ) where €] ~ N(0,1) are independent.
Calculate the change—pomt estlmator kb from the bootstrap sample D7, ..., D;.
Calculate the empirical quantile ¢}, from k‘l k k: B —k for prechosen a € (0,1).

The empirical bootstrap quantiles ¢, provide approximations for the true
quantiles g, of k — kg, particularly it can be proved:

l—a=Plk-—ky>q) = Plo<k—qa) = Plko<k—q-) +op(1)

and, therefore, k- g} can be used as an upper bound of an asymptotic one-sided
(1 — «) confidence interval for k.

Remark 4.1. As a complementary problem, we can test hypotheses con-
cerning the change-point location, i.e., the null hypothesis Hy: kg > k1 against
Hj: kg < k; for some given k;. Denoting by K a random variable with the same
distribution as k — ko and defining the p-value as P(K < k- k1) (we reject Hy
for small values of k), we obtain that, for large B, ZbB:1 I(EZ —k<k—ky)/B is
a reasonable approximation of the p-value.

Remark 4.2. The null hypothesis of no-change can easily be tested by
bootstrapping the test statistic 75 72(k) because, under the null hypothesis of
no-change, we can easily generate the bootstrap samples D} = 7.
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5. SIMULATIONS

5.1. Setup of the simulation study

In this section, we investigate small sample properties of the proposed
asymptotic tests and confidence intervals in various setups. We consider the
model of gradual change (A3). In each step of the simulation we proceed as
follows:

Algorithm 2. Simulation study

Set n and the change-point 0y = ko/n.
Set variances a%i and a%i and numbers of observations ni; and ng; (i = 1,...,n).
Calculate variances 72 = 0%, /n1; + 03;/n2; (i =1,...,n).
Fors=1tos=S
Fori=1toi=mn
Generate D; = Yy; — Ya; from N((i — ko)4,77).
Generate 77 from o7,x2 _1/{n1i(ni — 1)} + 03;x5,,_1/{n2i(ng — 1)}.
Calculate E((]S) applying one of the change-point estimators k defined by (3.1),
(3.2), or (4.1).
Calculate the 95% confidence interval for kg using Algorithm 1.
Calculate the bias and the mean squared error of the simulated /k;(()s) (s=1,..,9).
Calculate the empirical coverage probability.

Simulations for the homoscedastic case are reported in Section 5.2 while the
heteroscedastic case is investigated in Section 5.3. In Section 5.4, we comment
on some practical problems caused by rounding effects.

5.2. Homoscedastic case

Under homoscedasticity, we may utilize the asymptotic normality of @M and

ko with o2 estimated by the “pooled” estimator ﬁgooled.

A pilot simulation study, not presented here, with n € {10,20} and m €
{20,40}, comparing the empirical distributions of EM and @0 suggests that both
estimators are generally reasonably good but exhibit large mean squared error
and negative bias for kg close to n. The mean squared error of Eu is larger than
the mean squared error of %0 for small values of ky. This observation corresponds
to the asymptotic variances derived in Section 3, see also Figure 1. The cover-
age probabilities were close to the nominal values unless ky was very large (for
both estimators) or very small (only for /k\u) The coverage probabilities of the

confidence intervals based on o2 and its estimator 52

pooled WETE Very similar.
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The worse behavior E for small kg seems to result from the additional
uncertalnty caused by estlmatmg the parameter p. This leads to the corrected
estimator kcorr = k — /6, 5, that will also be considered in further simulations.

In Table 1, we investigate the empirical coverage probabilities of one-sided
95% bootstrap confidence intervals calculated with and without homoscedastic-
ity assumptions (homoscedasticity assumptions are applicable only because the
number of observations in each category is constant). Under homoscedasticity
assumptions, we estimate the common variance by agooled and this variance esti-
mator is also used in the bootstrap. More generally, we can also proceed without
assuming homoscedasticity and follow Algorithm 1 from Section 4.2 using all 2n

. ~92
sample variances sz

Results in Table 1 confirm that coverage probabilities are rather small if

the change occurs close to n. The heteroscedastic version works well even in the
homoscedastic setup.

