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Abstract:
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using the bias-corrected AICs, we find out knowledge about what kind of bias correc-
tion gives a positive effect to variable selection under model misspecification. Actually,
since all the variable-selection methods considered in this paper asymptotically choose
the same model as the best model, we conduct numerical examinations using small and
moderate sample sizes. Our results show that bias correction under assumption that
the mean structure is misspecified gives a better effect to a variable-selection method
than that under the assumption that the distribution of the model is misspecified.
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1. INTRODUCTION

In the analysis of real data, it is important to determine which statistical

model best fits the data, because there are many candidate models, and they

each estimate different results, which may lead to different conclusions. One of

the aims of model selection is to choose a statistical model having a high predic-

tive accuracy. In order to achieve the aim, it is common that the risk function

based on the Kullback–Leibler (KL) information [18] is used for assessing a good-

ness of fit of a statistical model. Then, the model making the risk function the

smallest is regarded as the “best” model. Hence, in order to seek a statistical

model having a high predictive accuracy, we have to compare with risk func-

tions of each of candidate models. In practice, an estimate of the risk function

is used, because the risk function involves unknown parameters. The most fa-

mous asymptotic unbiased estimator of the risk function is Akaike’s information

criterion (AIC; proposed by [1, 2]), which is derived under the condition that

the candidate model is correctly specified. It is defined by the simple equation

−2 × (themaximum log-likelihood) + 2 × (the number of parameters in themodel)

and is commonly used in actual data analysis.

Since the AIC is only asymptotically unbiased, the bias of the AIC to the

risk function may be considerable when the sample size is not large enough and

the number of parameters is large. Then, the AIC of a candidate model which is

overspecified and has a large number of parameters tends to underestimate the

risk function overly. This tendency causes that AICs of those candidate models

often do not have notable differences. In addition, the variance of the AIC may

increase as the number of parameters increases (see, e.g., [31]). Thus, the model

with the most parameters tends to make AIC the smallest, and so the AIC often

selects the model with the most parameters as the best model. Since this fault

of AIC is due to the bias, it is frequently avoided by correcting the bias to the

risk function. This has been studied under various different conditions and with

various different correction methods (as a general theory correcting the bias of the

AIC, see, e.g., [4, 14, 16, 20]). Sugiura [24] and Hurvich and Tsai [12] proposed

a bias-corrected AIC for linear regression models (multiple regression models)

by fully removing the bias of the AIC to the risk function under the condition

that the candidate model is correctly specified. The bias-corrected AIC then

becomes the uniformly minimum-variance unbiased estimator (UMVUE) for the

risk function of the candidate model (see, [5]), and many authors have verified by

numerical experiments that a variable-selection method using the bias-corrected

AIC performs better than that using the crude AIC.

A basic concept of bias correction is that we expect that an unbiased es-

timate of the risk function will allow us to correctly evaluate the risk function,

which will further facilitate the selection of the best model. However, there is no

theory that promises that the best model chosen by minimizing a bias-corrected
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AIC has a higher predictive accuracy than that chosen by minimizing the crude

AIC. Generally, a bias-corrected estimator has a larger variance than a crude

estimator before a bias correction. An impairment of the mean square error of

the bias-corrected AIC with respect to the risk function, which results from an

increase in the variance, may cause a drop in performances of model selection

when using a bias-corrected AIC.

In this paper, we compare the AIC and eight bias-corrected AICs to study

what kind of bias correction gives a positive effect for selecting variables for a

multivariate linear regression model (MLRM) with a normal distributed assump-

tion (called the normal MLRM), under a model misspecification. Performances

of variable-selection methods using the nine criteria are examined by numerical

experiments. We do not conduct numerical experiments under the large sample,

because it has been confirmed theoretically that the variable-selection methods

using the nine criteria select the same model as “best” when the sample size goes

to ∞. Our result is that correcting the bias gives a greater positive effect to vari-

able selection when the mean structure is misspecified than when the distribution

of the model is misspecified.

This paper is organized as follows: In Section 2, the normal MLRM and the

risk function based on the KL information are described. In Section 3, the AIC

and the bias-corrected AICs for the normal MLRM are summarized. In Section 4,

we use numerical experiments with small and moderate samples to compare per-

formances of variable-selection methods using the AIC and the bias-corrected

AICs. Our conclusions and a discussion are presented in Section 5. Technical

details are provided in the Appendix.

2. RISK FUNCTION BASED ON THE KL INFORMATION

The normal MLRM is used when we are interested in predicting not just one

response variable but several correlated response variables based on k nonstochas-

tic explanatory variables (for details, see, e.g., [6], [21, chap. 9], [26, chap. 4]). Let

y1, ...,yn be p-dimensional independent random vectors of response variables, and

let xω,1, ...,xω,n be kω-dimensional vectors of the full explanatory variables, where

n is the sample size. Furthermore, let xi be a k-dimensional vector of candidate

explanatory variables, which is a subset of the full explanatory variables xω,i

(i = 1, ..., n). Then, we consider the following normal MLRM as the candidate

model:

(2.1) M : yi ∼ Np(Ξ
′xi,Σ) , (i = 1, ..., n) ,

where Ξ is a k×p matrix of unknown regression coefficients, and Σ is a p×p
unknown covariance matrix.
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Let Y = (y1, ...,yn)′ be an n×p matrix of response variables, and let X =

(x1, ...,xn)′ be an n×k matrix of candidate explanatory variables. Suppose that

an n×kω matrix of the full explanatory variables, Xω = (xω,1, ...,xω,n)′, is a

column full-rank matrix, i.e., rank(Xω) = kω < n. Needless to say, X consists of

some columns of Xω and is also a column full-rank matrix. Moreover, we assume

that X and Xω each always have 1n as a column vector that corresponds to

an intercept, where 1n is an n-dimensional vector of ones, and limn→∞ X ′
ωXω/n

exists and is positive definite. The matrix form of the candidate model (2.1) is

given by

(2.2) M : Y ∼ Nn×p(XΞ,Σ⊗In) ,

where In is an identity matrix of size n. Here, A⊗B denotes an the Kronecker

product of an m×n matrix A and a p×q matrix B, which is an mp×nq matrix

defined by

A⊗B =



a11B ··· a1nB

...
. . .

...
am1B ··· amnB


 ,

where aij is the (i, j)-th element of A (see, e.g., [10, chap. 16.1]). Addition-

ally, Z ∼ Nn×p(A,B⊗C) denotes that an n×p random matrix Z is distributed

according to the n×p matrix normal distribution with a mean matrix E[Z] = A

and a covariance matrix Cov[(Z)] = B⊗C (see, e.g., [26, p. 91, def. 3.3.1]), i.e.,

vec(Z) ∼ Nnp(vec(A),B⊗C), where vec(Z) is an operator that transforms a

matrix to a vector by stacking the first to the last columns of Z, i.e., vec(Z) =

(z′
1, ...,z

′
p)

′ when Z = (z1, ...,zp) (see, e.g., [10, chap. 16.2]). The following normal

MLRM using the full explanatory variables is called the full model:

(2.3) Mω : Y ∼ Nn×p(XωΞω,Σω⊗In) ,

where Ξω and Σω denote a matrix of the unknown regression coefficients and a

covariance matrix of the full model, respectively. Although the normal distribu-

tion is assumed, we are not able to see whether the assumption is actually correct.

A natural assumption for the generating mechanism of Y is

M∗ : Y = Γ∗ + EΣ
1/2
∗ , E = (ε1, ..., εn)′ , ε1, ..., εn ∼ i.i.d. ε ,

E[ε] = 0p , Cov[ε] = Ip , E[‖ε‖4] = κ
(1)
4 + p (p+ 2) ,

(2.4)

where Γ∗ and Σ∗ are the true mean and covariance matrices, respectively,

0p is a p-dimensional vector of zeros, and ‖a‖ is the Euclidean norm of the vector

a = (a1, ..., am)′, i.e, ‖a‖ = (a2
1 + ···+a2

m)1/2. Here, κ
(1)
4 is called the multivariate

kurtosis, which was proposed by [19].

In order to clarify assumptions for deriving information criteria, we separate

the candidate models into the following two models:
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• Underspecified model: the mean structure does not include that of the

true model, i.e., PXΓ∗ 6= Γ∗;

• Overspecified model: the mean structure includes that of the true model,

i.e., PXΓ∗ = Γ∗.

Here, PX is the projection matrix to the subspace spanned by the columns

of X, i.e., PX = X(X ′X)−1X ′. Furthermore, the candidate model whose mean

structure dovetails perfectly with that of model M∗ is here called the true model.

Although Fujikoshi and Satoh [8] used the same terminology, they divided the can-

didate models by whether a candidate model includes the true model.

It emphasizes that we are separating the candidate models based only on the

mean structure. Hence, our separation does not depend on whether a distribu-

tion of the true model is the normal distribution. Furthermore, we assume that

the full model Mω is the overspecified model and the true model is included in

a set of the candidate models. For an additional characteristic of the candidate

model, a p×p matrix of noncentrality parameters is defined by

(2.5) Ω =
1

n
Σ

−1/2
∗ Γ′

∗(In − PX)Γ∗Σ
−1/2
∗ .

It should be noted that Ω is positive semidefinite and Ω = Op,p holds if and only

if M is an overspecified model, where Op,p is a p×p matrix of zeroes.

Let f(y |η,Σ) be the probability density function of Np(η,Σ). Then, the

log-likelihood function of the candidate model M in (2.2) is derived as

ℓ(Ξ,Σ |Y ,X) =
n∑

i=1

log f(yi |Ξ′xi,Σ)

= −1

2

[
np log 2π + n log |Σ|

+ tr
{
Σ−1(Y −XΞ)′ (Y −XΞ)

}]
.

