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Abstract:

• This study considers prediction intervals for time series and applies the results to
portfolio selection. The dynamics of the high and low underlying returns are depicted
by time series models, which lead to a prediction interval of future returns. We pro-
pose an innovative criterion for portfolio selection based on the prediction interval.
A new concept of coherent risk measures for the interval of returns is introduced.
An empirical study is conducted with the stocks of the Dow Jones Industrial Aver-
age Index. A self-financing trading strategy is established by daily reallocating the
holding positions via the proposed portfolio selection criterion. The numerical results
indicate that the proposed prediction interval has promising coverage, efficiency and
accuracy for prediction. The proposed portfolio selection criterion constructed from
the prediction intervals is capable of suggesting an optimal portfolio according to the
economic conditions.
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1. Introduction

We propose to obtain prediction intervals of a time series by constructing
interval-valued time series (ITS) models. The proposed method is used to in-
tegrate the information of the daily high, low and closing prices of a stock and
is applied to the problem of portfolio selection. Optimal portfolio selection has
been extensively discussed in the fields of financial investment and risk manage-
ment. Marlowitz (1952, 1959) introduced a mean-variance portfolio optimization
procedure by using the standard deviation of a portfolio as the measure of risk
and assuming that the returns of the underlying assets are independent and
identically distributed (i.i.d.). During the past decade, risk measures other than
the standard deviation have been considered for selecting investment portfolios.
For example, the value-at-risk (VaR), conditional VaR (CVaR) and spectral risk
measure (SRM) are commonly used risk measures by market practitioners and
analysts in the recent literature on portfolio selection (Rockafellar and Uryasev,
2000, 2002; Acerbi, 2002; Krokhmal et al., 2002; Adam et al., 2008). However,
many empirical findings indicate that the return processes of the underlying assets
in financial markets usually exhibit autocorrelation, negative skewness, kurtosis,
conditional heteroscedasticity and tail dependence (Tsay, 2010). To reflect these
features, time series models are used to depict the dynamics of the underlying
asset returns for portfolio selection (Harris and Mazibas, 2013). However, the de-
velopment of the above portfolio selection issue uses only information about the
closing prices of the underlying assets. The daily high and low prices of a stock
are public information and can be observed in the market. The main purpose of
this study is to apply daily high and low price information to portfolio selection
by ITS models.

One of the main techniques for analyzing ITS is to fit univariate time
series models to the interval bounds (Teles and Brito, 2005). Maia et al. (2008)
proposed fitting univariate ARIMA models to the midpoints and ranges of the
observed interval process and used these models to forecast the interval bounds.
Recently, many more complicated ITS models have been proposed and applied
to solve problems in various fields. For example, He and Hu (2009) used the
interval computing approach to forecast the annual and quarterly variability of
the stock market. Arroyo et al. (2010, 2011) discussed financial applications
based on forecasting with ITS data. Garćıa-Ascanio and Maté (2010) used vector
autoregressive (VAR) models to forecast electric power demand. Yang et al.
(2012) proposed autoregressive conditional interval-valued models with exogenous
explanatory interval variables to forecast crude oil prices. Rodrigues and Salish
(2015) used threshold models to analyze and forecast ITS and applied their model
to a weekly sample of S&P500 index returns. Fischer et al. (2016) predicted stock
return volatility using regression models for return intervals. The results of these
studies showed that the interval forecasts obtained by ITS perform better than
those obtained by the classic approach based on fitting a single time series model
to closing prices.



4 Shih-Feng Huang and Hsiang-Ling Hsu

Following Markowitz (1952, 1959)’s approach, the basic idea of various
portfolio selection criteria is to determine asset allocations by maximizing the
expected investment returns subject to a risk limit of the investment. In addition
to daily high and low prices, we also consider the closing prices of a stock. Sub-
sequently, the daily high (low) log returns should be defined as the differences
between the logarithms of the daily high (low) price and the last closing price.
Therefore, we propose fitting time series models to the daily high and low log
returns rather than fitting ITS models directly to the interval bounds of stock
prices. Furthermore, an innovative criterion for portfolio selection is proposed
based on the predicted interval of the log returns. Specifically, we maximize the
expected high log returns of a portfolio subject to a limitation on the predicted
low log returns. We also introduce the concept of a coherent risk measure for
the interval of returns, which extends the axioms of the coherent risk measure
proposed by Artzner et al. (1999) for classic financial risk management. In the
empirical investigation, we employ the stocks of the companies on the Dow Jones
Industrial Average Index (DJIA Index) during the financial crisis period (from
July 2, 2007 to June 24, 2009) and under improved market conditions (from
July 1, 2014 to June 23, 2016). For each time period, the first 250 daily data
are used to fit a time series model to determine the initial trading strategy. A
self-financing trading strategy is constructed by daily reallocating the holding
weights of the optimal portfolio via the proposed scheme, where a rolling scheme
is employed and the time series model is updated with the previous 250 daily
historical data. The numerical results indicate that the proposed interval esti-
mation has promising coverage, efficiency and accuracy for predicting high and
low prices. Moreover, the proposed portfolio suggests conservative investments
during 2008-2009 but aggressive investments during 2015-2016.

The rest of this paper is organized as follows. Section 2 introduces the
model assumptions and the prediction interval for ITS. The proposed criterion
for portfolio selection using the prediction intervals is introduced in Section 3.
Section 4 presents a study to compare the coverage, efficiency and accuracy of
the proposed interval estimation for ITS data with those of various approaches in
the literature. An empirical study to assess the performance of the self-financing
trading strategy constructed by the proposed criterion of portfolio selection is
presented in Section 5. Conclusions are given in Section 6, and technical proofs,
figures and tables are included in the Appendix.

