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1. Introduction

In statistical theory and applications, copula models are useful tools for de-
termining the dependence structure between the random variables. For instance,
when two random variables of X and Y with joint cumulative distribution func-
tion H and marginals of F and G are considered respectively, there exists a copula
C such that H(x, y) = C(F (x), G(y)), for all x, y in <. In the literature, there
are many parametric copula families which have different dependence structure.
The main focus of this paper was on the Archimedean copula class, which is char-
acterized by generator function ϕ. Archimedean copula with generator function
ϕ is defined by

(1.1) C(u, v) = ϕ[−1]{ϕ(u) + ϕ(v)}; u, v ∈ [0, 1],

where ϕ is a generator function which is continuous and strictly decreasing convex
function defined from I to [0,∞) such that ϕ(1) = 0.

Genest et al. [13] showed that the function ϕ can be obtained by the
univariate distribution function of K(t) = P (C(u, v) ≤ t). Remarkably, there is
a relationship between the function ϕ(t) and K(t) as

(1.2) K(t) = t− ϕ(t)

ϕ′(t)
.

The Kendall distribution function K(t) has some important properties. These
properties are summarized by Nelsen [20] as follows:

1. K(0) = 0

2. K(1) = 1

3. K(t) > t, t ∈ (0, 1)

4. K
′
(t) > 0 , t ∈ (0, 1).

The dependence structure of the Archimedean copula family is characterized by
K(t). Kendall’s tau (τ) is designed to describe how large (or small) values of one
random variable appear with large (or small) values of the other as defined by
Genest et al. [14] by

(1.3) τ = 3− 4

∫ 1

0
K(t)dt.

Also, the tail dependence is related to the level of dependence in the upper-right
(λU ) or lower-left (λL) quadrant tail of a bivariate distribution. Michiels et al.
[19] defined λL and upper λU dependence as

(1.4) λL = 2
lim
t→0+

(
t−K(t)

)′
,
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Table 1:
Archimedean Copulas with Generator functions ϕ(t)

Copula ϕ(t) K(t) Range of θ

Clayton (t−θ − 1)/θ t+ t(1−tθ)
θ (−1,∞)− {0}

Frank − log( exp(tθ)−1exp(θ)−1 ) t−
(exp(tθ)−1) log( exp(−tθ)−1

exp(−θ)−1
)

θ (−∞,∞)− {0}

Gumbel (− log(t))θ t− t log(t)
θ [1,∞)

Independence − log(t) t− t log(t) -

Table 2:
Kendall’s Tau (τ), Lower λL and Upper λU tail dependence
some Archimedean copulas

Copula τ(θ) λL λU

Clayton θ
θ+2 2−

1
θ 0

Frank 1 + 4θ−1(D1
*(θ)− 1) 0 0

Gumbel θ−1
θ 0 2− 2

1
θ

*D1(x) = x−1
∫ x
0 t(exp(t)− 1)−1dt

(1.5) λU = 2− 2
lim
t→1−

(
t−K(t)

)′
.

Some well-known Archimedean copula functions were proposed by Clayton [4],
Frank [11], and Gumbel [16]. The generator functions of ϕ(t) and Kendall dis-
tribution functions K(t) of these copulas are summarized in Table 1. And also,
Kendall’s Tau (τ), Lower λL and Upper λU tail dependence coefficients for Gum-
bel, Clayton, and Frank copula are listed in Table 2.

Modern risk management is mainly interested in assessing the amount of
Kendall’s tau and tail dependence. For this reason, many minimum-variance
portfolio models are based on correlation. However, correlation itself is not
enough to describe a tail dependence structure and often results in misleading
interpretations (Embrechts et al. [7]). The importance of this issue has led to
some improvements in the estimation of the dependence coefficients. Kollo et al.
[18] examined tail behavior of skew t-copula considering the bivariate case. They
used the method of moments and the maximum likelihood for the estimation of
the tail dependence coefficients. Ferreira [9] proposed a nonparametric estimator
of the tail dependence coefficient and proved its strong consistency and asymp-
totic normality in the case of known marginal distribution functions. Schmidt
et al. [21] proposed a set of nonparametric estimators for the upper and lower
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tail copula and established results of weak convergence and strong consistency
for the tail-copula estimators. Ferreira et al. [10] introduced the s, k-extremal
coefficients for studying the tail dependence between the s-th lower and k-th up-
per order statistics of a normalized random vector. Caillault et al. [3] introduced
nonparametric estimators for upper and lower tail dependence whose confidence
intervals are obtained with the bootstrap method as they called these estimators
“Naive estimators”. Goegebeur et al. [17] introduced a class of weighted func-
tional estimators for the coefficient of the tail dependence in bivariate extreme
value statistics while they also derived the minimum variance asymptotically un-
biased estimator.

