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Abstract:

• In product-life testing experiments, the accelerated life testing (ALT) is applied to
reduce the time and cost of tests. We consider the constant-stress partially ALT
model when the lifetime of units under normal conditions follow the generalized half-
logistic lifetime distribution based on progressive Type-II censored schemes. The
likelihood functions of the parameters are derived and solved to present the maximum
likelihood estimators of the model parameters. The approximate and two bootstrap
confidence intervals are also proposed. The performance of the different methods were
measured and compared through Monte Carlo simulation study. Finally, the results
of a numerical example are discussed.
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1. INTRODUCTION

According to [1–4], there are different methods of accelerated life testing
(ALT): the constant-stress ALT, in which the stress on the life test product
remains at a constant level, the progressive-stress ALT, in which the stress applied
to the product units in the test increases with time [5], and the step-stress ALT,
in which the test condition changes for a given time or a specified number of
failures [6,7]. For more recent research on the constant-stress partially ALT, see
[8,9].

In product-life test experiments, censoring has played an important role.
Different types of censoring are available. Type-I and Type-II censoring schemes
(CSs) are commonly applied, both of which do not allow the removal of any
units other than at the terminal point of the test. General CSs that allow units

∗The opinions expressed in this text are those of the authors and do not necessarily reflect
the views of any organization.
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to be removed at any point during the test are called progressive Type-II right
censoring. For important reviews of the literature on progressive censoring, see
[10].

Let n be the number of units tested in a product-life testing experiment
and T1, T2, ..., Tn, be the corresponding lifetimes. Assume that the Ti, i = 1, 2,
..., n are independent and identically distributed (i.i.d.) with probability density
function (PDF) f(.) and cumulative distribution function (CDF) F (.). In the
progressive Type-II CS prior to the experiment, the effective sample size m and
the corresponding CS R = {R1, R2, ..., Rm} are determined; then TR

i;m,n, i = 1, 2,
..., m is the corresponding random variable of the progressive Type-II censored
sample.

The joint likelihood function of the observed progressive Type-II censored
sample t= (tR1;m,n, tR2;m,n, ..., tRm;m,n ) is given by

(1) f(t, θ) = Q
m∏

i=1

f(tRi;m,n)[1− F (tRi;m,n)]Ri,

where the observed progressive Type-II censored sample t satisfies 0 <
t1;m,n < t2;m,n < ... < tm;m,n < ∞ ,and

(2) Q =
m−1∏

i=0


n−

i∑

j=0

Rj − i


 , R0 = 0.

Balakrishnan [11] has considered the half-logistic distribution as the distribution
of the absolute standard logistic variate. Important properties of a generalized
version of the logistic distribution are discussed by Balakrishnan and Hossain [12].
The point estimation of the stress–strength reliability of generalized half-logistic
distribution (GHLD) is presented by Ramakrishnan [13]. The shape parameter of
the GHLD was estimated under Type-I progressive censoring in Arora et al. [14].
The Bayesian approach with a GHLD was discussed in Kim et al. [15]. Recently,
testing procedures for the reliability functions of the GHLD were considered in
Chaturvedi et al. [16] and in a Type-I generalized half-logistic survival model in
Awodutire et al. [17].

Let T be a random variable of a GHLD with shape parameter β; the PDF
and CDF are given respectively by

(3) f(t) =
β

1 + exp(−t)

(
2 exp(−t)

1 + exp(−t)

)β

, t > 0, β > 0,

and

(4) F (x)=1−
(

2 exp(−t)
1 + exp(−t)

)β

,
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The reliability function S(t) and the hazard rate function H(t) are expressed as

(5) S(t) =
(

2 exp(−t)
1 + exp(−t)

)β

, t > 0, β > 0,

and

(6) H(t) =
β

1 + exp(−t)
.