(2.6)

By maximizing ℓ(Ξ,Σ |Y ,X), or equivalently solving the likelihood equations

∂ℓ(Ξ,Σ |Y ,X)/∂Ξ = Ok,p and ∂ℓ(Ξ,Σ |Y ,X)/∂Σ = Op,p, the maximum like-

lihood (ML) estimators of the unknown parameter matrices Ξ and Σ in the

candidate model M are obtained as

Ξ̂ = (X ′X)−1X ′Y , Σ̂ =
1

n
Y ′(In − PX)Y .

In particular, S denotes a standardized Σ̂ defined by S = Σ
−1/2
∗ Σ̂Σ

−1/2
∗ . Fur-

thermore, (Ξ̂ω, Σ̂ω,Sω) denotes (Ξ̂, Σ̂,S) in the full model Mω in (2.3). By sub-

stituting (Ξ̂, Σ̂) into (2.6), the maximum log-likelihood of the candidate model

M is derived as

ℓ(Ξ̂, Σ̂ |Y ,X) = −n
2

{
p(log 2π + 1) + log |Σ̂|

}
.
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Let L(Ξ,Σ |X) be an expected negative twofold log-likelihood function:

L(Ξ,Σ |X) = E∗

[
−2ℓ(Ξ,Σ |Y ,X)

]

= np log 2π + n log |Σ|

+ tr
[{
nΣ∗ + (Γ∗−XΞ)′ (Γ∗−XΞ)

}
Σ−1

]
,

(2.7)

where E∗ means the expectation under the true model M∗ in (2.4). We define the

loss function of the model M measured by the KL information as L(Ξ̂, Σ̂ |X).

Then, a risk function that uses the KL information to assess the gap between

the true model and the candidate model is defined by the expectation of the loss

function, i.e.,

(2.8) RKL = E∗

[
L(Ξ̂, Σ̂ |X)

]
.

In this paper, the candidate model that makes the risk function the smallest is

called the principle best model. The following theorem is satisfied for the principle

best model (the proof is given in Appendix A.1):

Theorem 2.1. The principle best model is either the true model or an

underspecified model. When n→ ∞, the principle best model becomes the true

model under the assumption that E[tr(S−2
ω )] = O(1).

3. AIC AND BIAS-CORRECTED AICS IN NORMAL MLRMS

Although the risk function RKL in (2.8) assesses the goodness of fit of the

model, we cannot use RKL directly because RKL involves unknown parameters.

Hence, in practice, an estimate of RKL is needed to select the best model among

the candidates. Although a naive estimator of RKL is −2ℓ(Ξ̂, Σ̂ |Y ,X), it has

the following constant bias:

(3.1) B = RKL − E∗

[
−2ℓ(Ξ̂, Σ̂ |Y ,X)

]
.

Thus, an information criterion for selecting the best model is defined by adding B̂,

an estimator of B, to −2ℓ(Ξ̂, Σ̂ |Y ,X), i.e.,

(3.2) IC = −2ℓ(Ξ̂, Σ̂ |Y ,X) + B̂ .

The information criterion is specified by the individual B̂, because B̂ changes

based on assumptions of the model M and by an estimation method. As for such

assumptions, the following two assumptions are considered:

(A1) The candidate model M in (2.2) is an overspecified model;
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(A2) The distribution of the true model M∗ in (2.4), called the true dis-

tribution, is the normal distribution, i.e., ε ∼ Np(0p, Ip).

Nine information criteria used to estimate RKL are enumerated below. The

order of the bias of each information criterion for RKL is summarized in Table 1.

As for information criteria in the NMLR model other than the nine information

criteria used in this paper, see [20, chap. 4].

Table 1: The order of the bias of each criterion.

Criterion Bias-Correction
Method

Normality Nonnormality

Under-
specified

Over-
specified

Under-
specified

Over-
specified

Proposed
under

Normality

AIC∗1
O(1) O(n−1) O(1) O(1)

CAIC∗1,∗2 Exact O(1) 0 O(1) O(1)
MAIC Moment, Exact O(n−1) O(n−2) O(1) O(1)

Proposed
without

Normality

TIC∗3,∗4,∗5 Moment O(1) O(n−1) O(1) O(n−1)
EIC∗3,∗5,∗6 Bootstrap O(1) O(n−1) O(1) O(n−1)
EICA

∗3,∗6 Bootstrap O(n−1) O(n−1) O(n−1) O(n−1)
CV∗4 Cross-validation O(1) O(n−1) O(1) O(n−1)
AICJ

∗4,∗5,∗7 Jackknife, Exact O(1) 0 O(1) O(n−1)
CAICJ

∗4,∗7 Jackknife, Exact O(1) 0 O(1) O(n−2)

∗1 The number of explanatory variables in the best model selected by the CAIC is less than or equal to
that in the best model selected by the AIC.

∗2 This is the UMVUE of the risk function when assumptions A1 and A2 hold.
∗3 These are asymptotically equivalent when assumption A1 holds. The differences are Op(n−1/2).
∗4 These are asymptotically equivalent. The differences are Op(n−1).
∗5 When O(n−2) term is neglected and assumption A1 holds, the absolute value of the bias of the

AICJ is smaller than those of the TIC and EIC.
∗6 The only difference between these two criteria is the resampling method.
∗7 When the O(n−2) term is neglected and assumption A1 holds, the variance of the CAICJ is smaller

than that of the AICJ.

3.1. AIC

Under the assumption that the candidate model is completely specified,

Akaike [1, 2] proposed AIC by estimating a bias of a negative twofold maximum

log-likelihood to a risk function as twice the number of parameters. According to

the general formula of AIC, B̂ in (3.2) is B̂AIC = 2pk + p(p+ 1). Thus, the AIC

in the model M is expressed as

AIC = np(log 2π + 1) + n log |Σ̂| + 2pk + p(p+ 1) .
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From the assumption to derive an bias of AIC, the bias of the AIC in the modelM

to RKL becomes O(n−1) when assumptions A1 and A2 are satisfied simultane-

ously. However, the order of the bias changes to O(1), i.e., AIC has constant bias,

when either of assumptions A1 or A2 are violated (for details, see, e.g., [8, 9, 27]).

3.2. Corrected AIC

When assumptions A1, A2, and an additional assumption n > p+ k + 1

are satisfied, Bedrick and Tsai [3] calculated the exact form of B as B̂CAIC =

n(n+ k)p/(n− k − p− 1) − np and proposed the corrected AIC (CAIC)1 by

replacing B̂ in (3.2) with B̂CAIC as

CAIC = np log 2π + n log |Σ̂| + n(n+ k)p

n− p− k − 1

= AIC +
(p+ k + 1) (p+ 2k + 1)p

n− p− k − 1
.

The CAIC is an unbiased estimator of RKL under assumptions A1 and A2,

and is congruent with the bias-corrected AIC proposed by [12, 24] when p = 1.

Additionally, extending the result of [5] to the multivariate case provides that

the CAIC is a UMVUE of the risk function RKL when assumptions A1 and A2

are satisfied simultaneously (for a short proof, see [34]). From the definition of

the CAIC and its unbiasedness under assumptions A1 and A2, we can see that

the AIC in an overspecified model underestimates RKL, and the amount of the

underestimation becomes large as k increases. This will cause the undesirable

property of the AIC that the AIC has a tendency to overestimate the best model

when the sample size is not large enough and the number of candidate models

is large. The problem of the AIC can be avoided by using CAIC instead of the

AIC, because the number of explanatory variables of the best model selected by

the CAIC will be less than or equal to the number selected by the AIC (the proof

is given in Appendix A.2). Because of CAIC = AIC +O(n−1), as in the case of

the AIC, the order of the bias of the CAIC to RKL becomes O(1), i.e., the CAIC

has a constant bias, when either of assumptions A1 or A2 are violated.

3.3. Modified AIC

When assumption A2 holds but assumption A1 does not hold, and n >

p+ k + 1, Fujikoshi and Satoh [8] estimated B by B̂MAIC = B̂CAIC + 2k tr(L) −
tr(L)2 − tr(L2), where L is a p×p matrix defined by L = (n − k)Σ̂ωΣ̂−1/

1Although Bedrick and Tsai [3] used AICc as the abbreviated symbol, we use CAIC following
the notation of [8].
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(n− kω) − Ip, and proposed the modified AIC (MAIC) by replacing B̂ in (3.2)

with B̂MAIC as

MAIC = CAIC + 2k tr(L) − tr(L)2 − tr(L2) .

The bias of the MAIC to RKL becomes O(n−2) when assumptions A1 and A2

are satisfied simultaneously, and it becomes O(n−1) when assumption A2 holds

but assumption A1 does not (see, [8]). However, the bias changes to O(1), i.e.,

the MAIC also has constant bias, when assumption A2 is violated, because BAIC

depends on a nonnormality of the true model when assumption A2 is violated

(see, e.g., [9, 27]).

3.4. Takeuchi’s Information Criterion

Takeuchi [25] revaluated an asymptotic bias under model misspecifica-

tion and proposed Takeuchi’s information criterion (TIC) by estimating such

an asymptotic bias with a moment-estimation method. According to the gen-

eral formula of the TIC, a bias-correction term of the TIC in the model M can

be calculated as B̂TIC = B̂AIC + κ̂
(1)
4 + 2

∑n
i=1(1 − hi) (r̂2i − p) (for details of the

derivation, see [9]), where r̂i is a squared standardized residual of the i-th indi-

vidual, κ̂
(1)
4 is an estimator of the multivariate kurtosis κ

(1)
4 in (2.4), and hi is a

constant, which are given by

r̂2i = (yi − Ξ̂′xi)
′ Σ̂−1(yi − Ξ̂′xi) ,

κ̂
(1)
4 =

1

n

n∑

i=1

r̂4i − p(p+ 2) , hi = 1 − x′
i(X

′X)−1xi .
(3.3)

Hence, the TIC in the model M is expressed as

TIC = AIC + κ̂
(1)
4 + 2

n∑

i=1

(1 − hi) (r̂2i − p) .