2. The proposed interval time series model

Let PC
m,t be the daily closing price of the mth underlying stock price at time

t, and let PH
m,t and PL

m,t be the intraday high and low stock prices, respectively,
m = 1, . . . , p. Denote the set of information up to time t by Ft. To obtain a
one-step-ahead prediction interval of the price of the mth underlying stock for a
given Ft, a classic approach is to fit a time series model for the historical closing
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prices, PC
m,s, s = 1, . . . , t, and then derive a 95% prediction interval, for example,

for PC
m,t+1, from the fitted model. Recently, many studies have proposed fitting

ITS models for interval observations [PL
m,s, P

H
m,s], s = 1, . . . , t, and then obtaining

an interval estimation of [PL
m,t+1, P

H
m,t+1] from the fitted ITS model (see Arroyo

et al., 2010, 2011; Teles and Brito, 2015 and the references therein).

We propose an alternative approach to obtain an estimate of [PL
m,t+1,

PH
m,t+1] conditional on Ft based on the following daily low and high log returns

at time t:

(2.1) X
(CL)
m,t = log(PL

m,t/P
C
m,t−1) and X

(CH)
m,t = log(PH

m,t/P
C
m,t−1).

The definitions of X
(CL)
m,t and X

(CH)
m,t are similar to the classic daily log returns,

Xm,t = log(PC
m,t/P

C
m,t−1) discussed widely in the literature of finance and statis-

tics. X
(CL)
m,t and X

(CH)
m,t are capable of depicting realistic investment character-

istics. Suppose that an investor buys a given stock on the previous day with
closing price PC

m,t−1 and sells it on day t. Then, the investor’s return belongs

to the interval [X
(CL)
m,t , X

(CH)
m,t ] depending on when he/she sells the stock during

day t. According to the definitions of X
(CL)
m,t and X

(CH)
m,t in (2.1), we have the

following inequality

(2.2) X
(CL)
m,t ≤st X

(CH)
m,t

since PL
m,t ≤st PH

m,t, for all t = 0, 1, . . ., and m = 1, . . . , p, where the notation
A ≤st B means that random variable A is stochastically less than or equal to

random variable B. Hence, X
(CI)
m,t = [X

(CL)
m,t , X

(CH)
m,t ], t = 1, 2, . . ., also form

an ITS, and the prediction interval of [PL
m,t+1, P

H
m,t+1] can be obtained. For

example, let [P̂L
m,t+1, P̂

H
m,t+1] denote the prediction of [PL

m,t+1, P
H
m,t+1] conditional

on Ft. By using (2.1), our proposed scheme is to model the interval observations,

[X
(CL)
m,s , X

(CH)
m,s ], s = 1, . . . , t, and then estimate [P̂L

m,t+1, P̂
H
m,t+1] by

[PC
m,t exp{X̂

(CL)
m,t+1}, P

C
m,t exp{X̂

(CH)
m,t+1}],

where X̂
(CL)
m,t+1 and X̂

(CH)
m,t+1 are the predictions of X

(CL)
m,t+1 and X

(CH)
m,t+1, respectively,

which can be obtained from the time series models defined below. Traditionally,
ITS data are formed by only the high and low prices (Arroyo et al., 2010, 2011;
Maia et al., 2008). This study includes the closing prices in the model and inves-
tigates whether this additional information can improve the interval prediction.

To jointly model X
(h)
m,t, h = CL,CH, we need to capture the features

inherent in the data. For example, X
(h)
m,t, h = CL,CH could be conditionally

heteroscedastic and auto- and cross-correlated. To characterize these features, a

two-stage procedure is proposed to model the dynamics of X
(h)
m,t, h = CL,CH.

The first stage is to adjust the conditional heteroscedasticity of X
(h)
m,t marginally

for h = CL,CH. The second stage is to simultaneously model the auto- and
cross-correlation of the adjusted time series.
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In the first stage, we propose to de-GARCH X
(h)
m,t to obtain volatility-

adjusted returns. De-GARCHing is a widely used technique for modeling mul-
tivariate time series. For example, Engle (2002, 2009) proposed a dynamic con-
ditional correlation (DCC) model to capture time-varying correlations. The first
step of their scheme is to de-GARCH the data. Härdle et al. (2015) also used
de-GARCHing with a GARCH(1,1) model to analyze the multi-dimensional de-
pendencies of time series data with a hidden Markov model for hierarchical
Archimedean copulae. Grigoryeva et al. (2017) proposed a method based on
various state space models to extract global stochastic (GST) financial trends
from non-synchronous financial data. They mentioned that de-GARCHing is

commonly used for GST. In this study, we propose to fit X
(h)
m,t with a univariate

ARMA-GARCH model and let

X̃
(h)
m,t = (X

(h)
m,t − µ(h)

m )/σ
(h)
m,t(2.3)

be the de-GARCHed process of X
(h)
m,t, h = CL,CH, where µ

(h)
m is the stationary

(unconditional) mean of X
(h)
m,t and σ

(h)
m,t is the conditional standard deviation of

X
(h)
m,t, which is estimated from the univariate GARCH-type model

σ
(h)
m,t = g

(h)
m,t−1(X

(h)
m,s, σ

(h)
m,s, s < t),(2.4)

which is Ft−1-measurable. This type of model (2.4) is capable of describing many
features of financial data, for example, conditional heteroscedasticity, volatility
clustering and asymmetry. It also includes various univariate financial time series
models that are widely used by practitioners in economics, statistics and finance
(see Engle, 1982; Bollerslev, 1986; Nelson, 1990; Tsay, 2010 and the references
therein). In particular, we employ the stationary mean (not the conditional mean)
to define the proposed de-GARCHed process in (2.3). The main reason for this

design is to retain the autocorrelation in X̃
(h)
m,t, h = CL,CH and to model the

auto- and cross-correlation of X̃
(h)
m,t, h = CL,CH simultaneously in the second

stage of the proposed procedure.