In this paper, a plug-in estimations of Kendall’s tau, upper tail dependence
and lower tail dependence are introduced. To the author’s best knowledge, this is
the first study examining the estimation of the dependence coefficients using the
plug-in method. The use of Bernstein-Bézier polynomials reduced the complexity
of the non-parametric estimation of the tail dependence coefficients. Besides, the
proposed estimation method of the dependence coefficient is flexible depending
on its polynomial degree while the error of the estimation can be reduced by
increasing or decreasing the degree of the polynomial.

The remainder of the study is organized as follows. In Section 2, the estima-
tion of Kendall distribution function based on Bernstein polynomials is discussed.
In Section 3, Kendall’s tau and tail dependence coefficients are estimated by the
plug-in principle. The performance of the new estimation methods for the depen-
dence coefficients is investigated in Section 4. In Section 5, the new estimator of
Kendall’s tau and tail dependence coefficients are applied to three real data sets.
Finally, the conclusion is presented in Section 6.

2. Estimation of the Kendall distribution function

Before introducing the estimation of the dependence coefficients for Archimedean
copulas, it is important to investigate the estimation of Kendall distribution func-
tion since the dependence coefficients of Archimedean copula are closely related
to the Kendall distribution function as stated in the last section. First time in
the literature, Genest et al. [13] investigated the empirical estimate of Kendall
distribution function. For the estimation of the random variable of T = H(x, y),
univariate distribution function of K(t) = P (H(x, y) ≤ t) = P (C(u, v) ≤ t)
should be estimated within the interval of [0, 1]. This estimation process can be
accomplished by two steps.

1. Constructing the empirical bivariate distribution function of Hn(X,Y )
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2. Obtaining the pseudo observations of T̂i by

T̂i =
n∑
j=1

I(Xi < Xj , Yi < Yj)/(n− 1), i = 1, . . . , n.

By using these pseudo observations, K(t) is estimated by the empirical
distribution function as

Kn(t) =
n∑
i=1

I(T̂i ≤ t)/n.

Genest et al. [13] stated that the empirical estimation of Kendall distribu-
tion function is

√
n-consistent estimator while Barbe et al. [1] proved consistency

of this estimator.

Generally, the classical empirical distribution function has a good perfor-
mance as an estimator of the distribution function. However, estimating continu-
ous distribution function may not be appropriate (Susam et al. [22, 23]; Erdogan
et al. [8]) since it has discontinuities. Because of this, Susam et al. [22] proposed
a smooth estimate of Kendall distribution function Kn,m given by the following
equation

Kn,m(t) =
m∑
k=0

Kn(
k

m
)Pk,m(t), t ∈ [0, 1],

where Pk,m(t) =
(
m
k

)
tk(1 − t)m−k is the Binomial probability. Susam et al. [23]

proposed the Bézier curve based estimation of Kendall distribution function of
Kα,m which has lower mean integrated squared error (MISE) scores than Kn,m(t).
They defined Kα,m as it is based on a set of the control points of αi, i = 0, . . . ,m
as given by the following equation:

Kα,m(t) =
m∑
k=0

αkPk,m(t), t ∈ [0, 1].

Also, they state that if the following constraints defined on the control points of
αi (i = 1, . . . ,m) hold, then the Bézier curve based on the estimation of Kendall
distribution function of Kα,m satisfies all the properties of the Kendall distribu-
tion function.