When y1, ...,yn are independently and identically distributed, the bias of the TIC

to the risk function is O(n−1) under any model misspecification. However, in the

case of multivariate linear regression, y1, ...,yn are independent but not identically

distributed. This leads to the less well-known fact that the bias of the TIC in the

model M to RKL is O(n−1) when assumption A1 holds but assumption A2 does

not, and becomes O(1) when assumption A1 is violated (see, [9]). By conducting

numerical experiments, many authors have verified a fact that although the TIC

theoretically reduces the bias caused by violating normality, the TIC cannot

reduce the bias successfully unless the sample size is huge (see, e.g., [9, 27]). This

occurs because the TIC consists of an estimator for the multivariate kurtosis κ̂
(1)
4 .
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Yanagihara [28] presented numerical results that showed that κ̂
(1)
4 has a huge bias

to κ
(1)
4 if n is not huge. Hence, the TIC also has a huge bias to RKL if n is not

huge.

When y1, ...,yn are independently and identically distributed, the bias of

TIC can be reduced to O(n−2) by using a formula in [35], which is a special case

of those in [15] and [30]. However, as stated already, y1, ...,yn are independent

but not identically distributed in the case of the multivariate linear regression.

Regrettably, we cannot correct the bias of TIC by using their formula.

3.5. Extended Information Criterion

The serious problem with TIC comes from the moment estimation of a bias.

Ishiguro et al. [13] cleared this problem by using the bootstrap method for an

estimation of the bias, and proposed the extended information criterion (EIC).

Let Db be an n×n matrix to express the b-th bootstrap resample of Y as

(3.4) Db = (db,1, ...,db,n)′ , db,1, ...,db,n ∼ i.i.d. MNn(1;n−11n) ,

where MNn(1;n−11n) denotes the n-variate one-trial multinomial distribution

with the same cell probabilities 1/n. Following [7], the b-th bootstrap resample

of Y is Ỹb = XΞ̂ + Db(In−PX)Y . Let Σ̃b be the ML estimator of Σ evaluated

from (Ỹb,X). From the general formula of EIC in [14], an estimator of the

bias obtained from the bootstrap method with m repetitions is given by B̂EIC =

m−1
∑m

b=1 tr
{
Σ̃−1

b (Y −PXỸb)
′ (Y −PXỸb)

}
− np. Then, by using (3.2), the EIC

in the model M is expressed as follows (see, [27]):

EIC = np log 2π + n log |Σ̂| + 1

m

m∑

b=1

tr
{
Σ̃−1

b (Y −PXỸb)
′ (Y −PXỸb)

}
.

When y1, ...,yn are independently and identically distributed, the bias of the EIC

to the risk function isO(n−1) under any model misspecification like the TIC. How-

ever, in the case of multivariate linear regression, y1, ...,yn are independent but

not identically distributed. Hence, the bias of EIC is O(n−1) under assumption

A1, but that changes to O(1), i.e., the EIC has constant bias (as does the TIC),

when assumption A1 is violated (see, [27]). In particular, EIC = TIC+Op(n
−1/2)

holds when bothm→ ∞ and assumption A1 holds (the proof is given in Appendix

A.3). Although the theoretical bias of the EIC has the same order as that of the

TIC, the bias of the EIC tends to be smaller than that of the TIC (see, [27])

because the EIC does not directly use κ̂
(1)
4 for estimating the bias.
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3.6. Adjusted EIC

Fujikoshi et al. [9] proposed an adjusted version of the EIC in the model M

by using a full-model-based resampling instead of a candidate-model-based resam-

pling. We call this the adjusted EIC (EICA). Let Ȳb be the b-th bootstrap re-

sample of Y based on the full model Mω given by Ȳb = XωΞ̂ω + Db(In−PXω)Y ,

where Db is given by (3.4), and let Σ̄b be the ML estimator of Σ evaluated

from (Ȳb,X). Then, B̂EICA
, which is an estimator of the bias obtained from a

full-model-based bootstrap method with m repetitions, is given by replacing Ỹb

and Σ̃b in B̂EIC with Ȳb and Σ̄b. By using (3.2), the EICA in the model M is

expressed as follows (see, [9]):

EICA = np log 2π + n log |Σ̂| + 1

m

m∑

b=1

tr
{
Σ̄−1

b (Y −PXȲb)
′ (Y −PXȲb)

}
.

The bias of the EICA to the risk function is always O(n−1) (see, [9]). In particular,

EICA = TIC+Op(n
−1/2) holds whenm→ ∞ and assumption A1 holds (the proof

is given in Appendix A.3).

3.7. Cross-Validation Criterion

The cross-validation (CV) criterion proposed by [22] estimates a risk func-

tion directly, and it can be defined without an estimator of a bias of a negative

twofold maximum log-likelihood to a risk function. We know that n repetitions

of the calculations for the ML estimator of (Ξ,Σ) are needed for the CV criterion

in the model M . However, Yoshimoto et al. [36] gave the formula to derive the

CV criterion in the model M without the n repetitions as

(3.5) CV = np log

(
2πn

n−1

)
+ n log |Σ̂| +

n∑

i=1

{
log

(
1− r̂2i

nhi

)
+

(n−1) r̂2i
hi(nhi− r̂2i )

}
,

where r̂2i and hi are given by (3.3). From [23], CV = TIC +Op(n
−1) always

holds if y1, ...,yn are independently and identically distributed. In the case of

multivariate linear regression, we can prove that CV = TIC +Op(n
−1) always

holds (the proof is given in Appendix A.4). From this result, the bias of the CV

criterion is O(n−1) under assumption A1, but like the TIC, it has a constant bias

when assumption A1 is violated.

Yanagihara and Fujisawa [30], and Yanagihara et al. [33, 35] proposed bias-

corrected CV criteria, which are criteria correcting the bias of CV to the risk func-

tion, under general statistical models. It should be noted that their results cannot

be applied to the case of multivariate linear regression because they proposed the

bias-corrected CV under the assumption that y1, ...,yn are independently and

identically distributed.
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3.8. Jackknife AIC

Yanagihara [32] proposed a bias-corrected AIC by using a jackknife method

for estimating B and by adjusting such an estimator of B to become an unbiased

estimator when assumptions A1 and A2 are satisfied simultaneously. We call this

a jackknife AIC (AICJ). Let B̂AICJ
= c

∑n
i=1Q(r̂2i /hi; 1)/hi − np, where r̂2i and

hi are given by (3.3), Q(x;λ) is a function with respect to x and c is a positive

constant, as follows:

(3.6) Q(x;λ) = x
(
1 − x

n

)−λ
, c =

(n+ k) (n− k − p− 2)

(n− k − p− 1)
∑n

i=1 h
−1
i

.

Then, by using (3.2), the AICJ for the model M is (see [27]):

AICJ = np log 2π + n log |Σ̂| + c
n∑

i=1

Q(r̂2i /hi; 1)

hi
.

From [27], AICJ = TIC +Op(n
−1) always holds. Hence, like the TIC, the bias

of the AICJ is O(n−1) under assumption A1, but it has a constant bias when

assumption A1 is violated (see, [27]). On the other hand, when assumptions A1

and A2 are satisfied simultaneously, the AICJ is an unbiased estimator of RKL.

Although the order of the bias of the AICJ is the same as that of the bias of

the TIC and EIC, it has been verified numerically that the bias of the AICJ

in an overspecified model becomes very small (see, [27]). Moreover, Yanagihara

[27] showed a theoretical result that the absolute value of the bias of the AICJ

is smaller than those of either the TIC or EIC under assumption A1 when the

O(n−2) term of B is neglected.

3.9. Corrected Jackknife AIC

Since the bias of the AICJ does not disappear in theory, Yanagihara et al.

[32] proposed a corrected AICJ (CAICJ) that corrects the bias while maintain-

ing the desirable characteristic of keeping the bias very small numerically. Let

B̂CAICJ
= c+

∑n
i=1{1+a1(1−hi)}Q(r̃2i /hi; a0)−np, where r̂2i and hi are given by

(3.3) and Q(x;λ) is given by (3.6), c+ and aj (j = 0, 1) being positive constants

given by

c+ =
(n+ k) (n− k − p− 2a0) Γ

(
n−k

2 + 1
n

)
Γ
(

n−k−p
2

)

(n+ a1k) (n− k − p− 1) Γ
(

n−k
2

)
Γ
(

n−k−p
2 + 1

n

) , aj =
n+ j − 1

n+ j
.
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Here, Γ(x) is the gamma function. Then, by using (3.2), the CAICJ for the model

M is (see [32])

CAICJ = np log 2π + n log |Σ̂| + c+
n∑

i=1

{
1 + a1(1−hi)

}
Q(r̃2i /hi; a0) .

When assumptions A1 and A2 are satisfied simultaneously, like the AICJ, the

CAICJ is an unbiased estimator of RKL. Although, like the AICJ, the CAICJ has

constant bias when assumption A1 is violated, the CAICJ reduces the bias of the

AICJ to O(n−2) when assumption A1 holds (see, [32]). Moreover, Yanagihara et

al. [32] showed a theoretical result under assumption A1 that CAICJ reduces not

only the bias of AICJ but also the variance of AICJ when we neglect the O(n−2)

terms.

4. NUMERICAL COMPARISON

In this section, we numerically compare performances of variable-selection

methods using the nine information criteria described in the previous section.