In the second stage, we employ the following vector autoregressive-moving-
average model of orders p and q, denoted by VARMA(p,q), to depict the dynamics

of the two de-GARCHed processes, {X̃(h)
m,t, t = 1, . . . , T}, h = CL,CH,(

X̃
(CL)
m,t

X̃
(CH)
m,t

)
=

p∑
i=1

(
ϕLL
m,i ϕLH

m,i

ϕHL
m,i ϕHH

m,i

)(
X̃

(CL)
m,t−i

X̃
(CH)
m,t−i

)

+

(
ε
(CL)
m,t

ε
(CH)
m,t

)
+

q∑
j=1

(
θLLm,j θLHm,j

θHL
m,j θHH

m,j

)(
ε
(CL)
m,t−j

ε
(CH)
m,t−j

)
,(2.5)

for m = 1, . . . , p, where (ε
(CL)
m,t , ε

(CH)
m,t )⊤, t = 1, . . . , T , are uncorrelated random

vectors of a bivariate normal distribution with mean zero and covariance matrix
Σ. In addition, (ε

(CL)
m,t , ε

(CH)
m,t )⊤, t = 1, . . . , T , are assumed to be independent of

(X̃
(CL)
m,s , X̃

(CH)
m,s )⊤, s < t.
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Denote the 1-step-ahead predictions ofX
(h)
m,t+1 conditional on Ft by X̂

(h)
m,t(1) =

Et(X
(h)
m,t+1), h = CL,CH, where Et(X) denotes the conditional expectation of

X given Ft. From (2.3)-(2.5), we have

X̂
(CL)
m,t (1) = Et(X

(CL)
m,t+1) = µ(CL)

m + σ
(CL)
m,t+1Et(X̃

(CL)
m,t+1)(2.6)

= µ(CL)
m + σ

(CL)
m,t+1

{ p∑
i=1

(
ϕLL
m,iX̃

(CL)
m,s−i + ϕLH

m,iX̃
(CH)
m,s−i

)
+

q∑
j=1

(
θLLm,jε

(CL)
m,s−j + θLHm,jε

(CH)
m,s−j

)}
.

and

X̂
(CH)
m,t (1) = Et(X

(CH)
m,t+1) = µ(CH)

m + σ
(CH)
m,t+1Et(X̃

(CH)
m,t+1)(2.7)

= µ(CH)
m + σ

(CH)
m,t+1

{ p∑
i=1

(
ϕHL
m,iX̃

(CL)
m,s−i + ϕHH

m,i X̃
(CH)
m,s−i

)
+

q∑
j=1

(
θHL
m,jε

(CL)
m,s−j + θHH

m,j ε
(CH)
m,s−j

)}

To guarantee the mathematical coherence X̂
(CL)
m,t+1 ≤st X̂

(CH)
m,t+1 in their pre-

dictions, let

X̂
(CL)
m,t+1 = min{X̂(CL)

m,t (1), X̂
(CH)
m,t (1)}

and
X̂

(CH)
m,t+1 = max{X̂(CL)

m,t (1), X̂
(CH)
m,t (1)},

and [X̂
(CL)
m,t+1, X̂

(CH)
m,t+1] forms a prediction interval of Xt+1 conditional on Ft. In our

empirical study, there are 250(days)× 30(companies)× 2(time periods) = 15, 000

prediction intervals, and the situation of X̂
(CL)
m,t (1) > X̂

(CH)
m,t (1) occurs only 8

times. The numerical results indicate that the proposed scheme is capable of

guaranteeing X̂
(CL)
m,t+1 ≤st X̂

(CH)
m,t+1 in most cases.

3. Application of the ITS prediction to portfolio selection

In this section, we propose an innovative portfolio selection scheme on the
basis of the ITS prediction with models (2.6) and (2.7). The literature contains
many different models from models (2.6) and (2.7) for analyzing ITS. Neverthe-
less, the proposed portfolio selection scheme is not restricted to our considered
model.

The classic portfolio optimization problem is represented as follows:

max
ct

Et

( p∑
m=1

cm,tXm,t+1

)
subject to ct ≥ 0,

p∑
m=1

cm,t ≤ 1 and ρt ≤ L,(3.1)
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where ct = (c1,t, . . . , cp,t)
⊤, cm,t denotes the holding position of Xm,t at time t,

ct ≥ 0 is the no short-selling constraint,
∑p

m=1 cm,t ≤ 1 is the budget constraint,
ρt is the value of a predetermined risk measure at time t, and L is a pre-specified
upper bound of the investment risk. The main objective is to select the holding
positions ct at time t. In the portfolio selection literature, whenXm,t, t = 1, 2, . . .,
are assumed to be i.i.d. for each m = 1, . . . , p, Markowitz (1952, 1959) used
the standard deviation of a portfolio, Rockafellar and Uryasev (2000, 2002) and
Krokhmal et al. (2002) employed the CVaR, and Adam et al. (2008) considered
the SRM as the risk measure to determine ct. Recently, Harris and Mazibas
(2013) and Huang et al. (2017) further considered fitting time series models for
the underlying asset returns, Xm,t, m = 1, . . . , p, t = 1, 2, . . ., with the CVaR and
SRM to solve (3.1).

