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Abstract:

• Several test statistics are available for testing the independence of categorical variables
from two-way contingency tables. A vast majority of published articles used the
Pearson’s chi-squared test for such purposes; however, this test statistic may lead
to biased conclusions under certain conditions. Therefore, we aimed to compare the
performance of test statistics via a comprehensive simulation study considering several
factors in contingency tables. We also evaluated the performance of each test statistic
on a real-life dataset. This study contributes to the literature guiding researchers to
select an appropriate test statistic under different conditions.
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1. INTRODUCTION

The data type of measured variables is important to determine the sta-
tistical methods for summarizing and testing the relationship or independence
between variables [9]. Analyzing categorical data is generally less tractable and
may require much effort for selecting appropriate statistical methods, such as
log-linear models, logistic regression, and chi-square tests. The contingency table
approach is one of the frequently used methods to summarize the joint distribu-
tion of two categorical variables. An example of r-by-c contingency table showing
the joint distribution of categorical variables X and Y is given in Table 1.Here,
nij (i = 1, 2, . . . , r and j = 1, 2, . . . , c) represents the frequencies of joint occur-
rences, ni+ =

∑c
j=1 nij and n+j =

∑r
i=1 nij are row and column totals (i.e.,

row/column marginals), and n =
∑r

i=1 ni+ =
∑c

j=1 n+j =
∑c

j=1

∑r
i=1 nij is the

grand total of contingency table that also refers to sample size.

Y1 Y2 . . . Yc Total

X1 n11 n12 . . . n1c n1+
X2 n21 n21 . . . n2c n2+

. . .
...

... . . .
...

...
Xr nr1 nr2 . . . nrc nr+

Total n+1 n+2 . . . n+c n

Table 1: An example of r-by-c contingency table

Specification of the joint probability distribution of Table 1 is crucial since
it plays a key role in the type of statistical analysis used. The distribution of
a contingency table may be one of multinomial, product multinomial, hypergeo-
metric, and Poisson based on the cell counts that are fixed such that row/column
marginals or totals. The inference about the independence between categorical
variables can be evaluated using the appropriate sampling distribution and sta-
tistical hypotheses. The hypotheses for testing the independence of categorical
variables in Table 1 is defined as

(1.1)
H0 : π1j = π2j = ... = πrj

H1 : πij 6= πkj at least one i, j, k i 6= k

where πij is the hypothesized cell probability of the i-th row and the j-th column,
and π̂ij is the estimated cell probability from sampling distribution. There are
several methods for estimating cell probabilities, i.e., πij , and testing a hypothesis
(1.1) depending on the joint distributions [13, 8].

Pearson’s chi-square test statistic is widely used for testing the hypothe-
sis (1.1). However, it is not a gold standard and may not be appropriate for
small samples [1]. There exist various test statistics proposed to test the inde-
pendence, where each performs better under certain conditions, such as sample
size, number of rows and columns, sampling methods, etc. In this study, we used
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the most common of these methods, which are (i) Pearson’s chi-square test, (ii)
likelihood ratio test, (iii) Freeman-Tukey test, (iv) Cressie-Read test, and (v)
Fisher-Freeman-Halton’s exact test.

A hypothesis established from a contingency table, considering the purpose
of the study, could be tested using different statistical test procedures. The re-
sults of the hypothesis tests might be in the opposite direction for the variety
of hypothesis tests. It is a crucial issue since it may mislead the researcher in
their studies. Therefore, it is essential to choose appropriate statistical tests or
methods to achieve correct and unbiased conclusions. In this study, we aimed
to compare different test procedures and related test statistics under various
scenarios for the power (1 − β) and the type-I error rate (α) of the test statis-
tic. We conducted a comprehensive simulation study using the combinations
of sample size, effect size, and sampling design. Furthermore, we applied each
method to a real-life dataset for making a fair comparison between simulation
and real-life data results. This study contributed to the literature by considering
each test procedure under several conditions and comparing the performances of
each test statistic via a comprehensive simulation study. Furthermore, the cur-
rent study compared the simulation results with a real-life dataset and showed
the concordance (or discordance) between the simulation study and the real-
life example. All the analyses were performed on the R programming language
(https://cran.r-project.org/) through self-written codes available upon re-
quest to the correspondent author.