The best models selected by the nine information criteria are asymptotically

equivalent, and in particular, an underspecified model is never selected as the

best model when n→ ∞ (the proof is given in Appendix A.5). This indicates

that numerical comparisons with variable-selection methods using the nine infor-

mation criteria are meaningless when the sample size is large. Hence, we conduct

numerical experiments using small and moderate sample sizes. We study perfor-

mances of the nine information criteria by applying variable-selection methods

to simulation data first, and by applying variable-selection methods to real data

later.

4.1. A Simulation Study

4.1.1. Target Characteristics

In the simulation study, performances as an estimator of the risk function

are studied at first, and performances as a model selector are studied later. In a

numerical experiment to check performances as an estimator of the risk function,

we compare the nine information criteria by the following three characteristics of

an estimator:

(C-1) The mean of the information criterion E[IC];

(C-2) The standard deviation of the information criterion
√
V ar[IC];
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(C-3) The root-mean-square error (RMSE) of the information criterion√
V ar[IC] +

(
E[IC] −RKL

)2
.

On the other hand, in a numerical experiment to check performances as

a model selector, we compare the nine information criteria by the following two

characteristics of a model selector:

(C-4) The probability of selecting the principle best model: the frequency

with which the principle best model is selected as the best model;

(C-5) The prediction error (PE) of the best model: the expected loss func-

tion of the best model which is chosen by the information criterion;

PE is defined as follows:

PE =
1

n
E∗

[
L(Ξ̂best, Σ̂best |Xbest)

]
,

where L(Ξ,Σ |X) is the expected negative twofold log-likelihood

function given by (2.7), and (Ξ̂best, Σ̂best,Xbest) is (Ξ̂, Σ̂,X) in the

best model.

A high-performance model selector is considered to be an information cri-

terion with a high probability of selecting the principle best model and a small

prediction error. According to the basic concept of the model selection based on

the risk function minimization, a good variable-selection method is one that can

choose the best model for improving the predictive accuracy. Hence, the PE is

a more important property than the probability of selecting the principle best

model.

The expectations and probabilities in the simulation studies were evaluated

by a Monte Carlo simulation with 10, 000 repetitions. The B̂EIC and B̂EICA
were

obtained by resampling 1, 000 times, i.e., m = 1, 000.

4.1.2. Simulation Model

The model in [32] was used as the basic simulation model for generating

data. We prepared the kω − 1 candidate models Mj (j = 1, ..., kω−1) with p = 4

and n = 30 or 100. First, we generated z1, ..., zn ∼ i.i.d. U(−1, 1). Using these

z1, ..., zn, we constructed the n×kω matrix of explanatory variables Xω, whose

(i, j)-th element is given by {(zi − z̄)/sz}j−1 (i = 1, ..., n; j = 1, ..., kω), where z̄

and sz are the sample mean and standard deviation, respectively, of z1, ..., zn.

The true model was determined by Γ∗ = Xωµ∗1
′
4 and Σ∗, whose (i, j)-th ele-

ment is defined by (0.8)|i−j| (i = 1, ..., 4; j = 1, ..., 4). In this simulation study,
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we arranged the six µ∗ as

Case 1: µ∗ = (0, 1, 2, 4, 0, 0, 0, 0)′ , (kω = 8) ,

Case 2: µ∗ = (0, 1, 2, 4, 0.5, 0.5, 0, 0)′ , (kω = 8) ,

Case 3: µ∗ = (0, 1, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′ , (kω = 16) ,

Case 4: µ∗ = (0, 1, 2, 4, 0.5, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′ , (kω = 16) ,

Case 5: µ∗ = (0, 1, 1, 1,−1,−1, 2, 2, 4, 0, 0, 0, 0, 0, 0, 0)′ , (kω = 16) ,

Case 6: µ∗ = (0, 1, 1, 1,−1,−1, 2, 2, 4, 0.5, 0.5, 0, 0, 0, 0, 0)′ , (kω = 16) .

The matrix of explanatory variables in Mj (j = 1, ..., kω − 1) consists of the first

(j + 1) columns of Xω. Thus, the true models M∗ in the cases 1, 2, 3, 4, 5, and 6

are M3, M5, M3, M5, M8, and M10, respectively. In a sense, the subindex j

expresses the degree of the polynomial regression in Mj .

For generating multivariate nonnormal data, the following data model in-

troduced by [37] was used:

Data Model. Let w1, ..., wq (q ≥ p) be independent random variables with

E[wj ] = 0, E[w2
j ] = 1 and E[w4

j ] − 3 = ψ, and let w = (w1, ..., wq)
′. Further, let

r be a random variable that is independent of w, with E[r2] = 1 and E[r4] = β.

Then, an error vector is generated by ε = rC ′w, where C = (c1, ..., cq)
′ is a

q×p matrix satisfying C ′C = Ip. Then, the multivariate kurtosis of this model

becomes κ
(1)
4 = βψ

∑q
j=1 ‖cj‖4 + (β − 1) p(p+ 2).

Let χf be a random variable from the chi-square distribution with f degrees of

freedom, and let C0 be a (p+1)×pmatrix defined by C0 = (Ip,1p)
′(Ip+1p1

′
p)

−1/2.

By using the data model, we generate error vectors with the following three

distributions:

(1) Normal Distribution: wj ∼ N(0, 1), r = 1 and C = Ip (κ
(1)
4 = 0);

(2) Laplace Distribution: wj is generated from a Laplace distribution with

mean 0 and standard deviation 1, r = (6/χ2
8)

1/2 and C = C0 (κ
(1)
4 =

4.5 × p2(p+ 1)−1 + p(p+ 2)/2);

(3) Skew Laplace Distribution: wj is generated from a skew Laplace

distribution with location parameter 0, dispersion parameter 1, and

skew parameter 1, standardized by mean 3/4 and standard devia-

tion (23)1/2/4, r= (6/χ2
8)

1/2 and C = C0 (κ
(1)
4 ≈ 4.88×p2(p+1)−1 +

p(p+2)/2).

For details of the skew Laplace distribution, see, e.g., [17]. It is easy to see that

data models 1 and 2 are symmetric distributions, and data model 3 is a skewed

distribution. Moreover, the size of the kurtosis κ
(1)
4 in each model satisfies the

inequality: model 1 < model 2 < model 3.
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4.1.3. Results of Simulation Study

Figure 1 showsRKL and the mean of each criterion in case 1. Since the shapes

of the figures were almost the same, we omit the results for cases 2 to 6 to save

space. The horizontal axis of the figures expresses numbers of candidate models,

i.e., the subindex j of Mj . We see that the biases of the AICJ and CAICJ were

very small under any distribution. As for the size of the bias, the AIC most under-

estimated the risk function, and the CV criterion overestimated the risk function

in the most cases. The size of the bias of the TIC was almost the same as that of
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Figure 1: Risk function and the average of each criterion (Case 1).
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the AIC. This is because the estimate of the multivariate kurtosis κ̂
(1)
4 for the TIC

was close to 0 when the sample size was not large enough. Moreover, as the num-

ber of variables in the model increased, the biases of the AIC and TIC increased.

Tables 2 and 3 show, for case 1 and for each information criterion, the

standard deviation and the RMSE. Since the tendencies were almost the same,

to save space, we omit the results for M2, M4, M5, and M6, and in cases 2 to 6.

Table 2: Standard deviation of each criterion (Case 1).

n Dist. Model AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1 15.010 15.010 15.033 15.106 15.342 15.179 16.007 15.998 15.899
1 3 17.416 17.416 17.476 17.567 17.842 17.813 19.465 19.358 19.010

7 19.007 19.007 19.007 19.228 19.680 19.680 30.358 28.239 24.748

1 24.300 24.300 24.359 25.931 30.636 25.933 39.426 39.264 38.073
30 2 3 29.050 29.050 29.123 30.758 35.666 31.824 51.824 50.891 48.977

7 30.194 30.194 30.194 31.440 35.972 35.972 70.243 64.135 59.042

1 24.539 24.539 24.626 26.264 31.183 26.330 39.878 39.717 38.532
3 3 29.102 29.102 29.199 30.828 35.906 31.930 53.943 52.920 50.881

7 30.317 30.317 30.317 31.546 36.130 36.130 72.282 65.915 61.491

1 25.465 25.465 25.460 25.490 25.519 25.501 25.519 25.519 25.518
1 3 29.346 29.346 29.343 29.401 29.410 29.403 29.457 29.457 29.449

7 29.896 29.896 29.896 29.995 29.968 29.968 30.268 30.263 30.171

1 45.873 45.873 45.892 48.881 50.177 48.966 54.003 54.025 53.871
100 2 3 54.960 54.960 54.964 58.601 60.232 59.079 65.510 65.512 65.312

7 55.323 55.323 55.323 58.706 60.240 60.240 66.751 66.645 66.355

1 46.667 46.667 46.682 50.057 51.413 50.127 55.152 55.176 55.033
3 3 55.358 55.358 55.358 59.470 61.296 60.043 66.796 66.801 66.601

7 55.669 55.669 55.669 59.438 61.244 61.244 67.987 67.877 67.623

Table 3: RMSE of each criterion (Case 1).

n Dist. Model AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1 15.486 16.625 15.181 15.772 17.357 16.290 19.905 18.803 18.599
1 3 28.397 17.416 17.478 30.642 17.855 19.981 20.531 19.358 19.010

7 66.895 19.007 19.007 72.312 19.740 19.740 47.359 28.242 24.749

1 32.159 26.318 28.698 30.994 30.735 32.465 41.417 40.677 39.253
30 2 3 58.144 40.404 40.567 56.425 37.878 44.191 52.376 50.891 48.990

7 103.424 45.985 45.985 105.162 41.763 41.763 81.197 64.135 59.059

1 33.300 27.123 29.715 32.153 31.195 33.695 41.371 40.715 39.331
3 3 59.137 41.222 41.410 57.603 38.675 45.242 54.292 52.935 50.948

7 104.755 47.094 47.094 106.657 42.810 42.810 81.953 65.943 61.577

1 25.637 26.089 25.462 25.719 26.102 25.552 26.554 26.460 26.449
1 3 29.818 29.346 29.344 30.044 29.413 29.471 29.475 29.458 29.450

7 32.396 29.896 29.896 33.371 29.969 29.969 30.669 30.263 30.171

1 47.841 47.144 48.692 48.967 50.191 49.714 54.467 54.451 54.270
100 2 3 62.714 60.405 60.411 60.963 60.729 60.356 65.514 65.514 65.316

7 67.442 61.137 61.137 64.859 60.990 60.990 66.914 66.646 66.358

1 48.672 47.973 49.517 50.139 51.431 50.850 55.661 55.646 55.473
3 3 63.288 60.962 60.964 61.888 61.811 61.352 66.804 66.801 66.602

7 67.982 61.641 61.641 65.645 62.010 62.010 68.174 67.877 67.624
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We can see in the tables that the standard deviations of the AIC and CAIC were

the smallest and those of the MAIC and TIC were the second smallest. The

standard deviations of the EIC and EICA were larger than that of the AIC, but

smaller than those of the CV, AICJ, and CAICJ. The standard deviation of

the CV criterion was the largest among all the information criteria considered.