This GHLD is considered as a special probability distribution with a loca-

tion parameter and a scale parameter, defined by F (x)=1 −
(

2 exp(−t
σ

)

1+exp(−t
σ

)

)β

with

σ = 1. The best linear unbiased estimator of the location and scale parameters as
well as the values of the variance and covariance of these estimators is presented
in [18]. Ref. [19] discusses the estimator as an approximation of the likelihood
functions based on a Type-II censoring sample. The estimation of the parame-
ter of the half-logistic distribution under progressive Type-II censored sample is
presented in [20].

The aim of this paper is to estimate the GHLD under constant-stress
partially ALT with progressive Type-II CS. The maximum likelihood estima-
tor (MLE) and the bootstrap estimator of each unknown GHLD parameter and
the acceleration factor are presented. The point estimates of the MLE and boot-
strap estimator mainly assess and compare their biases and mean-squared errors
(MSE’s), as well as the approximate interval estimation and bootstrap confidence
intervals (CIs), with respect to coverage percentage and the mean of interval
lengths using extensive simulation studies.

In this article, the assumptions and model are described in Section 2. The
MLEs and the corresponding approximate confidence intervals (ACIs) are given
in Section 3. Two bootstrap CIs are discussed in Section 4. We assess and
compare the results of Monte Carlo studies in Section 5. A numerical example
of a simulated data set is presented in Section 6. Finally, some comments about
the results of the simulation studies are presented in Section 7.

2. Assumptions and Model

In the experiment design for the constant-stress partially ALTs, n1 units
from n testing units are randomly chosen to be tested under normal conditions;
the remaining units n2 = n − n1 are tested under accelerated conditions. The
model for the progressive Type-II censoring with constant-stress partially ALTs
is described as follows. The subscript label j = 1, 2 signify the two conditions,
normal and accelerated; when the first failure TRj

j1;mj ,nj
is recorded, Rj1 units are

randomly removed from the remaining nj −1 surviving units. Also at the second
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failure, TRj
j2;mj ,nj

is recorded and Rj2 units from the remaining nj−2-Rj1 units are

randomly removed. The test continues until the mj -th TRj
jmj ;mj ,nj

failure and the

remaining Rjmj = nj-mj−
mj−1∑
k=1

Rjk units are removed, for j = 1, 2. In this model,

each of the Rji and mj < nj are fixed prior to beginning the test. If the times
of failure of the nj units originally in the test are from a continuous population
with a distribution function Fj(t) and probability density function fj(t), the joint
probability density function for TRj

j1;mj ,nj
< TRj

j2;mj ,nj
< ...¡ TRj

jmj ;mj ,nj
and j = 1, 2

is given as follows.

The joint likelihood function for t = (TRj
j1;mj ,nj

, TRj
j2;mj ,nj

, ..., TRj
jmj ;mj ,nj

) for
j = 1, 2, is given by

(7) L(β, λ|t) =
2∏

j=1

Qj

{mj∏

i=1

fj(t
Rj
ji;mj ,nj

)
(
Sj(t

Rj
ji;mj ,nj

)
)Rji

}
,

where Qj =
mj−1∏
i=0

(
nj −

∑i
l=0 Rlj − i

)
, R0j = 0. In the accelerated lifetime

model, assuming that S2(t)= S1(λt). Let T be a random variable under nor-
mal conditions, then the lifetime of the unit under accelerated conditions can be
defined by Y = T

λ , where λ is the acceleration factor. Hence, the probability den-
sity and cumulative distribution functions of the GHLD with observed lifetime
under the accelerated condition are given by

(8) f2(y) =
λβ

1 + exp(−λy)

(
2 exp(−λy)

1 + exp(−λy)

)β

, y > 0, β, λ > 0.

and

(9) F2(y) = 1−
(

2 exp(−λy)
1 + exp(−λy)

)β

.