The plan of this study is as follows. The methods, statistical background,
simulation scenarios, and real datasets are explained in detail in the Material
and Methods section. The results of simulated and real datasets are presented in
the Results section, and finally, we discussed the results in the Discussion section
with conclusions and future work.

2. MATERIAL AND METHODS

The statistical methods proposed to test the hypothesis (1.1) are detailed
in subsection 2.1. These methods use the observed (nij) and expected (Eij)
frequencies to compute test statistics. All test statistics are asymptotically chi-
square distributed with degrees of freedom (r − 1)(c− 1).

2.1. Test Statistics

The most common test statistic proposed to test independence between cat-
egorical variables is the Pearson’s chi-square statistic [1],which takes the difference
between observed and expected frequencies into account. The test statistic (χ2)

https://cran.r-project.org/
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is

(2.1) χ2 =
r∑
i=1

c∑
j=1

(nij − Eij)2

Eij
.

The likelihood ratio test statistic is another approach to test independence
[1]. Unlike Pearson’s chi-square statistic, it is based on the ratio of the observed
and expected frequencies. The test statistic is

(2.2) G2 = 2×
r∑
i=1

c∑
j=1

nij × log

(
nij
Eij

)
.

The Freeman and Tukey test statistic aims to approximate Binomial or
Poisson distribution to normal distribution by stabilizing the variance [7, 2]. It
is based on the differences between the square root of observed and expected
frequencies. The test statistic is

(2.3) FT 2 =

r∑
i=1

c∑
j=1

(√
nij +

√
nij + 1−

√
4× Eij + 1

)2
.

Cressie and Read [4] proposed the power divergence family as a general-
ization of goodness-of-fit test. It is flexible and converges to other well-known
test statistics based on the choice of tuning parameter λ. The family of power
divergence test statistic is

(2.4) PD =
2

λ× (λ+ 1)
×

r∑
i=1

c∑
j=1

πij ×

[(
nij
Eij

)λ
− 1

]
.

The power divergence test statistic converges to Pearson’s chi-square, likeli-
hood ratio, and Freeman-Tukey statistics when λ equals 1, 0 and 0.5, respectively.
They [4] suggested taking λ as 2/3, called the Cressie-Read test statistic, as being
an excellent compromise between Pearson’s chi-square and likelihood ratio test
statistics [4]. The test statistic is

(2.5) CR =
9

5
×

r∑
i=1

c∑
j=1

nij ×

[(
nij
Eij

)2/3

− 1

]
.

In addition to the above-mentioned test statistics, we evaluated the Fisher-
Freeman Halton (FFH) exact test statistic [6], which is the extension of Fisher’s
exact test to r-by-c tables. The Fisher-Freeman-Halton test statistic gives the
exact p-value, which is calculated from sequentially generated contingency tables
until one of the cells in the given margin is equal 0. This method becomes
computationally intensive as the sample size increases. To overcome this problem,
the Monte Carlo approach that selects samples randomly from the contingency
tables is recommended [1]. In this study, we used large sample sizes. However,
we benefited from the Monte-Carlo approach to decrease the computation time
of the FFH test statistic.
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2.2. Simulation Scenarios

We conducted a comprehensive simulation study using the R language en-
vironment [12]. We considered several factors such as sample size (n), effect size
(w), and sampling design in the simulation. We used two different contingency
tables, with dimensions of 5-by-5 and 5-by-2, in all simulation scenarios. Simu-
lation scenarios consist of all possible combinations of:

• Sample size (n): {100, 200, 500} for the 5-by-5 table and {40, 80, 200} for
the 5-by-2 table as small, medium and large, respectively,

• Effect size: (w): {0.10, 0.30, 0.50} as small, medium, and large [3],

• Sampling design: balanced (0.20, 0.20, 0.20, 0.20, 0.20),
almost balanced (0.15, 0.15, 0.20, 0.25, 0.25) and
imbalanced row margins (0.05, 0.05, 0.30, 0.30, 0.30).