On the other hand, the RMSEs of the AIC and TIC became large when the

sample size was small because their biases became large. The RMSEs of the CV

criterion, the AICJ, and CAICJ were also large because their standard deviations

became large. In all cases, there was a tendency for the standard deviation and

RMSE to become large when κ
(1)
4 was large.

Table 4: Probabilities of selecting the principle best model.

Case n Dist. AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1

1 69.07 98.44 99.41 60.20 97.92 99.62 98.66 95.12 96.07
30 2 70.19 98.46 99.55 54.35 94.19 99.64 95.02 91.59 92.65

3 69.68 98.35 99.41 53.84 94.42 99.74 95.18 91.73 92.84

1 85.11 92.59 93.82 82.51 92.51 94.28 93.63 91.75 91.87
100 2 85.50 92.94 94.18 79.39 90.22 96.22 93.01 91.13 91.21

3 85.04 92.20 93.70 79.09 89.87 96.22 92.79 90.78 90.96

2

1 34.70 87.34 93.48 26.83 86.92 95.33 90.71 79.01 80.98
30 2 30.82 84.57 91.54 21.99 80.84 95.27 88.84 77.52 79.96

3 30.27 84.07 91.04 22.15 80.26 95.07 88.92 77.08 79.19

1 56.85 50.78 47.78 56.66 50.40 46.13 47.42 51.00 51.03
100 2 58.45 52.19 49.07 54.17 46.90 39.82 41.18 44.48 44.73

3 58.55 52.08 49.58 54.50 47.60 40.46 41.86 45.09 45.01

3

1 50.70 98.20 99.04 15.16 97.56 89.42 98.40 94.24 96.10
30 2 48.98 98.26 99.46 12.22 94.18 89.08 95.22 90.12 92.86

3 49.86 98.40 99.28 12.54 94.58 89.78 95.08 90.08 92.54

1 84.64 92.40 93.59 81.22 92.21 91.36 93.62 91.45 91.57
100 2 84.39 92.22 93.25 76.86 89.33 92.68 92.57 90.40 90.57

3 84.63 92.54 93.82 76.68 89.64 92.97 93.14 91.01 91.20

4

1 23.10 86.92 92.48 6.04 86.08 63.20 89.32 76.76 80.28
30 2 20.14 83.68 89.82 3.64 78.44 60.52 87.80 73.84 78.14

3 20.60 83.80 90.28 4.80 80.30 59.94 88.42 75.48 78.72

1 55.03 49.49 46.27 52.55 49.38 50.64 46.02 49.64 50.02
100 2 57.20 52.13 48.85 50.83 47.24 48.80 41.48 44.49 44.66

3 57.01 52.57 49.51 50.34 47.63 49.27 41.95 45.03 45.32

5

1 0.00 13.14 32.36 0.00 16.97 9.35 52.99 14.86 16.92
30 2 0.01 12.04 27.49 0.00 19.93 11.14 59.57 24.44 27.32

3 0.03 11.98 27.77 0.01 18.17 10.45 58.67 23.61 26.23

1 81.26 93.78 96.24 69.55 93.84 96.94 94.02 85.14 90.15
100 2 80.96 93.57 96.04 65.05 91.92 97.77 93.62 83.40 89.14

3 80.31 93.72 96.19 65.35 92.00 97.70 93.28 83.50 89.07

6

1 0.00 12.43 43.81 0.00 17.70 35.74 29.85 9.50 11.53
30 2 0.02 12.39 36.86 0.00 24.16 34.66 32.36 16.43 22.50

3 0.01 12.24 38.17 0.01 24.08 35.10 33.40 17.43 23.29

1 58.23 80.14 85.79 45.61 80.25 87.91 80.46 65.66 72.51
100 2 57.59 79.48 85.09 42.72 78.61 90.24 81.20 65.54 72.78

3 58.58 79.45 85.18 43.79 78.75 89.62 81.20 66.21 73.27

Note: Bold and italic fonts indicate the highest and second highest probabilities of selecting the
principle best model.
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Table 5: Prediction errors of the best model.

Case n Dist. AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1

1 10.338 9.810 9.795 10.494 9.816 9.790 9.803 9.853 9.840
30 2 11.014 10.427 10.405 11.304 10.469 10.402 10.481 10.527 10.512

3 11.044 10.452 10.432 11.338 10.492 10.424 10.503 10.551 10.534

1 8.619 8.603 8.601 8.624 8.603 8.599 8.601 8.605 8.604
100 2 8.752 8.735 8.733 8.764 8.740 8.729 8.735 8.739 8.739

3 8.756 8.740 8.737 8.768 8.745 8.732 8.739 8.743 8.742

2

1 10.661 10.020 9.971 10.793 10.017 9.952 9.986 10.075 10.059
30 2 11.400 10.626 10.558 11.619 10.642 10.516 10.580 10.686 10.666

3 11.429 10.638 10.564 11.648 10.662 10.517 10.585 10.702 10.677

1 8.730 8.725 8.725 8.734 8.726 8.724 8.726 8.727 8.726
100 2 8.871 8.865 8.864 8.880 8.871 8.867 8.870 8.871 8.871

3 8.872 8.866 8.865 8.880 8.871 8.868 8.871 8.871 8.871

3

1 14.657 9.815 9.802 19.269 9.822 9.926 9.809 10.011 9.838
30 2 16.626 10.420 10.401 21.720 10.462 10.556 10.468 10.762 10.500

3 16.633 10.441 10.426 21.811 10.480 10.571 10.489 10.792 10.533

1 8.623 8.602 8.600 8.639 8.603 8.604 8.600 8.605 8.604
100 2 8.764 8.739 8.737 8.799 8.745 8.738 8.737 8.744 8.743

3 8.769 8.742 8.739 8.809 8.749 8.741 8.740 8.748 8.747

4

1 15.614 10.020 9.977 19.816 10.017 10.175 9.990 10.343 10.058
30 2 17.434 10.629 10.569 22.081 10.665 10.832 10.592 11.015 10.691

3 17.851 10.634 10.568 22.273 10.659 10.840 10.588 10.985 10.679

1 8.747 8.728 8.727 8.772 8.728 8.725 8.728 8.733 8.730
100 2 8.886 8.863 8.863 8.933 8.870 8.861 8.868 8.876 8.872

3 8.894 8.870 8.868 8.939 8.876 8.867 8.874 8.882 8.879

5

1 17.831 11.947 11.806 20.200 11.927 11.819 11.814 13.114 12.093
30 2 19.990 12.810 12.577 22.557 12.754 12.632 12.495 14.022 12.880

3 19.960 12.763 12.541 22.541 12.708 12.596 12.468 14.011 12.858

1 8.918 8.881 8.875 8.963 8.880 8.873 8.879 8.914 8.889
100 2 9.078 9.037 9.031 9.143 9.041 9.026 9.037 9.082 9.051

3 9.080 9.036 9.030 9.142 9.041 9.026 9.039 9.082 9.052

6

1 18.115 12.146 12.156 20.263 12.172 12.151 12.219 13.432 12.303
30 2 20.530 13.073 13.048 22.878 13.148 13.083 13.099 14.572 13.289

3 20.610 13.101 13.078 22.954 13.133 13.082 13.129 14.609 13.305

1 8.970 8.922 8.914 9.015 8.922 8.910 8.921 8.967 8.934
100 2 9.124 9.070 9.062 9.183 9.072 9.054 9.068 9.123 9.086

3 9.127 9.076 9.066 9.186 9.077 9.059 9.073 9.126 9.091

Note: Bold and italic fonts indicate the smallest and second smallest prediction errors of the best
models.

Tables 4 and 5 show the selection probability and PE, respectively. When

n = 30, the principle best models were different from the true models in the cases

2, 4, 5, and 6, in which the principle best models were M3, M3, M6, and M7,

respectively. On the other hand, when n = 100, the principle best model was

different from the true model only in case 6, in which the principle best model

was M7. In the tables, bold and italic fonts indicate the highest and second

highest probabilities of selecting the principle best model and the smallest and

second smallest prediction errors of the best models. We see from the tables that,

except for the TIC, the bias-corrected AICs resulted in improved performance
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for variable selection, compared to the uncorrected AIC. This indicates that

correcting the bias of the AIC is effective for improving the performance of the

AIC as a model selector when the sample size is not large. Although, in theory,

the TIC reduces the bias of the AIC, its performance as a model selector was

inferior. This is because the TIC only minimally corrects the bias of the AIC.