In this study, we determine the allocations of the underlying assets with
the following criterion:

max
ct

Et

( p∑
m=1

cm,tX
(CH)
m,t+1

)
subject to ct ≥ 0,

p∑
m=1

cm,t ≤ 1

and −
p∑

m=1

cm,tEt

(
X

(CL)
m,t+1

∣∣∣ X(CL)
m,t+1 ≤ qα,m,t+1

)
≤ L,(3.2)

where X
(h)
m,t+1 = µ

(h)
m + σ

(h)
m,t+1X̃

(h)
m,t+1, h = CH,CL, follows models (2.3)-(2.5),

and qα,m,t+1 is the αth quantile of X
(CL)
m,t+1 conditional on Ft. In practice, since the

expected values of daily stock returns are usually very close to 0, one can select
a sufficiently small α such that qα,m,t+1 < 0. The main concept behind (3.2)
is to maximize the potential high portfolio returns subject to a predetermined
limitation, L, on the corresponding potential low and nonpositive returns. In

contrast to (3.1), we use Et(
∑p

m=1 cm,tX
(CH)
m,t+1) to replace Et(

∑p
m=1 cm,tXm,t+1)

and use

(3.3) −
p∑

m=1

cm,tEt

(
X

(CL)
m,t+1

∣∣∣ X(CL)
m,t+1 ≤ qα,m,t+1

)
as the risk measure ρt in (3.1). In addition, the values of Et(X

(CH)
m,t+1) and

Et(X
(CL)
m,t+1), m = 1, . . . , p, are estimated by the models defined in (2.5). Moreover,

the optimal allocations cm,t, m = 1, . . . , p, are in linear forms in the objective
function and constraints in (3.2). Consequently, the optimal allocations in (3.2)
can be obtained by linear programming, which is a popular technique for vari-
ous portfolio selection criteria (Markowitz, 1952, 1959; Rockafellar and Uryasev,
2000, 2002; Adam et al., 2008; Huang, et al., 2017).

In the following, we introduce the concept of a coherent risk measure for
the intervals of returns, which provides economic and financial reasons to use
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(3.3) as a risk constraint in (3.2). In financial risk management, Artzner et al.
(1999) introduced the following concept of the coherent risk measure for classic
portfolio selection. Let G be the set of random portfolio returns, ρ be a risk
measure, which is a mapping from G into R, and X denote the return of an asset.
A risk measure is called coherent if it satisfies the following properties:

(A1) Translation invariance: If A is a deterministic portfolio with guaranteed
return α, then for all X ∈ G, we have ρ(X +A) = ρ(X)− α.

(A2) Subadditivity: For all X and Y ∈ G, ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(A3) Positive homogeneity: For all λ ≥ 0 and all X ∈ G, ρ(λX) = λρ(X).

(A4) Monotonicity: For all X and Y ∈ G with X ≤ Y , we have ρ(Y ) ≤ ρ(X).

The economic explanations of these four properties are as follows. Translation
invariance implies that the addition of a definite amount of capital reduces the
risk by the same amount. Subadditivity implies that diversification is beneficial.
Positive homogeneity implies that the risk of a position is proportional to its size.
Monotonicity implies that a portfolio with greater future returns has less risk.

In this study, we consider an interval of returns denoted by XI = [XL, XH ],
where XL and XH are the low and high returns of an asset, respectively. To
extend the concepts of (A1)-(A4) from random variables to random intervals,
we propose the following properties for a risk measure of the interval of returns.
Let G1 be the set of random intervals of portfolio returns and ρI : G1 → R be a
corresponding risk measure.

(A1’) Translation invariance for the interval of returns: If A is a deterministic
portfolio with guaranteed return α, then for all XI ∈ G1, we have ρI(X

I +
A) = ρI(X

I)− α, where we use XI +A to denote [XL +A,XH +A].

(A2’) Subadditivity for the interval of returns: For all XI and YI ∈ G1, ρI(X
I +

YI) ≤ ρI(X
I) + ρI(Y

I), where XI + YI = [XL + Y L, XH + Y H ]. In
addition, one can also use the Cartesian join of XI and YI , denoted by
XI ⊕YI = [min(XL, Y L), max(XH , Y H)], to define the subadditivity, that
is, ρI(X

I ⊕YI) ≤ ρI(X
I) + ρI(Y

I).

(A3’) Positive homogeneity for the interval of returns: For all λ ≥ 0 and all
XI ∈ G1, ρI(λX

I) = λρI(X
I).

(A4’) Monotonicity for the interval of returns: For all XI and YI ∈ G1 with
XI ≤ YI , where XI ≤ YI if and only if XL ≤ Y L and XH ≤ Y H , we have
ρI(Y

I) ≤ ρI(X
I).

The economic explanations of (A1’)-(A4’) are similar to those of (A1)-(A4).
Specifically, the monotonicity for the interval of returns (A4’) implies only that
a portfolio with greater future interval of returns has less risk. For the case of
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XI ⊂ YI , the relationship between ρI(Y
I) and ρI(X

I) is not clear. If a risk
measure for the interval of returns satisfies (A1’)-(A4’), we call it a coherent risk
measure for the interval of returns. In the following proposition, a coherent risk
measure for the interval of returns is proposed, and the proof is given in the
Appendix.

Proposition 3.1. Let XI = [XL, XH ] be an interval of returns, and let

ρI(X
I) = −E(X(L) | X(L) ≤ qα),

where qα is the αth quantile of X(L). Then, ρI(·) is a coherent risk measure for
the interval of returns.