where different sample sizes were used for 5-by-5 and 5-by-2 contingency tables
while effect sizes and sampling designs were similar. The sample sizes were chosen
so that the contingency tables were not sparse. Furthermore, the effect sizes were
specified as in the literature [3]. Data were generated under product multinomial
distribution via an R package rTableICC [5] by setting row marginal and total
sample size fixed. Cell probabilities were specified according to changing effect
size and sampling design. We compared each method using type I error rate and
power. Each simulation scenario was repeated 10, 000 times. Each generated
contingency table was tested with the Pearson’s chi-square test, likelihood ratio
test, Freeman-Tukey test, Cressie-Read test, and Fisher-Freeman-Halton’s exact
test. The type-I error rate of each test statistic was calculated as the proportion
of false rejection obtained from 10, 000 replications when the null hypothesis was
true, i.e., the effect size is w = 0. The power of each test, on the other hand,
was calculated as the proportion of rejection obtained from 10, 000 replications
assuming that the null hypothesis was false, i.e., the effect size is w 6= 0. The
power and type-I error rate of the Pearson’s chi-square test, likelihood ratio test,
Freeman-Tukey test, and Cressie-Read tests statistics were obtained using the
underlying Chi-square distribution. The comparison for the result of the Fisher-
Freeman-Halton’s exact test was evaluated using a p-value against the level of
statistical significance. The statistical significance was taken as p < 0.05 in all
simulation scenarios.

2.3. Real-life datasets

In addition to the simulation study, we evaluated the selected methods on
real datasets. The first of the datasets is related to suicides. Suicides adversely
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affect not only the person who committed suicide, but also the people around the
person, communities, and countries. According to the World Health Organization
[17], suicide leads to a serious public health issue. Therefore, we decided to
examine the specific causes of suicide within education level in Turkey in the
year 2018. The datasets were provided by the Turkish Statistical Institute [15]
and are represented in Table 2.

Education Level / Causes Marital Conflict Financial Difficulty Disease Emotional Other

Never received formal education 9 (7.14%) 4 (1.63%) 53 (7.91%) 4 (4.71%) 53 (6.31%)
Primary School 27 (21.43%) 53 (21.54%) 155 (23.13%) 10 (11.76%) 174 (20.71%)
Secondary School 60 (47.62%) 74 (30.08%) 197 (29.40%) 37 (43.57%) 269 (32.02%)
High School 22 (17.93%) 81 (32.93%) 170 (25.37%) 23 (27.06%) 205 (24.40%)
Graduate 8 (6.35%) 34 (13.82%) 95(14.18%) 11 (12.92%) 139 (16.55%)

Table 2: Contingency table between causes of suicide and education level

Nowadays, one of the major issues in the world, which is the infection of
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), also known as
COVID-19, has led to the global pandemic. Therefore, another dataset, which
is taken from Ozsurekci et al. [10], was chosen to be used in this study. The
children who were infected with or exposed to COVID-19 might have developed
multisystem inflammatory syndrome (MIS-C) due to the triggering of the im-
mune system. They compared children with MIS-C (n = 30) and severe/critical
cases with COVID-19 (n = 22) in terms of respiratory support systems. This
information is given in Table 3.

Respiratory Support / Group Cases with MIS-C
Severe/Critical cases

with COVID-19

None 14 (46.67%) 6 (27.27%)
Oxygen Only 7 (23.33%) 8 (36.36%)
High Flow Support 0 (0.00%) 2 (9.09%)
Non-invasive ventilation 6 (20.00%) 0 (0.00%)
Invasive mechanical ventilation 3 (10.00%) 6 (27.27%)

Table 3: Contingency table between disease group and respiratory sup-
port system

3. RESULTS

The performance of the test statistics was compared according to type-I
error rate and power. The power of test statistics were presented in Figures 1
and 2 while the type-I error rates were presented in Figures 3 and 41. In each
figure, effect sizes and sampling designs were given in the rows and columns,
respectively. The test statistics were given on the x-axis and the sample size was
indicated using different line type within each figure. Although we graphically
presented the power and type-I error rate results in Figures 1 – 4, it was not easy

1 Figures were generated using the ggplot2 [16] package in the R programming language.
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to read exact values from corresponding figures when the points and lines were
overlapped or test statistics slightly differed. Therefore, we provided the findings
of Figures 1 – 4 with supplementary tables in the Appendix section.