Table 1: Coverage probabilities (in %) of one-sided 95% confidence intervals of
four change point estimators in the homoscedastic case (1000 simula-
tions, B = 1000). The confidence intervals are based on bootstrapping
utilizing either the pooled variance estimator 812)0016(1 (homoscedastic

version) or 2n sample variances a . (heteroscedastic version).

0 a\-Enooled 6321

YT R R R k(@) | ke Re BT ()

0.1 | 888 952 93.3 94.0 89.5 939 93.7 94.5

02 ] 924 959 928 94.9 91.7 948 94.3 95.6

nyi = 10 04 | 941 923 929 91.9 955 924  93.3 92.0
06 | 928 932 926 92.4 93.9 899 922 90.2

0.8 | 90.4 90.5 90.0 90.8 89.6 87.7 89.2 89.1

09 | 781 783 79.2 78.4 80.1 748 764 76.0

n=10 0.1 ] 939 920 94.4 92.1 951 92.8 946 93.0
02 | 96.3 928 95.6 92.4 954 927 958 94.7

Ry = 20 0.4 | 935 920 92.3 91.1 92.7 91.6 92.0 90.8
0.6 | 87.6 90.1 90.1 89.8 89.3 87.1 889 88.4

0.8 | 88.8 89.0 89.7 87.8 89.9 869 87.2 88.4

09 | 721 704 749 70.1 724 709 72.6 70.3

0.1 | 965 943 94.0 94.9 949 935 958 93.1

02 ] 971 941 95.0 93.7 96.9 93.0 95.0 93.6

ne 10 | 04940 937 938 93.9 944 921  93.0 92.8
7 0.6 | 93.2 909 92.7 92.7 91.9 921 917 91.8
0.8 | 948 956 94.3 95.3 93.8 945 925 93.7

09 | 84.1 84.3 84.8 84.0 83.1 81.8 844 80.9

n=20 0.1 | 97.3 950 94.4 94.9 97.0 935 934 95.3
02 | 951 943 94.1 94.3 93.5 939 941 94.0

ne—op | 04930 931 931 92.9 93.6 936 93.1 94.7
a 0.6 | 91.9 90.7 92.8 92.8 91.7 936 92.0 91.4
0.8 | 932 919 91.3 90.7 91.8 925 915 89.3

09 | 79.5 814 834 79.3 82.3 804 824 82.4
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5.3. Heteroscedastic case

Real life is typically heteroscedastic and therefore we pay more attention to
such situations. In Table 2, we investigate the behaviour of the proposed method
in several artificial heteroscedastic situations caused both by different variances
and numbers of observations in the observed categories.

Table 2: Coverage percentages (in %) of 95% bootstrap confidence intervals
based on 4 change point estimators for n € {10,20}, nj; = 10, and
02 =1 based on 1000 bootstrap replicates and 1000 simulations.
The first four columns are obtained from the homoscedastic version