By Proposition 3.1, the measurement defined in (3.3) can be rewritten as
p∑

m=1

cm,t ρI(X
(CI)
m,t+1 | Ft),

which is a linear combination of coherent risk measures for the interval of returns,
where

(3.4) ρI(X
(CI)
m,t+1 | Ft) = −Et(X

(CL)
m,t+1 | X

(CL)
m,t+1 ≤ qα,m,t+1).

Due to the convexity of the coherent risk measure, we have

(3.5) ρI

( p∑
m=1

cm,tX
(CI)
m,t+1 | Ft

)
≤

p∑
m=1

cm,tρI(X
(CI)
m,t+1 | Ft).

For a portfolio with allocations cm,t, m = 1, . . . , p, set up at time t, the left side
of (3.5) represents the risk of the worst case occurring at time t + 1 since each
underlying return reaches the bottom of the corresponding prediction interval.

However, if a limitation is set on ρI(
∑p

m=1 cm,tX
(CI)
m,t+1 | Ft) in the portfolio

selection criterion (3.2), the optimal allocations cm,t, m = 1, . . . , p, are difficult
to obtain directly using linear programming since ρI(·|Ft) is a nonlinear function
of cm,t, m = 1, . . . , p. A similar situation is encountered in the classic portfolio
selection problem shown in (3.1) when using the expected shortfall as the risk
measure. Rockafellar and Uryasev (2000, 2002) proposed a method to overcome
this difficulty by considering more latent variables, but the computational cost
also increased. Therefore, we set a limitation on the right side of (3.5), and the
optimal allocations can be obtained directly using linear programming.

In the following sections, we consider several scenarios to investigate the
coverage, efficiency and accuracy of the proposed interval estimation and the
performance of the proposed criterion for portfolio selection.

4. Evaluation of the proposed interval estimation method

Let Yt = [PL
t , P

H
t ] denote the realized ITS of the stock prices and Ŷt be

an estimation of Yt, t = 1, . . . , T . In this section, we use the four measures to
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evaluate the performance of the proposed interval estimation (He and Hu, 2009;
Rodrigues and Salish, 2015; Xiong et al., 2015). The first measure is the coverage
rate

RC =
1

T

T∑
t=1

w(Yt ∩ Ŷt)

w(Yt)
,

where w(·) denotes the width of the interval, RC indicates what part of the
realized ITS of the stock prices is covered by its forecast.

The second measure is the efficiency rate

RE =
1

T

T∑
t=1

w(Yt ∩ Ŷt)

w(Ŷt)
,

which provides information about what part of the forecast covers the realized
ITS. It should be noted that RC and RE must be considered simultaneously;
otherwise, incorrect conclusions may be drawn. For example, if Yt is a subinterval
of Ŷt, then RC will be 1, but RE might be much less than 1, which indicates that
the predicted interval is much wider than the realized ITS. Therefore, we only
conclude that the forecast is satisfactory when RC and RE are reasonably high
and the difference between them is small.

The third measure is the accuracy ratio

RA =
1

T

T∑
t=1

w(Yt ∩ Ŷt)

w(Yt ∪ Ŷt)
.

A prediction with a larger RA performs better than a prediction with a smaller
one.

The fourth measure is the UI criterion

UI =

√√√√ ∑T
t=1(P

H
t − P̂H

t )2 +
∑T

t=1(P
L
t − P̂L

t )
2∑T

t=1(P
H
t − PH

t−1)
2 +

∑T
t=1(P

L
t − PL

t−1)
2
,

which is derived from Theil’s U statistic and compares the performance of an
estimated method with a näıve estimate [PL

t−1, P
H
t−1] of [P

L
t , P

H
t ]. The UI statistic

is less than one if the predictor performs better than the näıve predictor.

In addition to the proposed interval estimation Ŷ
(p)
t , three commonly used

interval predictors are considered in our comparison studies. One is fitting time
series models to the log return process Xt = log(PC

t /PC
t−1) and then deriving the

corresponding 95% confidence interval of PC
t+1. We denote this estimation of Yt

by Ŷ
(1)
t .

The second estimation of Yt is the popular center-range prediction interval,
which is obtained by separately fitting time series models to the processes of the
center, PM

t = (PH
t + PL

t )/2, and the range, PR
t = (PH

t − PL
t )/2, of the price
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intervals and then deriving an interval estimation of [PL
t+1, P

H
t+1] conditional on

Ft. We denote the second estimation by Ŷ
(2)
t .

The third alternative estimation of Yt is derived from a linear interval-data
model motivated from Fischer et al. (2016). The center-range-representation of
interval data can also be expressed as the following regression model

Yt = β0 + β1Y
C
t−1 + β2Y

R
t−1 + δt,(4.1)

where Y C
t = [PM

t , PM
t ], Y R

t = [−PR
t , PR

t ], δt is an interval-valued random error,
and β0 = [a, a] and (a, β1, β2) are unknown parameters. Blanco-Fernández et al.
(2011) derived the estimation procedures for (4.1), and the obtained predictor is

denoted as Ŷ
(3)
t .

We conduct the comparison study using the stock prices of the 30 companies
of the DJIA Index during the financial crisis period (from July 2, 2007 to June
24, 2009) and under improved market conditions (from July 1, 2014 to June
23, 2016). The 1-step-ahead prediction intervals during the two time periods
(from June 27, 2008 to June 24, 2009 and from June 29, 2015 to June 23, 2016)
are obtained with the previous 250 daily historical high and low returns. We
adopt an ARMA(p,q)-GARCH(p0,q0) model, where p, q ∈ {0, 1, 2, 3, 4, 5} and p0,
q0 ∈ {0, 1}, to obtain the de-GARCHed process defined in (2.3) for h = CL and
CH, separately. The multivariate portmanteau test (Tsay, 2010, Chapter 8) is

used for testing the auto- and cross-correlation in {(X̃(CL)
m,t , X̃

(CH)
m,t ), t = 1, . . . , T}.