Theorem 2.1 (Susam et al. [23]). The estimatorKα,m(t) satisfies prop-
erties of Kendall distribution function under the following constraints hold;

1. α0 = 0 < α1 < α2 < . . . < αm = 1

2. αi >
i
m , i = 1, . . . ,m− 1.
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They used minimum quadratic distance estimator which is based on the em-
pirical Kendall distribution for estimating the control points of αi (i = 1, . . . ,m−
1). Also, Susam et al. [24] proposed minimum distance estimator for Kα,m(t)
based on Bernstein estimate of Kendall distribution function Kn,m(t). They
stated that the minimum distance method based on Kendall distribution using
Bernstein polynomials outperforms the method based on empirical Kendall dis-
tribution.

3. Estimation of dependence coefficients based on Bézier curve es-
timation of Kendall distribution function

Table 3:
Interval of Kendall’s Tau (τ), Lower λL and Upper λU tail de-
pendence for varying polynomial degrees of m

Degree (m) τ λU λL

5 [−0.33, 1] [0, 1] [0.0625, 1]
10 [−0.64, 1] [0, 1] [0.0019, 1]
15 [−0.75, 1] [0, 1] [6.1× 10−5, 1]
20 [−0.81, 1] [0, 1] [1.9× 10−6, 1]

Table 4:
Mean of the estimation of τ of Archimedean copulas

θ τ τ̂5 τ̂10 τ̂15 τ̂20

Gumbel 1.11 0.099 0.0956 0.0886 0.0876 0.0845

1.25 0.200 0.1923 0.1883 0.1876 0.1858

1.43 0.300 0.2909 0.2885 0.2880 0.2862

Clayton 0.22 0.099 0.0937 0.0896 0.0889 0.0871

0.50 0.200 0.1922 0.1903 0.1898 0.1882

0.85 0.300 0.2901 0.2884 0.2879 0.2869

Frank 0.91 0.099 0.0992 0.0897 0.0885 0.0861

1.86 0.200 0.1972 0.1894 0.1879 0.1872

2.92 0.300 0.2966 0.2897 0.2886 0.2875

It is possible to estimate Kendall’s tau, lower and upper tail dependence by
replacing K(t) with its non-parametric estimation provided in Eqs 1.3, 1.4 and
1.5. For a given bivariate random sample of size n, (X1, Y1), . . . , (Xn, Yn) from
X and Y , plug-in estimation of Kendall’s tau, lower and upper tail dependence
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Table 5:
Mean of the estimation of λU of Archimedean copulas

θ λU λ̂5U λ̂10U λ̂15U λ̂20U

Gumbel 1.11 0.132 0.0963 0.1384 0.1265 0.1326

1.25 0.258 0.1862 0.2299 0.2080 0.2311

1.43 0.376 0.2912 0.3207 0.2947 0.3418

Clayton 0.22 0.000 0.0243 0.0450 0.0346 0.0198

0.50 0.000 0.0448 0.0454 0.0401 0.0251

0.85 0.000 0.0563 0.0518 0.0447 0.0296

Frank 0.91 0.000 0.0164 0.0516 0.0395 0.0213

1.86 0.000 0.0338 0.0564 0.0481 0.0344

2.92 0.000 0.0476 0.0721 0.0620 0.0444

Table 6:
Mean of the estimation of λL of Archimedean copulas

θ λL λ̂5L λ̂10L λ̂15L λ̂20L

Gumbel 1.11 0 0.1605 0.0876 0.0637 0.0580

1.25 0 0.1932 0.1132 0.0855 0.0790

1.43 0 0.2330 0.1490 0.1185 0.1082

Clayton 0.22 0.04 0.1964 0.1380 0.1161 0.1140

0.50 0.25 0.2985 0.2558 0.2302 0.2405

0.85 0.44 0.4240 0.3943 0.3744 0.4010

Frank 0.91 0 0.1694 0.0901 0.0651 0.0578

1.86 0 0.2107 0.1168 0.0852 0.0737

2.92 0 0.2565 0.1484 0.1101 0.0949

for Archimedean copula could be derived from following equations:

(3.1) τ̂ = 3− 4

∫ 1

0
Kα,m(t)dt,

(3.2) λ̂L = 2
lim
t→0+

(
t−Kα,m(t)

)′
,

(3.3) λ̂U = 2− 2
lim
t→1−

(
t−Kα,m(t)

)′
,

where Kα,m(t) is the estimation of Kendall distribution function based on the
Bézier curve introduced in Section 2. Then, the next lemmas are provided for
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the estimation of Kendall’s tau, lower and upper tail dependence for Archimedean
copulas.