of the bootstrap scheme using the pooled variance estimator 62 1.4-

n =10 n =20

90 6-\E)ooled 3]27, 6—\]21
By ko KT ko(PY) | kw o ko kST ko(P) | Bu o ko KT Ko(72)
0.1[65.1 668 580 67.9 |881 925 925 932 975 931 951 938
Hop | 04699 689 67.7 70.7 | 963 947 957 922 | 941 933 944 951
0.8 747 712 722 685 |885 865 867 884 [959 949 952 914
0.9 841 828 77.9 80.5 |78.6 774 788 781 [775 804 80.8 789
0.1]605 632 50.6 65.6 |83.7 942 925 939 [953 93.0 950 93.1
H02 041659 654 639 69.6 |90.6 884 91.0 93.0 |93.6 92.5 928 932
08694 69.5 741 729 |90.4 892 91.0 863 [89.6 8.4 90.7 90.4
0.9 800 782 77.2 837 |768 719 756 758 [826 842 823 819
0.1]190.0 939 924 94.0 |88.8 946 934 928 |92.6 940 93.1 953
Hio | 04]971 996 99.7 997 927 9L5 943 9L1 | 946 949 949 933
0.8[89.0 93.6 933 922 |91.6 925 90.7 89.0 [953 914 948 905
09]941 875 875 685 |924 888 86.1 734 |87.5 86.6 89.1 823
0.1[656 654 556 69.9 |89.9 931 918 931 [904 955 917 942
Hiy |04[ 710 672 674 708 | 924 948 932 919 |93.7 924 931 933
08]79.0 787 76.1 71.0 |92.2 843 90.7 89.8 |96.8 959 96.4 89.3
09955 925 846 731 |931 90.3 875 662 [884 868 863 80.1
0.1[589 63.9 49.9 64.0 |883 956 920 942 (888 944 924 93.1
H12 04]70.3 683 653 69.5 |90.0 87.1 886 91.5 |94.5 93.0 94.7 929
08796 77.5 788 722 |9L1 90.1 927 87.9 [939 885 913 888
09932 883 8L7 780 |91.3 852 857 743 [88.6 87.3 90.9 822
0.1]80.9 924 91.0 994 |821 915 880 985 |97.0 97.2 989 99.3
Hoo | 04938 946 932 998 930 89.6 89.9 937 |974 954 966 99.2
0.8 780 755 79.1 741 |782 774 762 738 [932 90.6 911 941
091906 86.2 848 783 |90.0 865 833 775 |79.0 784 83.7 744
0.1[588 63.8 488 669 |76.6 887 80.7 945 |87.8 874 87.0 933
Hop | 04606 628 619 652 |839 820 833 884 |85.0 854 842 908
081]733 70.7 68.0 69.3 [799 794 769 79.8 |84.7 848 843 88.1
09933 887 818 825 |87.6 854 813 789 (811 8.9 79.7 774
0.1]498 584 394 69.1 |61.6 844 737 948 [79.0 83.2 80.4  93.0
H22 041|571 612 56.0 725 |741 682 756 90.2 |78.0 819 81.0 933
0.8 726 67.5 721 67.6 |82.6 79.0 749 735 |76.7 754 755 89.4
09922 86.6 79.2 79.9 |90.3 837 832 821 (839 787 8L9 7638
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Here, we consider altogether 8 heteroscedastic situations obtained by con-
sidering two simple models for nonconstant variances and two simple models for
nonconstant numbers of observations. The simulation setups (HOL,...,H22) are
summarized in the following table:

Nr. of observations (n;;)

nj; =m ‘ m{l+ 31(i odd)}/2 ‘ m{l+31(i >n/2)}/2

0j; constant (gj; = o) HO1 HO2
oji =o(1+2I(i > ko)) | HI0 H11 H12
0j: = o(1 + 2I(i even)) H20 H21 H22

As expected, Table 2 shows that bootstrap using the pooled estimator of
variance does not lead to reliable results in the heteroscedastic setup. The confi-
dence intervals based on the heteroscedastic estimator ko (72) provide reasonable
coverage probabilities for all scenarios as long as kg is not too close to n.

5.4. Rounding effects

In the jumping speeds example, children aged ¢ to ¢ 4+ 1 years are included in
the i-th age category. We use summary statistics observed in these age categories
and we have to keep in mind that the i-th observed sample mean and sample
standard deviation correspond to the marginal distribution of jumping speeds for
all children aged from i to ¢ 4+ 1 years.

Assuming that E(Y]|Age=xz) = E(Y5|Age=x) + §((x — ko)/n)4+ for = €
(I,m+ 1) and that the age distribution in both groups is the same, it follows
that E(Yy; — Ya;) = 0, for i < | ko, and the true E(Yy; — Ya;) = 8(i — ko) /n for i >
[ko]. Hence, for sample means based on categorization of continuous explanatory
variable, the model (A3) is valid only if k¢ is a natural number.