If the de-GARCHed processes have significant auto- and cross-correlation, we

model the vector time series (X̃
(CL)
m,s , X̃

(CH)
m,t )⊤ with VARMA(p1, q1) defined in

(2.5), where (p1, q1) are selected from {(1, 0), (0, 1), and (u, v), u, v = 1, 2, 3}
based on the Bayesian information criterion (BIC). Table 1 summarizes the p-
values of the multivariate portmanteau test for the de-GARCHed processes and

the residual processes {(ε(CL)
m,t , ε

(CH)
m,t ), t = 1, . . . , T}. In Table 1, all the de-

GARCHed processes have significant auto- and cross-correlation during 2008-
2009, and most (around 96.2%) of the de-GARCHed processes have significant
auto- and cross-correlation during 2015-2016. More than 99.4% of the p-values
of the fitted residual processes during the two time periods are greater than 0.01,
which indicates that the above scheme is capable of removing most of the auto-
and cross-correlation of the de-GARCHed processes. Figure 1 summarizes the
proportions of selected orders (p1, q1) in the two time periods, where the 3.8% de-
GARCHed processes without significant auto- and cross-correlation during 2015-
2016 are denoted by VARMA(0,0). VARMA(1,1) is the most commonly selected
model during the financial crisis period, whereas VARMA(1,0) and VARMA(1,1)
are frequently selected under improved market conditions.

Table 2 presents the average values of RC , RE , RA and UI of Ŷ
(p)
t and Ŷ

(k)
t ,

k = 1, 2, 3, in the top panel. In the bottom panel, we present the improvement

of Ŷ
(p)
t for each Ŷ

(i)
t , i = 1, 2, 3, by calculating (Ŷ

(p)
t − Ŷ

(i)
t )/Ŷ

(i)
t for RC , RE ,

and RA and (Ŷ
(i)
t − Ŷ

(p)
t )/Ŷ

(i)
t for UI . The numerical results indicate that Ŷ

(p)
t

performs better than Ŷ
(i)
t , i = 1, 2, 3, in terms of RE , RA and UI . Although
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Ŷ
(2)
t has a larger RC than Ŷ

(p)
t , the improvement of Ŷ

(p)
t in RE is much greater

than the loss of Ŷ
(p)
t in RC . In particular, the popular center-range prediction

interval Ŷ
(2)
t has UI greater than 1, which indicates that the proposed prediction

interval Ŷ
(p)
t is more reliable than Ŷ

(2)
t . By contrast, Ŷ

(p)
t outperforms Ŷ

(1)
t and

Ŷ
(3)
t , especially in 2015-2016, with an improvement in the 4 measures of at least

9.0%. Figure 2 presents the average values of RC , RE , RA and UI for the four
prediction intervals for the 30 companies of the DJIA Index from June 27, 2008 to
June 24, 2009. The results of the time period from June 29, 2015 to June 23, 2016
are given in Figure 3. These figures reveal similar findings as those in Table 2.

The proposed prediction interval Ŷ
(p)
t has the best performance with respect to

RA and UI and performs robustly in RC and RE , especially in 2015-2016. The

main reason for the good performance of Ŷ
(p)
t is that Ŷ

(p)
t uses more information

than the other predictors. All the other predictors involve (traditional) ITS,
that is, they are formed exclusively with the high and low returns and do not

consider past closing prices. Therefore, the predictors Ŷ
(k)
t , k = 1, 2, 3, have a

clear disadvantage relative to Ŷ
(p)
t ; consequently, the latter should show much

better performance.

5. Empirical study

In this section, an empirical study is designed to investigate the perfor-
mance of the proposed criterion for selecting the optimal portfolio using the stock
prices of the companies of the DJIA Index. The DJIA Index was launched on
October 29, 2002. This Index covers the top 30 companies by total market cap-
italization and is reviewed quarterly in January, April, July and October every
year. Suppose that a self-financing trading strategy, which daily reallocates the
holding weights of the portfolio, is employed from the beginning of each period.
The proposed criterion is used to reallocate the optimal portfolios daily during
the financial crisis period and under improved market conditions by fitting the
time series models defined in (2.5) with the previous 250 daily historical high
and low returns for each underlying asset. Then, the corresponding 250 one-day-
ahead returns of the optimal portfolios are computed and compared with the
DJIA Index. In the following, we illustrate the details of the construction of the
self-financing trading strategy during the financial crisis period:

1. Let DJt be the value of the DJIA Index at time t, where t = 0 stands for
the date of June 27, 2008.

2. Let Vt denote the value of the self-financing portfolio at time t. Further, let
V0 be the value of the DJIA Index on June 27, 2008. The initial allocations
of the underling assets, cm,0, are obtained by solving (3.2), where the high
and low return processes of each underlying asset are fitted by model (2.5)
based on XCH

m,t and XCL
m,t for t = −250, . . . ,−1, m = 1, . . . , p and p = 30.
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Moreover, since
∑p

m=1 cm,0 can be less than 1, the amount V0
∑p

m=1 cm,0

is invested in risky assets and the rest of the portfolio value, denoted by
C0 = V0(1−

∑p
m=1 cm,0), is invested in the risk-free market.