Lemma 3.1. Let Kα,m(.) be the estimator of Kendall distribution func-
tion based on the Bézier curve while α̂k (k = 1, . . . ,m− 1) estimates the control
points. The estimator of Kendall’s tau for Archimedean copula is obtained by

τ̂ = 3− 4
m∑
k=0

α̂k

(
m

k

)
β(k + 1,m− k + 1)

where β(., .) is the beta function defined as β(v1, v2) =
∫ 1
0 t

v1−1(1 − t)v2−1dt for
v1 and v2 positive integers.

Lemma 3.2. Let Kα,m(.) be the estimator of Kendall distribution func-
tion based on the Bézier curve while α̂k (k = 1, . . . ,m− 1) estimates the control
points. The estimation of the lower tail and the upper tail dependence for the
Archimedean copula is obtained by

λ̂L = 21−mα̂1

λ̂U = 2− 21−m(1−α̂m−1)

Proof: First order derivative of Bézier curve is derived by

K
′
α,m(t) = m

m−1∑
k=0

(αk+1 − αk)Pk,m−1

From the end-point rule of the Bézier curve, lim
t→0+

K
′
α,m(t) and lim

t→1−
K
′
α,m(t)

are equal to m(α1−α0) and m(αm−αm−1) respectively (see Duncan [6]). Because
of α0 = 0 and αm = 1, then desired results are obtained.

It is observed that λ̂L and λ̂U are affected by only the control points of α1 and
αm−1, respectively. The range of the dependence coefficients depending on the
polynomial degree m is summarized in Table 3. The results show that the range
of dependence coefficients gets wider as the degree of the polynomial increases.

For estimating the control points of αi (i = 0, . . . ,m − 1), statistical pro-
gramming language R is used. The package “nloptr” is quite handy for optimizing
non-linear function. The Augmented Lagrangian algorithm (auglag) included in
the package “nloptr” should be used. Since Kα,m(.) has a complex function for
higher polynomial degree so that may cause trouble in optimization. In order to
overcome such a problem, the number of maximum evaluation number (maxeval)
is recommended to be selected as at least 50.000 in the optimization.
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4. Monte Carlo simulation

To determine the performance of the estimation of τ , λU , and λL, the
Monte Carlo simulation is conducted. 1.000 Monte Carlo samples with n =
150 size are generated from each type of Archimedean copulas. For instance,
parameters of θ = 1.11, 1.25, 1.44 is used for Gumbel copula while parameters of
θ = 0.22, 0.50, 0.85 is used for Clayton copula and θ = 0.91, 1.86, 2.92 is used
for Frank copula. Each copula has different shapes and characteristics. Clayton
copula exhibits strong left tail dependence. In contrast to Clayton, Gumbel has
strong right tail dependence while Frank copula exhibits symmetric and weak tail
dependence in both tails. Detailed information about these Archimedean copulas
is provided in Nelsen [20]. In all estimation methods, the Bézier curve degrees
are selected for m = 1, . . . , 20. The mean of the estimation of the dependence
coefficients for τ , λU , and λL Archimedean copulas for the varying degrees of
m = 5, 10, 15 and 20 are summarized in Tables 4, 5, and 6.
The following results are obtained from Tables 4, 5, and 6:

• For the estimation of Kendall’s tau, the mean of the τ estimates is closer
to the true value for the polynomial degree of m = 5 when the true copula
belongs to Gumbel, Clayton, or Frank.

• When the true copula is Gumbel with τ = 0.1, 0.2, 0.3, mean of the λU
estimates is closer to true value for the polynomial degree of m = 10 while
the mean of the estimation of λL is closer to true value for the polynomial
degree of m = 20.