Denoting ig = | ko| and dy = kg — 9, we may calculate the true expectation
of the mean differences E(Y1;, — Yai,) = E{6((X — ko)/n)+} under the above
assumptions (with uniform distribution of the explanatory variable X in the
ip-th age category and for dy > 0):

5 °f 5 5(1 — do)?
E(Y1i, — Yai,) = - /(J;—kzo)dm = /a:dac = (2_710)'
i0+do 0

In Figure 2, we plot the theoretical expectation for various values of k.
Obviously, whenever kg is not a natural number, the ig-th sample mean can be
“somewhat larger than it should be”.
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expected difference of sample means
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Figure 2: Expectations of mean differences for five categories for change
points kg € (3.2,3.4,3.6,3.8). Each line connects the expecta-
tions (denoted by circles) corresponding to given changepoint
(denoted by star).

In practice, it is more natural to define the i-th category by values of the
explanatory variable x € (¢ — 0.5, 7 + 0.5) and this notation is also in accordance
with the theoretical part of this paper. Therefore, we define the bias corrected es-
timator k3¢ by using 2b¢ = I(i > [k—0.5]) (i — k) /n+I(i=[k—0.5]) ([k—0.5] —
k+0.5)/(2n) instead of x; in (3.2).

Results of a small simulation study comparing the behavior of Eo and 7{:\8‘3
in a homoscedastic case are given in Table 3. As expected, the empirical bias of
the bias corrected estimator %‘C tends to be somewhat smaller. The effect of the
rounding bias on the coverage probabilities based on /k\o is most clearly visible for
n = 20, nj; = 20, and ko lying in the center of the category (i.e., for ky = 14, 15,
and 16).

6. JUMPING SPEEDS

In order to analyze the real data set given in Table 5, it is important to
understand the meaning of the row-labels. The various labels and its meanings
are summarized in Table 4. In the theoretical part of this paper, we were using
the “Index scale” given in the first column. For practical considerations, it is im-
portant to notice that £k = 1 actually corresponds to children aged approximately
6.5 years.

In order to calculate the estimators EO(?Q) and EBC(?Q), we maximize the
function T5, >2(k) and its bias corrected version, TQbi?Q (k), plotted in Figure 3.
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Table 3: Empirical mean squared error (MSE), bias and coverage probabilities
of 95% confidence intervals (in %) for ko and k5¢, 1000 simulations
with 1000 bootstrap replicates.