3. At time t = 1, the value of the portfolio is

V1− = b(0)
p∑

m=1

cm,0P
C
m,1 + erdC0,

prior to the adjustment of the holding portfolio, where

b(0) =
V0
∑p

m=1 cm,0∑p
m=1 cm,0PC

m,0

and rd is the daily risk-free interest rate. We reestimate the dynamic models
of each return process using the data Pm,t, t = −249, . . . , 0, and compute
the updated optimal allocations, which are proportional to cm,1 obtained
by solving (3.2), where the value of the updated portfolio, denoted by V1,
is the same as V1− to satisfy self-financing. That is,

V1 = V1− = b(1)
p∑

m=1

cm,1P
C
m,1 + C1,

where

b(1) =
V1−

∑p
m=1 cm,1∑p

m=1 cm,1PC
m,1

and C1 = V1−(1−
∑p

m=1 cm,1) denotes the amount invested in the risk-free
market after reallocation.

4. Repeat Step 3 until June 24, 2009.

In addition to adjusting the allocations of the above self-financing trading
strategy daily, we proposed dynamic adjustment of the risk limitation L in (3.2)
by considering

(5.1) L =
k

p

p∑
m=1

ρI(X
(CI)
m,t+1 | Ft)

at time t, where k is a positive constant and ρI(X
(CI)
m,t+1 | Ft) is defined in (3.4).

The L defined in (5.1) is a special case of (3.3) with cm,t = 1/p, for m = 1, . . . , p,
multiplied by k. In other words, we set the limitation of the investment risk in
(3.2) by considering the trading strategy of an equally weighted portfolio. More-

over, conditional on Ft and by (2.3)-(2.5), X
(CL)
m,t+1 = µ

(CL)
m + σ

(CL)
m,t+1X̃

(CL)
m,t+1 is

normally distributed with conditional mean X̂
(CL)
m,t (1) defined in (2.6) and condi-

tional standard deviation σ
(CL)
m,t+1. Consequently, (3.4) yields

ρI(X
(CI)
m,t+1 | Ft) = −Et(X

(CL)
m,t+1 | X

(CL)
m,t+1 ≤ qα,m,t+1)

= −X̂
(CL)
m,t (1) + σ

(CL)
m,t+1ϕ

(
(qα,m,t+1 − X̂

(CL)
m,t (1))/σ

(CL)
m,t+1

)/
α,
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where ϕ(·) is the density function of the standard normal distribution.

The numerical results are presented in Figures 4 and 5 with α = 0.05, 0.20
and 0.35 and rd = 0. Figure 6 presents the values of L in 2008-2009 and 2015-2016
with different settings of α and k = 1. Figure 6 shows that a portfolio constructed
by (3.2) with a large α is more conservative than a portfolio constructed with a
small α since the values of L with α = 0.35 are smaller than their counterparts.
In Figure 4, the solid, dashed and dash-dotted lines denote the ratios of the
capitals of the proposed trading strategy with k = 0.75, 1 and 1.25, respectively,
to the DJIA Index in 2008-2009, and the results for 2015-2016 are presented in
Figure 5. For a fixed α, a portfolio with a small k is more conservative than one
with a large k. In Figure 4, the proposed portfolio selection criterion (3.2) with
L defined in (5.1) suggests a conservative portfolio during the financial crisis in
2008-2009 since the case with k = 0.75 performs better than the others for each
α. In particular, the portfolio with (α, k) = (0.35, 0.75) has the best performance
among all scenarios. For 2015-2016, compared with the portfolios selected in
2008-2009, the results presented in Figure 5 indicate that (3.2) suggests aggressive
portfolios, decreasing α from 0.35 to 0.05 or 0.20 with k = 0.75 or increasing k
from 0.75 to 1.00 with α = 0.35. In view of the results in Figures 4 and 5, the
proposed portfolio selection criterion (3.2) is capable of adjusting its suggestions
according to the economic conditions.

6. Conclusion

In this study, we propose a prediction interval for future stock prices by
fitting time series models to the high and low return processes. The proposed
interval estimator is shown to have promising coverage, efficiency and accuracy.
In particular, the numerical results of the UI index indicate that the proposed
interval estimator reduces the prediction error of the näıve interval predictor
more remarkably than three popular interval estimators discussed in the liter-
ature. Consequently, an innovative criterion for portfolio selection is proposed
on the basis of our interval estimator. The allocations of the underlying assets
in the proposed optimal criterion are determined by maximizing the potential
high portfolio returns subject to a predetermined limitation on the correspond-
ing potential low and nonpositive returns. An empirical study is conducted to
investigate the investment returns of the proposed optimal portfolio. A dynamic
self-financing trading strategy is established by investing in the stocks of the 30
companies of the DJIA Index and adjusting the asset allocations by the proposed
method daily during the financial crisis period and a period with improved market
conditions. The numerical results indicate that the proposed portfolio selection
criterion constructed from the prediction intervals is capable of suggesting an
optimal portfolio according to the economic conditions.

This study demonstrates that ITS data, including daily closing, high, and
low prices, are capable of improving the performance of investment decisions
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and risk management by means of the proposed scheme. Additionally, better
prediction performance is expected if intra-daily ITS data are available. This is
an interesting direction for future studies.
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A. Proof

Proof of Proposition 3.1.

Note that for a random variable XL, −E(XL | XL ≤ qα) is the so-called
expected shortfall, which is a coherent risk measure. Therefore, it is straight-
forward to obtain that ρI(X

I) = −E(XL | XL ≤ qα) satisfies (A1’), (A2’),
(A3’), and (A4’), where the interval addition in (A2’) is defined by the usual way
XI + YI = [XL + Y L, XH + Y H ]. In the following, we prove that ρI(X

I) also
satisfies ρI(X

I ⊕YI) ≤ ρI(X
I) + ρI(Y

I).