When the power results are examined in Figures 1 and 2 (Tables 5 and
6 in the Appendix) for 5-by-5 and 5-by-2 contingency tables, we observe that
both the effect size and the sample size have a positive effect on power of test
statistics. The statistical power of methods increases with the increasing sample
size and effect size. However, the sampling design has no or a considerably small
effect on power for each method. Among the methods considered, the likelihood
ratio test has the highest power in almost all scenarios. The Pearson’s chi-square
and the Cressie-Read test statistics had less power in almost all designs when
the sample size was small. The power of Freeman-Tukey test decreased as the
sampling design became imbalanced. We also observed that the power of the
Fisher-Freeman-Halton test was higher in the imbalanced design, except for the
likelihood ratio test.

Figure 1: Simulation results – Power of tests in 5-by-5 contingency table
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Figure 2: Simulation results – Power of tests in 5-by-2 contingency table

The type-I error rate results of the 5-by-5 and 5-by-2 tables are given in
Figures 3 and 4 (Tables 7 and 8 in the Appendix). According to the results,
the likelihood ratio test was generally liberal generating type I error rates above
the nominal level. Nevertheless, we observed that the type-I error rate of the
likelihood ratio test was close to the nominal level as the sample size increased.
In the balanced sampling design with the larger sample sizes, the type-I error
rate of all test statistics, except for the likelihood ratio test statistic, was close
to the nominal level. The Freeman-Tukey test statistic had a remarkably higher
type-I error rate than the nominal level in small samples for balanced and almost
balanced designs. However, it had the lowest type-I error rate below the nominal
level in the imbalanced sampling design with a small sample size. In balanced
and almost balanced designs, the Pearson’s chi-square test, Cressie-Read test,
and Fisher-Freeman-Halton test were better at controlling the type-I error rate
at the nominal level in almost all sample sizes. However, in the imbalanced sam-
pling design, Cressie-Reed and Pearson’s chi-square test statistics were generally
conservative for the small sample size and had type-I error rates closer to the
nominal level as the sample size increased. Finally, the Fisher-Freeman-Halton
test statistic had type-I error rates very close to the nominal level for the imbal-
anced sampling design.
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Figure 3: Simulation results – Type I error rates in 5-by-5 contingency
table

Figure 4: Simulation results – Type I error rates in 5-by-2 contingency
table

The results of real datasets are represented in Table 4. The suicide dataset
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(Table 2) had small effect size (i.e., w = 0.16), large sample size (i.e., n = 1967),
and imbalanced design according to the row probabilities (i.e., 0.063, 40.2131, 0.324,
0.255, and 0.146). Therefore, the suicide dataset corresponds to the simulation
combination that was small effect size, large sample size, and imbalanced sam-
pling design with the 5-by-5 table (bottom-right panel of Figure 1). Although
we found a statistically significant association between education level and sui-
cide (p < 0.001 for all test statistics), the degree of association was not high
(w = 0.16). Under this simulation scenario, the power of the Pearson and Cressie-
Read test statistics was lower than the likelihood ratio test, which was similar
to the real dataset results. On the other hand, the COVID-19 dataset had a
large effect size (i.e., w = 0.46), small sample size (i.e., n = 52), and imbalanced
sampling design according to the row probabilities (i.e., 0.385, 0.289, 0.039, 0.115,
and 0.173). This dataset corresponds to the simulation combination of large ef-
fect size, small sample size, and imbalanced sampling design with the 5-by-2 table
(upper-right panel of Figure 2). In the COVID-19 dataset, all test statistics found
a significant association between disease group and respiratory support system.
According to the simulation results, there were slight differences between meth-
ods under a similar scenario in the COVID-19 dataset. Nonetheless, the power
of likelihood ratio and Fisher-Freeman-Halton test statistics were higher than
other methods. We observed results similar to simulation results in the COVID-
19 dataset. The power of the likelihood ratio test statistic was the highest as
compared to other methods. In addition, we saw that the Freeman-Tukey and
Fisher-Freeman-Halton tests were almost similar to the likelihood ratio test.