• When the true copula is Clayton with τ = 0.1, 0.2, 0.3, mean of the λU
estimates is closer to true value for the polynomial degree of m = 20 while
the mean of the estimation of λL is closer to true value for the polynomial
degree of m = 5.

• When the true copula is Frank with τ = 0.1, 0.2, 0.3, while the mean of the
λU estimates are closer to true value for the polynomial degree of m = 20
while the mean of the λL estimates is closer to true value for the polynomial
degree of m = 20.

The results obtained from Figures 1, 2, and 3 are:

• As the dependence level increases for Gumbel, Clayton, and Frank copula,
the variance of the estimations of the τ , λU , and λL increases as well.

• When the true copula belongs to the Clayton family with θ = 0.22, 0.50 and
0.85, the variance of λU estimation decreases as the degree of polynomial
increases. On the contrary, the variance of λL increases as the degree of
polynomial increases.
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(a) τ estimatiom for θ =
1.11 , (τ = 0.1)
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(b) τ estimatiom for θ =
1.25 , (τ = 0.2)
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(c) τ estimatiom for θ =
1.43 , (τ = 0.3)
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(d) λU estimatiom for θ =
1.11 , (λU = 0.13)
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(e) λU estimatiom for θ =
1.42 , (λU = 0.25)
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(f) λU estimatiom for θ =
2 , (λU = 0.37)
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(g) λL estimatiom for θ =
1.11 , (λL = 0)
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(h) λL estimatiom for θ =
1.42 , (λL = 0)
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(i) λL estimatiom for θ =
2 , (λL = 0)

Figure 1:
Box-plots of the estimation of the dependence coefficients of
Gumbel copula with parameters of θ = 1.11, 1.25, 1.43

• When the true copula is Frank with θ = 0.91, 1.86, 2.92, the variance of λU
decreases as the degree of polynomial increases. On the other hand, the
variance of λL does not change as the degree of polynomial increases.

• In all the estimations of dependence coefficients, the estimation of τ , λL
and λU get closure to the real values as the polynomial degree increases.
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(a) τ estimatiom for θ =
0.22 , (τ = 0.1)
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(b) τ estimatiom for θ =
0.50 , (τ = 0.2)
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(c) τ estimatiom for θ =
0.85 , (τ = 0.3)
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(d) λU estimatiom for θ =
0.22 , (λU = 0)
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(e) λU estimatiom for θ =
0.50 , (λU = 0)
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(f) λU estimatiom for θ =
0.85 , (λU = 0)
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(g) λL estimatiom for θ =
0.22 , (λL = 0.04)
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(h) λL estimatiom for θ =
0.50 , (λL = 0.25)
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(i) λL estimatiom for θ =
0.85 , (λL = 0.44)

Figure 2:
Box-plots of the estimation of the dependence coefficients Clay-
ton copula with parameters of θ = 0.22, 0.50, 0.85

5. Applications

To demonstrate the performance of new dependence coefficients estimation
in previous sections, the Gumbel, Clayton and Frank copula is fit to the following
three real data sets:
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(a) τ estimatiom for θ =
0.91 , (τ = 0.1)
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(b) τ estimatiom for θ =
1.86 , (τ = 0.2)
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(c) τ estimatiom for θ =
2.92 , (τ = 0.3)
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(d) λU estimatiom for θ =
0.91 , (λU = 0)
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(e) λU estimatiom for θ =
1.86 , (λU = 0)
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(f) λU estimatiom for θ =
2.92 , (λU = 0)
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(g) λL estimatiom for θ =
0.91 , (λL = 0)

m
=

1

 m
=

2

m
=

3

 m
=

4

m
=

5

 m
=

6

m
=

7

 m
=

8

m
=

9

m
=

1
0

m
=

1
1

m
=

1
2

m
=

1
3

m
=

1
4

m
=

1
5

m
=

1
6

m
=

1
7

m
=

1
8

m
=

1
9

m
=

2
0

0.0

0.2

0.4

0.6

0.8

1.0

(h) λL estimatiom for θ =
1.86 , (λL = 0)
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(i) λL estimatiom for θ =
2.92 , (λL = 0)

Figure 3:
Box-plots of the estimation of the dependence coefficients Frank
copula with parameters of θ = 0.91, 1.86, 2.92

• The first data set is comprised of 1500 general liability claims randomly
chosen from late settlement lags (Frees et al. [12]) and was provided by
Insurance Services Office, Inc. Each claim consists of an indemnity payment
(the loss) and an allocated loss adjustment expense (ALAE). The data is
available in the R package ”copula”. For simplicity, 34 censored data have
not been used.