As stated earlier, the AICJ and CAICJ have the smallest biases. Nevertheless,

their performance for variable selection was not the best. This leads us to the

conclusion that it is not necessary to bring the bias close to 0 as much as possible,

although bias correction is effective. The best performance in the sense of high

selection probability and small PE was by the MAIC and EICA. This is because

the candidate model that minimizes the loss function is either the true model or

an underspecified model, as described in the proof of Theorem 2.1. Hence, this

result indicates that the bias correction in an underspecified model is important

for improving the model-selecting performance of an information criterion. The

performance of the EICA was slightly better than that of the MAIC; this is

because the EICA reduces the influence of nonnormality more effectively than

does the MAIC. However, when the sample size was small and the number of

explanatory variables was large, i.e., cases 3 to 6, the performance of the EICA as a

model selector was reduced. One reason for this is that the EICA is constructed

by resampling the full model. When the sample size is small and the number

of explanatory variables is large, we anticipate that the accuracy of resampling

will be decreased due to an increase of variances of ML estimators in the full

model. The performance of the CV criterion as a model selector was not bad

even though it has a large bias. This is because the variable-selection method

using the CV criterion is conscious of improving for a prediction of a validation

sample. Although the performance was not bad, it was not as good as either the

MAIC or EICA.

In this subsection, we listed simulation results of the variable selections

using nested models. We also conducted simulations using nonnested models.

However, we omit the results because they were very similar to those for the

nested models.

4.2. An Example Study

4.2.1. Target Characteristic

In the example study, we study performances of the variable-selection meth-

ods using nine information criteria by an estimator of the PE, which is derived

as follows: We divide data to two samples, a calibration sample (Yc,Xc) with nc

and a validation sample (Yv,Xv) with nv, randomly, and repeated such division
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Nr = 10, 000 times. In each repetition, we select the best model by minimizing

each information criterion from a calibration sample (Yc,Xc), and record the

selected best model. Let Xc,best and Xv,best be matrices of the selected best ex-

planatory variables in Xc and Xv, respectively. In order to assess an accuracy of

prediction, we calculate as

∆̂ = p log 2π + log |Σ̂c,best|

+
1

nv
tr

{(
Yv − Xv,best Ξ̂c,best

)′ (
Yv − Xv,best Ξ̂c,best

)
Σ̂−1

c,best

}
.

The average of ∆̂ across the Nr replications, P̂E, is regarded as an estimate of

the prediction error of the best model.

4.2.2. Used Real Data

We used data of 37 kindergarten students (n = 37) in a low-socioeconomic-

status area, which was provided by Dr. William D. Rohwer of the University

of California at Berkeley to examine how well performance on a set of paired-

associate (PA) tasks can predict performance on some measures of aptitude and

achievement (see, [26, p. 217]). The data gives eight variables; score on the

Peabody Picture Vocabulary Test (PPVT); score on the Raven Progressive Ma-

trices Test (RPMT); score on a Student Achievement Test (SAT); performance

on a ‘named’ PA task (N); performance on a ‘still’ PA task (S); performance on

a ‘named still’ PA task (NS); performance on a ‘named action’ PA task (NA);

performance on a ‘sentence still’ PA task (SS). We used PPVT, RPMT and SAT

as the response variables (p = 3) and N, S, NS, NA and SS as explanatory vari-

ables. The number of explanatory variables in the full model is kω = 6, because

we always add a constant term to a regression. We compared with all 32 (= 25)

candidate models by values of nine criteria. When all the samples were used for

variable selection, the model having NS, NA, SS was selected as the best model

by TIC, and the model having NA was selected as the best model by eight criteria

other than TIC. Since we have conducted the numerical examination in the case

of n = 30, we divided data into 30 and 7, i.e., nc = 30 and nv = 7.

4.2.3. Results of Example Study

Table 6 shows the probability of selecting the model and P̂E. In the table,

“variables” shows used explanatory variables in the candidate model. The set of

variables which is not listed in the table indicates that it was not chosen as the

best model in every criterion. Superscript symbols ∗ and ∗∗ denote the best models

selected by each of criteria when the full data was used for variable selection.
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Table 6: Results of real data.

Variables
Selection Probability (%)

AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

N 0.21 0.50 0.51 0.11 0.42 0.39 0.46 0.43 0.48
NS 0.59 3.06 3.37 0.22 4.12 2.22 2.09 1.46 1.60
NA∗ 51.17 88.03 90.52 33.58 80.86 91.18 88.51 80.86 82.50
SS 0.75 2.44 2.65 0.15 1.70 2.94 2.03 1.43 1.51
N,NS 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
N,NA 0.77 0.04 0.01 3.04 0.08 0.05 0.04 1.03 0.20
N, SS 0.12 0.02 0.00 0.19 0.03 0.00 0.04 0.18 0.16
S,NA 4.05 0.64 0.30 2.11 1.24 0.73 0.84 1.69 1.55
NS,NA 14.04 1.36 0.57 7.36 4.94 0.66 0.57 1.32 1.60
NS, SS 13.48 3.87 2.07 12.83 6.45 1.81 5.28 10.24 9.78
NA, SS 0.16 0.01 0.00 0.06 0.02 0.01 0.02 0.02 0.02
N, S,NA 0.85 0.00 0.00 2.97 0.00 0.00 0.00 0.18 0.03
N,NS,NA 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00
N,NS, SS 0.23 0.00 0.00 0.42 0.00 0.00 0.00 0.07 0.02
N,NA, SS 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
S,NS,NA 5.66 0.03 0.00 10.58 0.13 0.01 0.12 0.85 0.42
S,NA, SS 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NS,NA, SS∗∗ 5.68 0.00 0.00 15.72 0.01 0.00 0.00 0.22 0.12
N, S,NS,NA 0.03 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00
N, S,NS, SS 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
N, S,NA, SS 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N,NS,NA, SS 0.04 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00
S,NS,NA, SS 2.05 0.00 0.00 8.37 0.00 0.00 0.00 0.01 0.00
N, S,NS,NA, SS 0.05 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00
PE 22.396 22.043 22.006 22.582 22.108 21.991 22.036 22.135 22.113

Note: The set of variables which is not listed in the table indicates that it was not chosen as the
best model in every criterion.
∗∗ denotes the best model selected by TIC, and ∗ denotes the best model selected by criteria
other than TIC, which were calculated from the full data.
Bold and italic fonts indicate the smallest and second smallest estimates of prediction errors of
the best model.

Bold and italic fonts indicate the smallest and second smallest estimates of pre-

diction errors of the best model. From the table, we can find the same tendency

as the simulation study, i.e., EICA and MAIC were high performance criteria

in the sense of improving the prediction. Moreover, we also find that results of

variable selections using AIC and TIC tended to have larger variances than those

of the other criteria.
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5. CONCLUSIONS AND DISCUSSION

In this paper, we studied a bias-correction effect in the AIC to variable-

selection methods for normal MLRMs, which are based on a minimization of an

information criterion, by numerical examinations. Since all the variable-selection

methods considered in this paper asymptotically choose the same model as the

best model, we conducted numerical examinations using small and moderate

sample sizes. Our results are summarized as follows:

• Except for the TIC, the performances of the variable-selection meth-

ods using the bias-corrected AIC were better than that using the orig-

inal AIC. This suggests that exact correction, bootstrapping, or cross-

validation work better than the moment method for correcting the bias.

It will be that correcting only the top term in an asymptotic expansion

of the bias, as do AIC and TIC, is insufficient in an overspecified models.

• Theoretically, the bias of the CAICJ becomes the smallest among all

the criteria mentioned in this paper, but by numerical examination, we

verified that the CAICJ is not the best model selector. This indicates

that the performance of a criterion is not necessarily improved even if

the biases of the risk functions for overspecified models are reduced to

as small as possible.

• The CAIC and MAIC perform well as model selectors, even though they

have constant bias when the true distribution is not normal. The reason

for this is that the correction for the bias caused by nonnormality cannot

be estimated accurately when the sample size is small. Thus, if we try

to estimate this bias when the sample size is small, it will reduce the

accuracy of the estimation.

• Variable-selection methods using the MAIC or EICA, which are obtained

by correcting the constant bias of the AIC, always perform well. This

result leads us to the conclusion that correcting the bias for an under-

specified model has a positive effect on the selection of variables. One

reason for this is that the model that minimizes the loss function is ei-

ther the true model or an underspecified model. The EICA has the best

performance as the model selector except for when the sample size is

small and there are a large number of explanatory variables in the full

model.

In conclusion, we recommend using the MAIC for a small number of samples

and the EICA for a moderate number of samples. We note that when the number

of samples is sufficiently large, it does not matter which criterion is used.
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APPENDIX

A.1. Proof of Theorem 2.1

First, we show that the candidate model minimizing the risk function is ei-

ther the true model or an underspecified model. Let X1 = (X,a) be an n×(k+1)

matrix of explanatory variables in the model M1 : Y ∼ Nn×p(X1Ξ1,Σ1⊗In),

where a is an n-dimensional vector that is linearly independent from any combi-

nation of the columns of X. Let Ξ̂1 and Σ̂1 denote the ML estimators of Ξ1 and

Σ1, respectively. From the formula for the inverse matrix (see, e.g., [10, p. 424,

cor. 18.2.10]), we have

PX1
= PX +

1

a′(In−PX)a
(In−PX)aa′(In−PX) = PX + as a′

s ,

where as = (In−PX)a/‖(In−PX)a‖. From the formulas for the determinant

and the inverse matrix (see, e.g., [10, p. 416, cor. 18.1.3, and p. 424, thm. 18.2.8]),

|Σ̂1| and Σ̂−1
1 are rewritten as

|Σ̂1| = |Σ̂|
(
1 − a′

sPU as

)
,(A.1)

Σ̂−1
1 = Σ̂−1 +

n

1 − a′
sPU as

Σ
−1/2
∗ (U ′U)−1U ′asa

′
sU(U ′U)−1Σ

−1/2
∗ ,(A.2)

where U = (In−PX)Y Σ
−1/2
∗ . Since Σ̂1 is positive definite and PU is positive

semidefinite, we can see that 0 ≤ a′
sPU as < 1 with equality if and only if

(A.3) Y ′(In−PX)a = 0p ,

because of

a′
sPU as = 0 ⇐⇒ (U ′U)−1/2U ′as = 0p ⇐⇒ U ′as = 0p .