Datasets/Methods χ2 p-value G2 p-value FT 2 p-value CR p-value FFH
Causes/Education level 48.66 <0.001 52.75 <0.001 54.01 <0.001 49.67 <0.001 0.001
Res. Support/ Group 11.30 0.023 14.23 0.007 13.94 0.007 11.74 0.019 0.016

Table 4: Results of real datasets

4. DISCUSSION

Previous studies in the literature evaluated the performance of various test
statistics for r -by-c contingency tables. Rudas [14] compared the Pearson’s chi-
square, Cressie-Read, and likelihood ratio statistics for 2-by-2 and 3-by-3 tables.
They reported that the Pearson’s chi-square test statistic outperformed the like-
lihood ratio test when the sample size was small. Furthermore, they showed that
the Cressie-Read and Pearson’s chi-square test statistics had similar results. Par-
shall et al. [11] conducted a Monte Carlo simulation study to compare the type-I
error rate and power of Pearson’s chi-square, likelihood ratio, and Cressie-Read
test statistics. They generated datasets from uniform distribution and found that
the likelihood ratio test statistic failed to control the type I error rate at the nom-
inal level. In addition to the previously published studies, this study considered
the effects of sample size, effect size, and sampling design on the performance of
various test statistics of contingency tables. A comprehensive simulation study
were conducted and the findings showed that (Figures 1 – 4):
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• The effect size and sample size were positively associated with the power
of tests. The statistical power of each method increased as the number of
samples or effect size increased.

• Sampling design did not affect the power of tests or slightly changed it.

• The likelihood ratio test had higher type-I error rates than the nominal
level in almost all simulation scenarios. However, its statistical power was
higher than other methods. We concluded that the likelihood ratio test was
generally liberal, and the rejected null hypothesis should be validated using
alternative methods.

• The Pearson’s chi-square and Cressie-Read statistics had similar results in
almost all scenarios. We mainly suggest these methods for balanced or
almost balanced sampling designs when the sample size is large.

• The Fisher-Freeman-Halton (FFH) test had similar results with Pearson’s
chi-square and Cressie-Read tests in balanced sampling designs. However,
results were promising and better than other methods in the imbalanced
sampling designs. Hence, we suggest using the FFH test when the sampling
design is imbalanced.

• The Freeman-Tukey (FT) test had decreased power as the sampling design
became imbalanced. Even the type-I error rate was higher than the nominal
level, except for the imbalanced sampling design with a small sample size,
the FT test was better at controlling the type-I error rate than the likelihood
ratio test.

To test the independence between variables in two-way contingency tables,
one should be aware of the sampling design, the sample size, and the effect size.
The power and type-I error rate are affected by those factors. The Pearson’s chi-
square test is a frequently used method for testing the independence in two-way
contingency tables. However, we showed in our study that the Cressie-Read and
Fisher-Freeman-Halton tests are efficient alternatives to the Pearson’s chi-square
test since they are good at controlling type-I error rates at the nominal level
under certain conditions. Moreover, the power of these test statistics is as good
as or better than the Pearson’s chi-square test statistic. Therefore, researchers
should consider the effect of the above-mentioned factors before selecting the
appropriate test statistic for testing the independence in a contingency table.

Another significant issue in the analysis of the contingency tables is whether
there are cells with zero observed frequencies and expected frequencies below 5.
These cell frequencies affect the choice of the appropriate test statistic. In this
study, we counted both the number of cells with zeros and the cells with an
expected value of less than 5 for 10, 000 replication data in each simulation sce-
nario. The average number of cells with zeros and the average number of cells
with expected counts below 5 were calculated specifically in the small sample size
and imbalanced design for both 5-by-5 and 5-by-2 tables. The average number of
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cells with zeros was 4 (16%) and the average number of cells with the expected
value less than 5 was 14 (56%) in the 5-by-5 tables. For the 5-by-2 tables, these
values were 1 (10%) and 5 (50%), respectively. The amount of cells with lower
expected counts were in the majority as expected. However, the amount of zero
inflation were slight to moderate in some of simulation scenarios. This study did
not account for the effect of zero inflation since it was not severe in the generated
datasets. However, the effect of zero inflation should carefully considered before
selecting an appropriate test statistic in contingency tables. Lydersen [8] indi-
cated that when no more than 20 percent of the cells have an expected value below
5, the Fisher’s exact test was recommended. In this study, for the small sample
size and imbalanced design, we also observed that the performance of the Fisher-
Freeman-Halton test statistic was better than other test statistics according to
the both type-I error level and power. Therefore, we observed that simulation
results are concordant with the literature [8]. As a result, for a small sample
size with an imbalanced sampling design, we could say that the Fisher-Freeman-
Halton test statistic is more convenient for these conditions when considering the
results.