• According to the manual of R’s package “lcopula”, the nutrient data frame
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Table 7:
Goodness-of-fit results based on K(t) for three reel data sets

Data Copula Parameter τ̂ λ̂L λ̂U CvM P-Value

Loss-Alea Gumbel 1.4607 0.3154 0 0.3927 0.0414 0.8291
Frank 3.0942 0.3154 0 0 0.2293 0.0292

Clayton 0.9214 0.3154 0.4713 0 1.4181 0.0000

Calcium- Vit. C Gumbel 1.2665 0.2104 0 0.2714 0.5627 0.0000
Frank 1.9651 0.2104 0 0 0.3546 0.0011

Clayton 0.5330 0.2104 0.2724 0 0.0505 0.6073

Thick.-Bmi Gumbel 2.0933 0.5222 0 0.6074 0.1393 0.0221
Frank 6.1568 0.5222 0 0 0.0711 0.2252

Clayton 2.1866 0.5222 0.7283 0 0.2343 0.0014

consists of quintuples consisting of four-day measurements for the intake
of calcium, iron, protein, vitamin A and C for the women aged from 25 to
50 in the United States as part of the “Continuing Survey of Food Intakes
of Individuals” program. The processed data has 737 measurements from
a cohort study of the United States Department of Agriculture (USDA)
and is available online at the University of Pennsylvania repository. The
main concern is to estimate the dependence coefficients of Women’s daily
nutrient intake of calcium and vitamin C.

• A population of women who were at least 21 years old, of Pima Indian
heritage, and living near Phoenix, Arizona, was tested for diabetes accord-
ing to World Health Organization criteria by using R’s package of “MASS”.
The data were collected by the US National Institute of Diabetes and Diges-
tive and Kidney Diseases. The training set “Pima.tr” contains a randomly
selected set of 200 subjects. An application is illustrated for determining
dependence coefficients of Triceps skinfold thickness and body mass index
in Pima Indian women.

Figure 4 shows the scatter plots of the three data sets. When Figure 4 is exam-
ined, the dependence structure between involved random variables is obvious. In
order to assess the goodness-of-fit results, the Cramér von Mises (CvM) statistic
is used

(5.1) CvM = n

∫ 1

0
(K̂n(t)−Kθ̂(t))

2dKθ̂(t),

where K̂n is the empirical Kendall distribution function as a non-parametric es-
timator of K(t). The dependence parameter θ is estimated by means of the
Psuedo-likelihood method. The statistic is evaluated by the relevant p-value ob-
tained by running 10.000 Monte Carlo samples as the method is described in Berg
[2] and Genest et al. [15]. All goodness-of-fit results and parametric estimation
of dependence coefficients are presented in Table 7 while Table 8 provides the
estimation results of τ , λL and λU based on Bézier curve for three data sets.
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Table 8:
The estimation of τ , λU and λL for three reel data sets