Also, the reliability function S(y) and hazard rate function H(y) are given, re-
spectively, by

(10) S2(y) =
(

2 exp(−λy)
1 + exp(−λy)

)β

,

and

(11) H2(y)=
λβ

1 + exp(−λy)
.
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3. Maximum Likelihood Estimation

3.1. Point estimation

Let T=
(
TRj

j1;mj ,nj
< TRj

j2;mj ,nj
< ... < TRj

jmj ;mj ,nj

)
, j = 1, 2 denote two pro-

gressively Type-II censored samples from two populations for which the PDFs
and CDFs are as given in (3), (4), (8), and (9), with Rj = (Rj1, Rj2, ..., Rj1).
The log-likelihood function `(β, λ|t) = log L(β, λ|t) without normalized constant
is then given by

(12)

`(β, λ|t) = (m1 + m2) log β + m2 log λ + nβ log 2−
m1∑
i=1

log [1 + exp(−t1i))]

−
m2∑
i=1

log [1 + exp(−λt2i))]− β
m1∑
i=1

(R1i + 1) log (1 + exp(t1i))

−β
m2∑
i=1

(R2i + 1) log (1 + exp(λt2i)) .

The likelihood equations is obtained by calculating the first partial deriva-
tives of (12) with respect to β and λ, and then equating each to zero:

(13)

∂`(β,λ|t)
∂β = m1+m2

β + n log 2−
m1∑
i=1

(R1i + 1) log (1 + exp(t1i))

−
m2∑
i=1

(R2i + 1) log (1 + exp(λt2i)) = 0,

giving

(14)
β(λ) = −(m1 + m2)

[
m1∑
i=1

(R1i + 1) log (1 + exp(t1i))

+
m2∑
i=1

(R2i + 1) log (1 + exp(λt2i))− n log 2
]−1

,

and

(15)
∂`(β,λ|t)

∂λ = m2
λ +

m2∑
i=1

t2i (1 + exp(λt2i))
−1 + β

m2∑
i=1

(R2i + 1)

×t2i (1 + exp(−λt2i))
−1 = 0,

giving

(16)
m2

λ
+

m2∑

i=1

t2i (1 + exp(−λt2i))
−1+β

m2∑

i=1

(R2i+1)t2i (1 + exp(−λt2i))
−1 = 0 .
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The likelihood equations reduce to the single nonlinear equation (16), which can
be solved numerically using the fixed point method or the quasi-Newton Raphson
to obtain the MLE of λ say λ̂, and hence β̂ using (14).

3.2. Approximate interval estimation

The asymptotic normality theory is applied to construct asymptotic CIs of
the MLEs. The Fisher information matrix requires the second partial derivatives
of (12) with respect to β and λ :

(17)
∂2`(α, β, λ|t)

∂β2
=
−(m1 + m2)

β
,

(18)
∂2`(β, λ|t)

∂β∂λ
=

∂2`(β, λ|t)
∂λ∂β

= −β

m2∑

i=1

(R2i + 1)t2i (1 + exp(−λt2i))
−1 ,

and

(19)
∂2`(β,λ|t)

∂λ2 = −m2
λ2 −

m2∑
i=1

t22i (1 + exp(−λt2i))
−2 + β

m2∑
i=1

(R2i + 1)t22i exp(λt2i)

× (1 + exp(λt2i))
−2 .

Then, the expectation of the difference of equations (17) and (19) is defined as the
Fisher information matrix I (β, λ). The MLEs (β̂, λ̂ ) with some mild regularity
conditions follows the approximately bivariate normal distribution with mean
(β, λ) and covariance matrix [I (β, λ)]−1. Usually, in practice, the estimate of

[I (β, λ)]−1 is used by
[
I0

(
β̂, λ̂

)]−1
. A simpler and equally valid procedure is to

use the approximation

(20) (β̂, λ̂) ∼ N

(
(β, λ) ,

[
I0(β̂, λ̂)

]−1
)

,

where I0 (β, λ) is the observed information matrix

(21)

[
−∂2`(β,λ|x)

∂β2 − ∂2`(β,λ|x)
∂β∂λ

−∂2`(β,λ|x)
∂λ∂β − ∂2`(β,λ|x)

∂λ2

]−1

(β̂,λ̂)

.