This study considered two-way contingency tables with dimensions 5-by-5
and 5-by-2. In practice, researchers wish to work with contingency tables with
lower dimensions due to simplicity and less sample size. However, one may be
required to work with a contingency table having rows or columns above three.
For example, in medical sciences, a binary response variable such as death versus
alive or healthy versus diseased might be compared between five groups which
can be summarized in a contingency table with dimensions 5-by-2. Furthermore,
a response variable with five categories like a 5-point Likert scale or reasons of
suicides as in Table 2 might be associated with another categorical variable with
five categories such as the education level. Although high-dimensional contin-
gency tables are not frequently used or preferred in researches, they may have
to be used in some studies. Therefore, the performance of test statistics in high-
dimensional contingency tables should be carefully considered for selecting an
appropriate test statistic. Our study provided detailed results of test statistics in
high-dimensional contingency tables. Furthermore, this study can be extended
to a more general case by considering the dimension of contingency tables as a
new factor in the simulation scenarios.

The problem of selecting the appropriate method for testing the indepen-
dence in a contingency table is not a recent topic; however, it is an ongoing issue
since the performance of each method is unclear for most of the scenarios. In
this study, we conducted a comprehensive simulation study considering several
factors, and compared the simulation results with real data examples. We aimed
to provide comparative results and bring attention to other statistical methods
than Pearson’s chi-square test, which is the most common in practice. We high-
lighted that researchers should consider various factors such as sampling design,
sample size, and effect size before selecting the statistical procedures to test the
independence in contingency tables. Although we covered many scenarios in the
simulation study, there still exist scenarios that are not covered and the perfor-
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mances are unclear. Our study was not able to reflect the performance of selected
methods in sparse contingency tables. We leave this topic for further research.
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APPENDIX

Effect
Size

Sampling
Design

Sample
Size

Pearson’s Chi-Square Likelihood Freeman-Tukey Cressie-Read
Fisher-Freeman

-Halton

Low (w=0.1)

Balanced
100 0.0658 0.1165 0.1018 0.0677 0.0667
200 0.0968 0.1214 0.1024 0.1011 0.1002
500 0.2161 0.2315 0.2193 0.2179 0.2200

Almost
Balanced

100 0.0757 0.1346 0.1151 0.0791 0.0801
200 0.1172 0.1416 0.1189 0.1187 0.1169
500 0.2550 0.2688 0.2531 0.2557 0.2561

Imbalanced
100 0.0723 0.1289 0.0709 0.0703 0.0868
200 0.1069 0.1638 0.1332 0.1084 0.1245
500 0.2531 0.2820 0.2616 0.2559 0.2658

Medium (w=0.3)

Balanced
100 0.4006 0.5628 0.5205 0.4221 0.4244
200 0.8280 0.8898 0.8742 0.8449 0.8556
500 1.0000 1.0000 1.0000 1.0000 1.0000

Almost
Balanced

100 0.3793 0.5174 0.4635 0.3958 0.4053
200 0.7792 0.8260 0.7988 0.7874 0.7940
500 0.9990 0.9991 0.9992 0.9990 0.9990

Imbalanced
100 0.4104 0.5494 0.4300 0.4096 0.5020
200 0.7810 0.8312 0.7939 0.7839 0.8366
500 0.9985 0.9986 0.9985 0.9986 0.9988

Large (w=0.5)

Balanced
100 0.9448 0.9910 0.9867 0.9566 0.9586
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000

Almost
Balanced

100 0.9412 0.9713 0.9565 0.9487 0.9547
200 0.9999 0.9999 0.9999 0.9999 0.9999
500 1.0000 1.0000 1.000 1.0000 1.0000