%o kbe
0o MSE bias coverage MSE bias coverage
0.20 0.124 0.003 93.6% 0.112 —0.010 94.6%
0.22 0.113 —0.001 95.4% 0.113 —0.016 95.3%
0.25 0.125 —0.018 91.5% 0.123 —0.010 92.9%
0.28 0.122 0.012 91.2% 0.133 0.011 90.3%
W10 | 030 | 0116 0008  93.9% | 0131 0001  95.0%
= 0.70 | 0.432 —0.109 92.7% 0.365  —0.041 93.3%
0.72 | 0.466  —0.099 94.0% 0.498 —0.065 91.7%
0.75 | 0.678 —0.151 89.6% 0.726 —0.138 88.4%
0.78 | 0.936  —0.226 86.5% 0.971 —0.123 91.5%
0.80 | 1.160 —0.263 91.3% 1.255  —0.224 91.8%
n=10 0.20 | 0.0563 —0.011 94.1% 0.052 0.002 93.2%
0.22 0.054 —0.013 95.4% 0.050 0.003 98.4%
0.25 | 0.0563 —0.011 95.8% 0.060 —0.017 95.4%
0.28 | 0.059 0.001 92.8% 0.054  —0.009 95.2%
R 0.30 0.063 0.000 92.6% 0.060 0.011 92.8%
= 0.70 | 0.177  —0.056 86.9% 0.173 0.004 96.3%
0.72 | 0.194 —0.073 94.1% 0.191 —0.024 95.6%
0.75 | 0.246 —0.072 94.6% 0.230  —0.052 91.7%
0.78 | 0.319 —0.116 88.1% 0.302 —0.034 93.2%
0.80 | 0.399 —0.097 88.0% 0.506  —0.092 96.9%
0.20 0.054 —0.005 93.6% 0.050 —0.004 95.7%
0.22 | 0.056 —0.005 94.5% 0.057  —0.003 95.3%
0.25 | 0.056 —0.016 94.6% 0.050 0.003 95.4%
0.28 0.061 0.002 94.5% 0.055 —0.009 94.6%
ne =10 0.30 | 0.063  —0.004 93.1% 0.060 —0.012 93.9%
= 0.70 | 0.150  —0.040 93.7% 0.158 0.001 94.7%
0.72 | 0.175 —0.035 93.9% 0.163 —0.033 94.5%
0.75 | 0.200 —0.051 93.3% 0.178  —0.023 96.7%
0.78 | 0.220 —0.043 94.0% 0.229  —0.026 90.8%
0.80 | 0.263  —0.050 94.7% 0.276 —0.022 93.8%
n=20 0.20 0.027 —0.006 94.0% 0.026 —0.004 93.3%
0.22 | 0.026 —0.008 94.3% 0.024 —0.010 98.0%
0.25 | 0.030 —0.006 93.3% 0.029 0.005 93.6%
0.28 0.026 0.005 95.8% 0.030 0.001 95.9%
nes = 20 0.30 | 0.033 —0.015 93.9% 0.031 —0.004 94.1%
= 0.70 | 0.078 —0.024 90.7% 0.072  —0.000 94.1%
0.72 | 0.089 —0.032 96.7% 0.075  —0.001 95.9%
0.75 | 0.093 —0.037 90.6% 0.095 —0.006 93.4%
0.78 | 0.112  —0.046 95.3% 0.103  —0.012 94.3%
0.80 | 0.114  —0.040 90.0% 0.111 —0.012 95.7%
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Table 4: Meaning of row labels in the jumping speeds example.

Index (k)  Label Meaning Interpretation Y (61) Yz (62)
1 6 6-7 years ~ 6.5 years 1.89 (0.17)  1.87 (0.18)
7 7-8 years ~ 7.5 years 2.00 (0.21)  1.98 (0.20)
13 18 18-19 years  ~ 18.5 years  2.33 (0.17)  2.87 (0.10)

In both plots, the estimator k=5 (on the “Index scale”) corresponds to the
estimated change point k%8¢ = 10.5 years.
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Figure 3: Function 75, 72(k) and its bias corrected version szj?Q(k:) for

the jumping speed data. The vertical dashed lines denote the
estimates k and kP°.

Applying the bootstrap algorithm described in Section 4.2, we obtain that
the upper limit of the one-sided 95% confidence interval based on kg (72) is 5.72 +
5.5 = 11.22 years. Applying the bias correction from Section 5.4, we obtain the
one-sided 95% confidence interval (—oo,11.26) years.

For both estimators, the test of the null hypothesis “no changepoint before
12 years” is actually carried out by testing the index k; = 12 —5.5 (see Remark 4.1
and Table 4). The p-values corresponding to the change-point tests of the null
hypothesis Hy: ko > k1 against Hy: ko < ki for k1 € {0.5,...,12.5} are given in
Table 5. Since each test concerns the age ki + 5.5 years, it seems more natural
to shift the lines with these p-values in order to point out the difference between
the two-sample t-test (comparing the marginal means in i-th age category, i.e.,
for approximately i + 0.5 years) and the change-point approach (testing whether
there is a significant difference for children aged precisely ¢ years).
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Table 5:

Zdenék Hlavka and Marie Huskova

Observed mean jumping speeds and standard deviations for boys and girls

in 13 age categories. P-values of the two-sample t-test in each age category,
its Bonferroni and Benjamini-Hochberg (BH) adjustments and p-values

of the test for change point location based on ko (7?) and E})’C(?Z).