The approximate CIs for the parameters β and λ are obtained from the bivariate

normal distribution with mean (β, λ) and covariance matrix
[
I0(β̂, λ̂)

]−1
. Thus,

the 100(1-2α)% ACIs for β and λ are

(22) β̂ ∓ zα
√

v11 and λ̂∓ zα
√

v22,

respectively, where v11 and v22 are the elements on the diagonal of the covariance
matrix I−1

0 (β̂, λ̂) and zα is the percentile of the standard normal distribution with
the right-tail probability α.
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4. Bootstrap Confidence Intervals

In some cases, if the objective of the study is to determine the estimators,
CIs, bias, and variance of an estimator or to calibrate hypothesis tests, then
the bootstrap technique plays an important role. Different types of bootstrap
techniques are available, such as those called parametric [21] and nonparametric
[22]. In this section the parametric bootstrap technique is adopted to construct
the percentile bootstrap CI (PBCI) (see [23] for more details) and the bootstrap-
t CI (BTCI) (see [21]). The following algorithm is used to differentiate the two
types of bootstrap techniques.

1 Based on the observed original progressively Type-II sample, (tj1;mj ,nj <

tj2;mj ,nj < ...¡ tjmj ;mj ,nj ), obtain β̂, and λ̂, j = 1, 2.

2 Based on the values of nj and mj (1 < mj < nj) with the same values of Rji,
(i = 1, 2, ..., mj), j = 1, 2, generate two independent random samples of
sizes m1 and m2 from the GHLD, t∗ =(t∗j1;mj ,nj

< t∗j2;mj ,nj
< ...¡ t∗jmj ;mj ,nj

) using the algorithm described in [25].

3 As in step 1 based on t∗ compute the bootstrap sample estimates of β̂, and
λ̂ denoted here as β̂∗ and λ̂∗.

4 Steps 2 and 3 are repeated N times, thereby N different bootstrap samples
are represented. The value of N may be taken as 1000.

5 The values of β̂∗ and λ̂∗ are arranged all in ascending order to obtain the
bootstrap sample (θ̂∗[1]

l , θ̂
∗[2]
l , ..., θ̂

∗[N ]
l ), l = 1, 2 where (θ∗1 = β∗, θ∗2 = λ∗).

Percentile bootstrap CIs

For given H(y) = P (θ̂∗k 6 y) the cumulative distribution function of θ̂∗k.
Define θ̂∗kboot = H−1(y) for given y. The approximate bootstrap 100(1− 2α)% CI
of θ̂∗l is given by

(23)
[
θ̂∗lboot(α), θ̂∗lboot(1− α)

]
.

Bootstrap-t CIs

First, we present the order statistics ω
∗[1]
k < ω

∗[2]
k < ... < ω

∗[N ]
k ,

(24) ω
∗[j]
k =

θ̂
∗[j]
l − θ̂l√

var
(
θ̂
∗[j]
l

) , j = 1, 2, ..., N, l = 1, 2,

where θ̂1 = β̂, θ̂2 = λ̂.
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For given H(y) = P (ω∗l < y) the cumulative distribution function of ω∗l ,
and given y, is defined as

(25) θ̂lboot−t = θ̂l +
√

Var(θ̂l)H−1(y).

The approximate 100(1− 2α)% CIs of θ̂k is given by

(26)
(
θ̂lboot−t(α), θ̂lboot−t(1− α)

)
.

5. Simulation Studies

We now adopted undertake simulation studies with the help of the Math-
ematica program Ver. 8.0 to illustrate the theoretical results of the estimation
problem. The performance of the different point estimators of the shape parame-
ter of the GHLD and the acceleration factor are measured and compared with the
average of the estimates (AVG), absolute relative bias (RAB), and mean square
error (MSE); specifically,

(27) AVG(θ̂l) =
1
M

M∑

i=1

θ̂
(i)
l , (θ1 = β, θ2 = λ),

(28) RAB(θ̂l)=
|θ̂l − θl|

θl
,

and

(28) MSE(θ̂l) =
1
M

M∑

i=1

(
θ̂
(i)
l − θl

)2
.