Imbalanced
100 0.9423 0.9745 0.9560 0.9482 0.9745
200 0.9421 0.9734 0.9522 0.9477 0.9738
500 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5: Simulation results – Power of tests in 5-by-5 contingency table

Effect
Size

Sampling
Design

Sample
Size

Pearson’s Chi-Square Likelihood Freeman-Tukey Cressie-Read
Fisher-Freeman

-Halton

Low (w=0.1)

Balanced
40 0.0656 0.0950 0.0819 0.0769 0.0619
80 0.0964 0.1103 0.1002 0.0971 0.0946
200 0.1661 0.1743 0.1683 0.1681 0.1680

Almost
Balanced

40 0.0673 0.1089 0.0948 0.0735 0.0713
80 0.0899 0.1055 0.0936 0.0921 0.0906
200 0.1653 0.1735 0.1684 0.1679 0.1656

Imbalanced
40 0.0514 0.0949 0.0634 0.0531 0.0703
80 0.0912 0.1333 0.1211 0.0966 0.1027
200 0.1709 0.1826 0.1720 0.1737 0.1729

Medium (w=0.3)

Balanced
40 0.2837 0.3494 0.3071 0.3074 0.2674
80 0.5500 0.5809 0.5527 0.5521 0.5403
200 0.9513 0.9534 0.9504 0.9515 0.9502

Almost
Balanced

40 0.2663 0.3442 0.3044 0.2768 0.2672
80 0.5260 0.5529 0.5231 0.5306 0.5216
200 0.9449 0.9462 0.9430 0.9452 0.9429

Imbalanced
40 0.2932 0.3855 0.3250 0.2962 0.3539
80 0.5625 0.6094 0.5853 0.5755 0.609
200 0.9567 0.9595 0.9571 0.9571 0.9575

Large (w=0.5)

Balanced
40 0.7870 0.8343 0.8088 0.8124 0.7790
80 0.9890 0.9907 0.9894 0.9891 0.9888
200 1.0000 1.0000 1.0000 1.0000 1.0000

Almost
Balanced

40 0.7558 0.8012 0.7636 0.7630 0.7579
80 0.9852 0.9868 0.9849 0.9856 0.9848
200 1.0000 1.0000 1.0000 1.0000 1.0000

Imbalanced
40 0.7710 0.8137 0.7815 0.7723 0.8123
80 0.7758 0.8171 0.7850 0.7766 0.8169
200 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6: Simulation results – Power of tests in 5-by-2 contingency table
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Sampling Design Sample Size Pearson’s Chi-Square Likelihood Freeman-Tukey Cressie-Read
Fisher-Freeman

-Halton

Balanced
100 0.0463 0.0901 0.0761 0.0492 0.0483
200 0.0471 0.0629 0.0532 0.0493 0.0488
500 0.0478 0.0524 0.0479 0.0476 0.0479

Almost
Balanced

100 0.0503 0.0938 0.0798 0.0524 0.0507
200 0.0503 0.0660 0.0568 0.0510 0.0527
500 0.0496 0.0550 0.0503 0.0490 0.0502

Imbalanced
100 0.0454 0.0815 0.0359 0.0402 0.0476
200 0.0446 0.0800 0.0615 0.0460 0.0493
500 0.0494 0.0629 0.0619 0.0498 0.0507

Table 7: Simulation results – Type I error rates in 5-by-5 contingency
table

Sampling Design Sample Size Pearson’s Chi-Square Likelihood Freeman-Tukey Cressie-Read
Fisher-Freeman

-Halton

Balanced
40 0.0472 0.0724 0.0607 0.0564 0.0452
80 0.0502 0.0597 0.0528 0.0505 0.0473
200 0.0511 0.0539 0.0512 0.0515 0.0499

Almost
Balanced

40 0.0464 0.0851 0.0729 0.0513 0.0489
80 0.0483 0.0578 0.0509 0.0500 0.0490
200 0.0498 0.0538 0.0491 0.0504 0.0508

Imbalanced
40 0.0345 0.0678 0.0418 0.0354 0.0451
80 0.0392 0.0717 0.0643 0.0428 0.0447
200 0.0462 0.0550 0.0500 0.0480 0.0498

Table 8: Simulation results – Type I error rates in 5-by-2 contingency
table
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