girls

boys

p-values

Y1 (61)

Ys (52)

t-test Bonferroni

BH

| 5o(7)

R (7)

1.89(0.17
2.00(0.21
2.01(0.21
2.06 (0.18
2.19(0.22
2.23(0.15

2.30(0.22
2.28(0.23
2.37(0.17
2.33(0.19
2.35(0.18

33
43
33
42
42
30
41
32
31
29
17
25

1.87(0.18
1.98 (0.20
2.06 (0.21
2.14(0.18
2.17(0.19
2.31(0.23

2.53(0.21
2.66 (0.19
2.72(0.22
2.83(0.28
2.76 (0.16

(0.17)
(0.21)
(0.21)
(0.18)
(0.22)
(0.15)
2.26 (0.13)
(0.22)
(0.23)
(0.17)
(0.19)
(0.18)
(0.17)

2.33(0.17

(0.18)
(0.20)
(0.21)
(0.18)
(0.19)
(0.23)
2.35(0.23)
(0.21)
(0.19)
(0.22)
(0.28)
(0.16)
(0.10)

34(2.87(0.10

19
38
38
29
45
37
40
36
20
26

13
14

0.780
0.646
0.369
0.081.
0.713
0.062.
0.047*
0.000***
0.000%***
0.000***
0.001***
0.000%***
0.000***

1.000
1.000
1.000
1.000
1.000
0.800
0.615
0.001%***
0.000***
0.000%***
0.006**
0.000***
0.000%***

0.780
0.763
0.479
0.117
0.773
0.100
0.088.
0.000***
0.000%***
0.000***
0.001**
0.000%***
0.000***

1.000
1.000
1.000
0.999
0.861
0.113
0.003**
0.000***
0.000***
0.000%***
0.000***
0.000***
0.000%***

1.000
1.000
1.000
0.997
0.846
0.117
0.003**
0.000%***
0.000%***
0.000***
0.000%***
0.000%***
0.000***

We conclude that the estimated change-point is 10.5 years (with 95% confi-

dence interval (—oo, 11.26)) while the two-sample t-tests without multiple testing

correction show statistically significant difference only after 12 years (in the age

category 12 to 13 years).

In order to verify the validity of Assumption (A3), we plot the data set and

the resulting least squares fit in Figure 4.
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Observed sample means of jumping speed for boys (A) and
girls (O) in thirteen age categories. The right plot shows the
observed differences D; and the least squares fit.
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7. SUMMARY AND OUTLOOK

A rigorous approach to multiple hypotheses testing is needed in many real-
life situations. Typically, a Bonferroni-type adjustment increases all p-values in
order to control either the family-wise error rate or the false discovery rate. How-
ever, the structure of the observed data often calls for a more appropriate and
powerful solution. Using gender-specific growth curves as a motivation, we pro-
posed a simple two-sample gradual change model in order to develop bootstrap-
based tests and confidence intervals for the location of the unknown change-point.
In this way, many two-sample t-tests can be replaced by a single test concerning
only the change-point. Therefore, adjustments for multiple hypotheses testing
become unnecessary.

In practice, the linearity assumption may not be fulfilled. This problem
can be solved in a simple way, e.g., by using a finer grid to investigate only a
small neighborhood of the suspected change point.

Obviously, the proposed method is applicable also to different sample char-
acteristics. For example, we could investigate a two-sample gradual change in the
slope using a table of estimated slopes (and estimates of their standard devia-
tions) in each age category. Such a test would correspond to a model of quadratic
change for the original observations.

Depending on further applications, various extensions of the proposed meth-
odology to more general setups may be considered, e.g., dependent observations
and more general changes than a linear trend. Also some aspects of nonparamet-
ric regression can be utilized if one can analyze the original data set instead of only
sample means and sample standard deviations observed in n ordered categories.
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