The condition for equality means that a partial correlation between Y and a

given X is exactly 0. Suppose that the model M is overspecified. Then, U =

(In − PX)E holds, where E is given by (2.4). It should be kept in mind that

the standardized Σ̂ is expressed as S = U ′U/n. Notice that when M is an

overspecified model,

nΣ̂1 = Σ
1/2
∗ E

′(In − PX1
)EΣ

1/2
∗ ,

(Γ∗−X1 Ξ̂1)
′ (Γ∗−X1 Ξ̂1) = Σ

1/2
∗ E

′PX1
EΣ

1/2
∗ .

Therefore, by using the above equations and (2.7), the loss function under M1

can be simplified as

L(Ξ̂1, Σ̂1 |X1) =

= np log 2π + n log |Σ̂1| + tr
{
Σ̂−1

1 Σ
1/2
∗ (nIp + E

′PX1
E)Σ

1/2
∗

}
(A.4)

= np(log 2π−1) + n log |Σ̂1| + tr
{
Σ̂−1

1 Σ
1/2
∗ (nIp + E

′
E)Σ

1/2
∗

}
.
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Substituting (A.1) and (A.2) into (A.4) yields

L(Ξ̂1, Σ̂1 |X1) = L(Ξ̂, Σ̂ |X) + L1 + L2 + L3 ,

where

L1 = n

{
log(1 − a′

sPU as) +
a′

sPU as

1 − a′
sPU as

}
,

L2 =
n

1 − a′
sPU as

a′
sU(U ′U)−1

E
′PXE(U ′U)−1U ′as ,

L3 =
n2

1 − a′
sPU as

a′
sU(U ′U)−2U ′as .

Notice that log(1 − x) + x/(1 − x) ≥ 0 when x ∈ [0, 1) with equality if and only

if x = 0. Hence, L1 ≥ 0 holds with equality if and only if (A.3) holds. Moreover,

we have L2 ≥ 0 with equality if (A.3) because PX is positive semidefinite. These

equations imply that

(A.5) L(Ξ̂1, Σ̂1 |X1) ≥ L(Ξ̂, Σ̂ |X) + L3 ,

with equality if and only if (A.3) holds. A singular value decomposition of U

(see, e.g., [10, chap. 21.12]) implies that U(U ′U)−2U ′ = HD−1H ′, where D is

a p×p diagonal matrix whose diagonal elements are eigenvalues of U ′U , and H

is an n×p matrix satisfying H ′H = Ip and HH ′ = PU . Moreover, λmax(A) ≤
tr(A) holds for any positive semidefinite matrix A, where λmax(A) is maximum

eigenvalue of A. Using these results and the equation (1−a′
sPU as)

−1 ≥ 1 yields

L3 ≥ n2a′
sU(U ′U)−2U ′as = n2a′

sHD−1H ′as

≥ n2a′
sHH ′as

λmax(U ′U)
=

na′
sPU as

λmax(S)
≥ na′

sPU as

tr(S)
.

(A.6)

Let U0 = (In−Jn)E and S0 = U ′
0U0/n, where Jn = 1n1

′
n/n. Since we assume

that X always has 1n as a column vector, (In −PX) (In − Jn) = In −PX. This

implies that a′
sU = a′

sU0. Moreover, since PX − Jn is a symmetric idempotent

matrix with tr(PX − Jn) = k − 1, it is rewritten as PX − Jn = QQ′, where Q

is an n×(k−1) matrix satisfying Q′Q = Ik−1. Hence, from the formula for the

inverse matrix (see, e.g., [10, p. 424, thm. 18.2.8]), we have

(U ′U)−1 =
{
E
′(In − Jn)E − E

′(PX − Jn)E
}−1

= (U ′
0U0)

−1
{
U ′

0U0 + U ′
0Q(Ik−1−Q′PU0

Q)−1Q′U0

}
(U ′

0U0)
−1 .

This implies that for any p-dimensional vector b

(A.7) b′(U ′U)−1b ≥ b′(U ′
0U0)

−1b .

Moreover, tr(S) ≤ tr(S0) holds, because nS0 = nS +E
′(PX −Jn)E . Using these

results and equation (A.6) yields

L3 ≥ na′
sPU as

tr(S)
=

na′
sU0(U

′U)−1U ′
0as

tr(S)

≥ na′
sU0(U

′
0U0)

−1U ′
0as

tr(S0)
= na′

sW0as ,

(A.8)
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where W0 = PU0
/ tr(S0). Using (A.5), (A.6) and (A.8) yields

(A.9) E∗

[
L(Ξ̂1, Σ̂1 |X1)

]
− E∗

[
L(Ξ̂, Σ̂ |X)

]
≥ nE∗

[
a′

sW0as

]
,

Hence, in order to evaluate the right side of equation (A.9), we have to evaluate

the expectation of W0. This expectation can be calculated in the same way as

in the proof of Lemma 7 in [29]. Notice that

(A.10)
p

tr(S0)
= tr(W0) =

n∑

a=1

waa , 0 = 1′
nW01n =

n∑

a=1

waa +
n∑

a=1

n∑

b 6=a

waa ,

where wab is the (a, b)-th element of W0. Since wab = (εa− ε̄)′(U0U0)
−1(εb− ε̄)/

tr(S0), where ε̄ is the sample mean of ε1, ..., εn, i.e., ε̄ = n−1
∑n

i=1 εi, we can see

that the diagonal elements of W0 are identically distributed and the upper (or

lower) off-diagonal elements of W0 are also identically distributed. These results

and the equations in (A.10) imply that

nE∗[waa] = pα , nE∗[waa] + n(n−1)E∗[wab] = 0 (a 6= b) ,

where α = E∗[1/ tr(S0)]. Thus, E∗[W0] = pα(In−Jn)/(n−1) is derived. From

the Jensen’s inequality, we have α ≥ 1/E∗[tr(S0)] = n{(n−1)p}−1. Consequently,

it follows from these results and equation (A.9) that

(A.11) E∗

[
L(Ξ̂1, Σ̂1 |X1)

]
− E∗

[
L(Ξ̂, Σ̂ |X)

]
≥

(
n

n−1

)2

> 0 .

This means that the risk function becomes large when a new explanatory variable

is added to an overspecified model. Since the overspecified model that has the

smallest number of explanatory variables is the true model, the candidate model

that minimizes the risk function is either the true model or an underspecified

model.

Next, we show that the candidate model that minimizes the risk func-

tion is the true model when n→ ∞. From (A.11), we can see that overspeci-

fied models except the true model do not minimize the risk function even when

n→ ∞, because the right side of (A.11) converges to a positive value. Hence,

we only have to show the proof when the candidate model is an underspecified

model. Suppose that the modelM is underspecified. Let Π = (X ′X)−1X ′Γ∗ and

Ψ = Σ
1/2
∗ (Ip + Ω)Σ

1/2
∗ , where Ω is a matrix of noncentrality parameter given by

(2.5). By minimizing L(Ξ,Σ |X) in (2.7), or equivalently solving the equations

∂L(Ξ,Σ |X)/∂Ξ = Ok,p and ∂L(Ξ,Σ |X)/∂Σ = Op,p, we can see that (Π,Ψ)

makes L(Ξ,Σ |X) the smallest. This implies that

(A.12) L(Ξ̂,Σ̂|X) ≥ L(Π,Ψ|X) = np(log 2π+1) + n log |Σ∗| + n log |Ip+Ω| .

On the other hand, since the full model is overspecified and (Ξ̂ω, Σ̂ω) makes the

negative twofold log-likelihood function of the full model the smallest, it follows
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from equation (A.4) that

L(Ξ̂ω,Σ̂ω |Xω) = −2ℓ(Ξ̂ω,Σ̂ω |Y ,Xω) − np+ tr
{
(nIp + E

′PXωE)S−1
ω

}

≤ −2ℓ(Πω,Σ∗ |Y ,Xω) − np+ tr
{
(nIp + E

′PXωE)S−1
ω

}

= np(log 2π − 1) + n log |Σ∗|
+ tr(E ′

E) + tr
{
(nIp + E

′PXωE)S−1
ω

}
,

(A.13)

where Πω = (X ′
ωXω)−1X ′

ωΓ∗. Using the equations in (A.12) and (A.13) yields

E∗

[
L(Ξ̂, Σ̂ |X)

]
− E∗

[
L(Ξ̂ω, Σ̂ω |Xω)

]
≥

≥ n log |Ip + Ω| + 2np
(A.14)

− E∗

[
tr(E ′

E)
]
− E∗

[
tr

{
(nIp + E

′PXωE)S−1
ω

}]

= n log |Ip + Ω| + np− E∗

[
tr

{
(nIp + E

′PXωE)S−1
ω

}]
.

Hence, in order to evaluate the right side of equation (A.14), we have to evaluate

nE∗[tr(S
−1
ω )] and E∗[E

′PXωES−1
ω ]. In the same way as in the proof of Lemma 1

in [11], S−1
ω can be expressed as

S−1
ω = Ip −

1√
n

S−1
ω Vω ,

where Vω = n1/2(Sω−Ip). By using the Hölder’s inequality, we have

E∗

[
tr(S−1

ω )
]
≤ p+

1√
n
E∗

[∣∣tr(S−1
ω Vω)

∣∣]

≤ p+

√
1

n
E∗

[
tr(S−2

ω )
]
E∗

[
tr(V 2

ω )
]

,

E∗

[
tr(E ′PXωES−1

ω )
]
≤

√
E∗

[
tr(S−2

ω )
]
E∗

[
tr

{
(E ′PXωE)2

}]
.