Let qα,0, qα,X and qα,Y be the αth quantile of min(XL, Y L), XL and Y L,
respectively. Apparently, qα,0 ≤ min(qα,X , qα,Y ) for any α ∈ (0, 1). Let α be small
enough such that max(qα,X , qα,Y ) < 0. Consequently, for all XI and YI ∈ G1,
we have

ρI(X
I ⊕YI) = −E[min(XL, Y L) | min(XL, Y L) ≤ qα,0]

= − 1

α
E[min(XL, Y L)I(min(XL, Y L) ≤ qα,0)]

≤ − 1

α
{E[XLI(XL ≤ qα,X)] + E[Y LI(Y L ≤ qα,Y )]}

= −{E(XL | XL ≤ qα,X) + E(Y L | Y L ≤ qα,Y )}
= ρI(X

I) + ρI(Y
I),

where I(·) is an indicator function and the inequality holds by using the facts
that

−min(XL, Y L)I(min(XL, Y L) ≤ qα,0)

≤ −XLI(XL ≤ qα,X)− Y LI(Y L ≤ qα,Y ),

almost surely, for qα,0 ≤ min(qα,X , qα,Y ) ≤ max(qα,X , qα,Y ) < 0. Thus, (A2’)
with the Cartesian join also holds and the proof is complete. 2
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Table 1: The proportions of the p-values of the multivariate portmanteau
test for testing auto- and cross-correlation in the de-GARCHed

processes {(X̃(CL)
m,t , X̃

(CH)
m,t ), t = 1, . . . , T} (shown in rows) and

the residual processes {(ε(CL)
m,t , ε

(CH)
m,t ), t = 1, . . . , T} (shown in

columns).

(a) 2008-2009
````````````de-GARCHed

residual
p-value< 0.01 p-value≥ 0.01

p-value< 0.01 0.001 0.999
p-value≥ 0.01 0.000 0.000

(b) 2015-2016
````````````de-GARCHed

residual
p-value< 0.01 p-value≥ 0.01

p-value< 0.01 0.011 0.951
p-value≥ 0.01 0.000 0.038

Table 2: The average values of RC , RE , RA and UI of Ŷ
(1)
t , Ŷ

(2)
t , Ŷ

(3)
t

and Ŷ
(p)
t in June 27, 2008 - June 24, 2009 and June 29, 2015

- June 23, 2016, in the top panel. The bottom panel presents

the improvement of Ŷ
(p)
t for each Ŷ

(i)
t , i = 1, 2, 3, by calculating

(Ŷ
(p)
t − Ŷ

(i)
t )/Ŷ

(i)
t for RC , RE , and RA, and (Ŷ

(i)
t − Ŷ

(p)
t )/Ŷ

(i)
t

for UI .
2008 - 2009 2015 - 2016

Ŷ
(1)
t Ŷ

(2)
t Ŷ

(3)
t Ŷ

(p)
t Ŷ

(1)
t Ŷ

(2)
t Ŷ

(3)
t Ŷ

(p)
t

RC 0.57 0.96 0.61 0.63 0.53 0.96 0.55 0.60
RE 0.55 0.34 0.53 0.60 0.51 0.30 0.51 0.56
RA 0.42 0.33 0.41 0.46 0.39 0.30 0.39 0.44
UI 0.98 1.70 0.99 0.87 0.99 1.82 0.97 0.88

The improvement of Ŷ
(p)
t for each Ŷ

(i)
t , i = 1, 2, 3.

2008 - 2009 2015 - 2016

Ŷ
(1)
t Ŷ

(2)
t Ŷ

(3)
t Ŷ

(1)
t Ŷ

(2)
t Ŷ

(3)
t

RC 10.4% -35.0% 1.7% 14.6% -37.3% 9.4%
RE 8.5% 75.5% 13.0% 9.0% 85.6% 10.5%
RA 9.8% 38.5% 12.3% 12.4% 47.3% 10.9%
UI 9.8% 47.9% 10.99% 10.5% 51.4% 9.2%
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Figure 1: Summaries of the selected orders of VARMA for 15,000 predic-
tion intervals in the two time periods (June 27, 2008 to June 24,
2009 and June 29, 2015 to June 23, 2016).



Prediction intervals for time series and their applications to portfolio selection 19

0.
0

0.
4

0.
8

RC

Ŷt
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Ŷt

(2)
Ŷt
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Figure 2: The average values of RC , RE , RA and UI of Ŷ
(p)
t (solid line),

Ŷ
(1)
t (dashed line), Ŷ

(2)
t (dotted line) and Ŷ

(3)
t (dash-dotted line)

for 30 different time series from June 27, 2008 to June 24, 2009.
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Ŷt

(1)
Ŷt
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Figure 3: The average values of RC , RE , RA and UI of Ŷ
(p)
t (solid line),

Ŷ
(1)
t (dashed line), Ŷ

(2)
t (dotted line) and Ŷ
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t (dash-dotted line)

for 30 different time series from June 29, 2015 to June 23, 2016.
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Figure 4: The ratios of the capitals of different trading strategies to the
Dow Jones Industrial Average Index in 2008-2009.
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Figure 5: The ratios of the capitals of different trading strategies to the
Dow Jones Industrial Average Index in 2015-2016.
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Figure 6: The values of L in 2008-2009 and 2015-2016.
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