Data Est. Mth m = 5 m = 10 m = 15 m = 20

Loss-Alea τ̂m 0.3030 0.2984 0.2981 0.2979

λ̂mU 0.3631 0.4161 0.3852 0.3982

λ̂mL 0.2267 0.1248 0.0897 0.0626

Calcium- Vit. C τ̂m 0.2061 0.2051 0.2049 0.2075

λ̂mU 0.0523 0.0593 0.0116 0.0865

λ̂mL 0.2863 0.2472 0.2568 0.2687

Thick.-Bmi τ̂m 0.4769 0.4694 0.4668 0.4651

λ̂mU 0.2517 0.0783 0.0062 0.0001

λ̂mL 0.3826 0.2049 0.1143 0.0724
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Figure 4:
Scatter plots of real data sets
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Loss-Alea data set
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(c) Estimations of λL for
Loss-Alea data set
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(d) Estimations of τ for
Calcium- Vit. C data set
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(e) Estimations of λU for
Calcium- Vit. C data set
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(f) Estimations of λL for
Calcium- Vit. C data set
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(g) Estimations of τ for
Thick.-Bmi data set
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(h) Estimations of λU for
Thick.-Bmi data set
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(i) Estimations of λL for
Thick.-Bmi data set

Figure 5:
Estimations of dependence coefficients of data sets for degree
m = 1, 2, . . . , 20.

The results in Table 7 represent that Gumbel copula is a good choice for
variables Loss-Alea with a p-value of 0.8291. It is concluded from Table 8 that
as the degree of polynomial increases, estimation of λU and λL approach to the
parametric estimate of dependence coefficients of Gumbel copula for Insurance
data. For Calcium and Vitamin-c data, Clayton copula fits the data well with



16 Selim Orhun Susam and Mahmut Sami Erdoğan

p-value of 0.6073. For the estimation of λL, λ̂20L is closure to the parametric
estimate of λL = 0.2714. Also, it is obtained that the estimation of λU approaches
to the parametric estimate of λU = 0 as polynomial degree increases. For the
triceps skinfold thickness and body mass index in Pima Indian women, Frank
copula provides the best fit with p-value of 0.2252 from a statistical point of
view. Tables 7 and 8 indicate that the estimation of λU and λL approaches to
the parametric estimate of λU = 0 and λL = 0. In addition, Figure 5 shows the
estimations of dependence coefficients for three real data sets depending on the
polynomial degree m = 1, . . . , 20. It can be concluded that, as the polynomial
degree increases the estimation of dependence coefficients gets closure to the real
values.

6. Conclusion

In this study, a method of estimating the dependence coefficients of bi-
variate Archimedean family of copula is proposed. The Kendall’s tau, lower tail
dependence and upper tail dependence are estimated by using the Bézier curve.
The new estimator of the dependence coefficients are flexible by the polynomial
degree of m. A Monte Carlo simulation study is performed to measure the per-
formance of the proposed estimation method for τ , λU , and λL. The performance
according to the different levels of dependence size is investigated as well. The
simulation results show that the new estimator of τ , λU , and λL presented a good
performance. Besides, the new estimators of τ , λU and λL indicated a satisfactory
performance for the three data sets examined.
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[8] Erdoğan MS, Dişibüyük Ç, Oruç ÖE (2019) An alternative distribution func-
tion estimation method using rational Bernstein polynomials. Journal of Compu-
tational and Applied Mathematics, 353, 232–242.

[9] Ferreira M. (2013) Nonparametric estimation of the tail-dependence coefficient.
REVSTAT-Statistical Journal, 11, 1, 1–16.

[10] Ferreira H, Ferreira M. (2012) Tail dependence between order statistics.
Journal of Multivariate Analysis, 105, 1, 176–192.

[11] Frank MJ. (1979) On the simultaneous associativity of F (x, y) and x + y −
F (x, y). Æquationes Mathematiæ, 19, 194–226.

[12] Frees E, Valdez E. (1998) Understanding relationships using copulas. North
American Actuarial Journal, 2, 1–25.

[13] Genest C, Rivest L. (1993) Statistical inference procedures for bivariate
Archimedean copulas. Journal of the American Statistical Association, 88, 423,
1034–1043.

[14] Genest C, Mackay RJ. (1986) Copules archimédiennes et familles de lois bidi-
mensionnelles dont les marges sont données. The Canadian journal of Statistics,
14, 145-149.

[15] Genest C, Quessy JF, Rémillard B. (2006) Goodness-of-fit procedures for
copula models based on the probability integral transform. Scandinavian Journal
of Statistics, 33, 337-366.

[16] Gumbel EJ. (1960) Distributios des valeurs extrémes en plusiers dimensions.
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