Let hω,i be hi in the full model, where hi is given by (3.3). It follows from the

equation 0 ≤ hω,i ≤ 1 that

n∑

i=1

h2
ω,i ≤

n∑

i=1

hω,i = n− kω ,
n∑

i=1

(1−hω,i)
2 ≤

n∑

i=1

(1−hω,i) = kω .

From Lemma 5 in [29], we can see that

E∗

[
tr(V 2

ω )
]

=
1

n
E∗

[
tr

({
E
′(In−PXω)E

}2)] − 2nE∗

[
tr(Sω)

]
+ np

=
1

n

{
κ

(1)
4

n∑

i=1

h2
ω,i + p(p+1) (n−kω) + p(n−kω)2

}
− np+ 2kωp

≤
(

1 − kω

n

) {∣∣κ(1)
4

∣∣ + p(p+1)
}

+
k2

ωp

n
,

E∗

[
tr

{
(E ′PXωE)2

}]
= κ

(1)
4

n∑

i=1

(1−hω,i)
2 + p(p+1)kω + pk2

ω

≤ kω

{∣∣κ(1)
4

∣∣ + p(p+1)
}

+ pk2
ω ,
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where κ
(1)
4 is the multivariate kurtosis given in (2.4). The above expectations

indicate that E∗[tr(V
2

ω )] = O(1) and E∗[tr{(E ′PXωE)2}] = O(1). Recall that we

assume E∗[tr(S
−2
ω )] = O(1). Hence, we derive E∗[tr(S

−1
ω )] = p+O(n−1/2) and

E∗[tr(E
′PXωES−1

ω )] = O(1). Substituting the obtained orders of expectations

into (A.14) yields

(A.15) E∗

[
L(Ξ̂, Σ̂ |X)

]
− E∗

[
L(Ξ̂ω, Σ̂ω |Xω)

]
≥ n log |Ip+Ω| +O(n1/2) .

When the assumptions in Theorem 2.1 hold, limn→∞ Ω exists, because Γ∗ can be

expressed X∗Ξ∗, and limn→∞ X ′
∗X∗, limn→∞ X ′

∗X and limn→∞ X ′X exist and

are positive definite, where X∗ is Let Ω0 be a limiting value of Ω. Then, from

(A.15), the following equation is derived:

lim inf
n→∞

1

n

{
E∗

[
L(Ξ̂, Σ̂ |X)

]
− E∗

[
L(Ξ̂ω, Σ̂ω |Xω)

]}
= log |Ip + Ω0| > 0 .

The above result and the fact that the risk function in the true model is smaller

than those in all overspecified models indicate that the risk function in the true

model is the smallest among all candidate models when n→ ∞. Consequently,

Theorem 2.1 is proved.

A.2. Relationship between the best models selected by the AIC and

CAIC

Let Mj (j = 1, ...,mM ) be the j-th candidate model with an n×kj matrix

of explanatory variables Xj , and let AICj and CAICj be the AIC and CAIC

of the model Mj , respectively, where mM is the number of candidate models.

Without loss of generality, we assume that M1 denotes the best model selected

by minimizing the AIC. Let J be the set of indexes, which is defined by J = {j ∈
{2, ...,mM}| kj ≥ k1}, and let q(k) be a function given by q(k) = (p+k+1){2pk+

p(p+ 1)}/(n− p− k − 1). Since q(k) is a monotonically increasing function

with respect to k, q(kj) ≥ q(k1) holds when j ∈ J . Moreover, AICj − AIC1 > 0

holds for all j ∈ {2, ...,mM}, because M1 is the best model selected by the AIC.

By using the above two results and the relation between the AIC and CAIC, the

following inequality is derived:

(A.16) CAICj − CAIC1 = AICj − AIC1 + q(kj) − q(k1) > 0 , (j ∈ J ) .

The result of (A.16) indicates that a model with more than k1 explanatory vari-

ables will never be selected as the best model by the CAIC. Therefore, the number

of explanatory variables in the best model selected by the CAIC is less than or

equal to k1.
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A.3. Asymptotic equivalence of the EIC, adjusted EIC, and TIC for

an overspecified model

From [9, 27]2, when m→ ∞, B̂EIC and B̂EICA
can be expanded as

B̂EIC = 2pk + p(p+1) + κ̂
(1)
4 +Op(n

−1) ,

B̂EICA
= 2(k+p+1) tr(G) − 3 tr(G2) − 2 tr(G)2 +

1

n

n∑

i=1

r̂4ω,i +Op(n
−1) ,

where κ̂
(1)
4 is given by (3.3), G= Σ̂ωΣ̂−1 and r̂2ω,i =(yi−Ξ̂′

ωxω,i)
′ Σ̂−1(yi−Ξ̂′

ωxω,i).

When the model M is overspecified, G = Ip +Op(n
−1/2), κ̂

(1)
4 = κ

(1)
4 +Op(n

−1/2),

and n−1
∑n

i=1 r̂
4
ω,i = p(p+2) + κ

(1)
4 +Op(n

−1/2) hold, where κ
(1)
4 is given in (2.4).

Hence, B̂EIC and B̂EICA
can be rewritten as follows when the model M is over-

specified:

B̂EIC = 2pk + p(p+1) + κ
(1)
4 +Op(n

−1/2) ,

B̂EICA
= 2pk + p(p+1) + κ

(1)
4 +Op(n

−1/2) .
(A.17)

On the other hand, when the model M is overspecified,
∑n

i=1(1 − hi)(r̂
2
i − p) =

Op(n
−1/2) holds because r̂2i = ε′iεi +Op(n

−1/2) and 1−hi = O(n−1) are satisfied.

Then, B̂TIC can be expanded as

(A.18) B̂TIC = 2pk + p(p+1) + κ
(1)
4 +Op(n

−1/2) .

Comparing (A.17) with (A.18) yields EIC = TIC+Op(n
−1/2) and EICA = TIC+

Op(n
−1/2), when the model M is overspecified and m→ ∞.

A.4. Asymptotic equivalence of the CV criterion and the TIC

From [27], the last term in (3.5) can be expanded as

n∑

i=1

(n− 1) r̂2i
hi(nhi − r̂2i )

= np+ 2pk + p(p+1) + κ̂
(1)
4

+ 2

n∑

i=1

(1 − hi) (r̂2i − p) +Op(n
−1) ,

(A.19)

where r̂2i , κ̂
(1)
4 , and hi are given by (3.3). Moreover, by applying the Taylor

expansion to equation (3.5), we obtain

(A.20)

n∑

i=1

log

(
1 − r̂2i

nhi

)
= − 1

n

n∑

i=1

r̂2i
hi

+Op(n
−1) .

2At the bottom of p. 240 of [9], − tr(Λ̂2) is missing in the equation E[B̂A |Y ].



On the Bias-Correction Effect of the AIC under Model Misspecification 329

It follows from hi = 1 + O(n−1) and
∑n

i=1 r̂
2
i = np that n−1

∑n
i=1 r̂

2
i /hi =

n−1
∑n

i=1 r̂
2
i +Op(n

−1) = p+Op(n
−1). By combining the above result with (A.20),

we obtain

(A.21)

n∑

i=1

log

(
1 − r̂2i

nhi

)
= −p+Op(n

−1) .

On the other hand, np log{2πn/(n−1)} = np log 2π + p+O(n−1) holds. Con-

sequently, substituting this result and equations (A.19) and (A.21) into (3.5),

and comparing the obtained equation with the definition of the TIC, yields

CV = TIC +Op(n
−1).

A.5. Asymptotic equivalence of the best models selected by the nine

information criteria

Let IC be a general notation to indicate one of the nine information criteria

considered in this paper. Notice that the bias-correction terms in the information

criteria expect for the CV criterion are Op(1), and CV = TIC +Op(n
−1) holds.

Since Σ̂
p→ Σ∗ + Σ

1/2
∗ Ω0Σ

1/2
∗ as n→ ∞, where Ω0 is a limiting value of Ω given

by (2.5), we have

1

n
IC

p→ p log 2π + log |Σ∗| + log |Ip+Ω0| + p

≥ p log 2π + log |Σ∗| + p , as n→ ∞ ,
(A.22)

with equality if and only if M is an overspecified model. The equation in (A.22)

indicates that underspecified models are never selected as the best model when

n→ ∞.

Let ICA denote an information criterion proposed under normality (i.e.,

the AIC, CAIC, or MAIC), and let ICT denote an information criterion proposed

without a normality assumption (i.e., the TIC, EIC, EICA, CV criterion, AICJ,

or CAICJ). Notice that when M is an overspecified model, ICA = AIC + op(1),

ICT = TIC+ op(1) and B̂TIC
p→ 2pk+ p(p+1)+κ

(1)
4 as n→ ∞, where κ

(1)
4 is the

multivariate kurtosis given in (2.4). Hence, when M is an overspecified model,

we derive

(A.23) ICT = ICA + κ
(1)
4 + op(1) .

It should be emphasized that κ
(1)
4 does not depend on the candidate model con-

sidered, i.e., κ
(1)
4 is common in all overspecified models. Let M1 and M2 be two

different overspecified models, and let ICAj and ICTj be information criteria for

Mj (j = 1, 2). From equation (A.23), we obtain

ICT1 − ICT2 = ICA1 − ICA2 + op(1) .
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This equation indicates that the differences between two information criteria

for the two different overspecified models are asymptotically equivalent. Con-

sequently, all the information criteria choose the same model as the best one

when n→ ∞.
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