For each of the CIs, the ACIs and the different bootstrap CIs can be measured
and compared using the average confidence lengths (AC) as well as the coverage
percentages (CP). For the generated sample, we computed the 90% CIs, recorded
AC, and checked whether the true value lay within the interval (CP). In simula-
tion studies, this step is repeated 1000 times. The estimated CP was computed
as the number of CIs that covered the true values divided by 1000 whereas the
estimated expected width of the CI was computed as the sum of the lengths for
all intervals divided by 1000. Now, we present the definitions of the different CSs
that are used in our simulation studies:

CS I : Rji = 0 for i < m and Rjm = n−m.

CS II : Rji = 0 for i > 1 and Rj1 = n−m.
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CS III : for odd m, Rji = 0 for i > m+1
2 or i < m+1

2 and Rj m+1
2

= n−m.

Also, for even m, Rji = 0 for i > m
2 or i < m

2 and Rj m
2

= n−m.

CS IV : Rj 2m−n
2

+1 = ... = Rj n
2

= 1, other Rji = 0.

In our simulation studies, we consider two separate cases:

(1) The model parameter values (β = 0.5, λ = 2.0), the sample sizes (n1 =
n2 = n) and observed failure times (m1 = m2 = m); results are listed in
Tables 1 and 2.

(2) The model parameter values (β = 2.5, λ = 1.5), the sample sizes (n2 =
2n1 = 2n) and observed failure times (m2 = 2m1 = 2m); results are listed
in Tables 3 and 4..
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Table 1: AVG and RABs (MSEs) of ML and Bootstrap estimates for the parameters
(β=0.5 and λ=2.0).

(n,m) CS MLE Bootstrap
β λ β λ

(30,15) I 0.5370 1.8242 0.5410 1.8109

0.0507(0.147) 0.098(0.471) 0.055(0.248) 0.145(0.645)

II 0.5300 1.8950 0.5312 1.8229

0.0481(0.126) 0.079(0.410) 0.049(0.210) 0.140(0.584)

III 0.5361 1.8720 0.5347 1.8198

0.0497(0.133) 0.090(0.425) 0.053(0.229) 0.142(0.609)

IV 0.5457 1.8889 0.5317 1.8301

0.0487(0.123) 0.087(0.419) 0.049(0.219) 0.142(0.601)

(30,25) I 0.5204 1.889 0.5229 1.8740

0.0413(0.101) 0.052(0.394) 0.043(0.131) 0.085(0.451)

II 0.5154 1.9241 0.5201 1.8654

0.039(0.099) 0.048(0.289) 0.040(0.120) 0.074(0.325)

III 0.5224 1.9094 0.5244 1.8741

0.042(0.102) 0.049(0.317) 0.041(0.135) 0.081(0.377)

IV 0.5208 1.9107 0.5232 1.8841

0.041(0.100) 0.050(0.314) 0.040(0.124) 0.080(0.364)

(50,25) I 0.5215 1.920 0.5240 1.9014

0.041(0.098) 0.050(0.378) 0.045(0.128) 0.083(0.440)

II 0.5109 1.951 0.5217 1.9241

0.031(0.081) 0.045(0.326) 0.041(0.119) 0.079(0.420)

III 0.5122 1.936 0.5217 1.9288

0.035(0.093) 0.044(0.331) 0.040(0.131) 0.074(0.426)

IV 0.5220 1.944 0.5200 1.9233

0.034(0.090) 0.043(0.338) 0.039(0.130) 0.071(0.415)

(50,40) I 0.5100 1.9821 0.5107 1.9621

0.022(0.052) 0.033(0.208) 0.031(0.101) 0.036(0.401)

II 0.5102 1.9800 0.5099 1.9751

0.020(0.040) 0.022(0.109) 0.022(0.081) 0.027(0.265)

III 0.5133 1.9741 0.5118 1.9751

0.022(0.042) 0.025(0.119) 0.024(0.094) 0.029(0.377)

IV 0.5201 1.9788 0.5122 1.9788

0.023(0.041) 0.024(0.112) 0.021(0.090) 0.030(0.372)
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Table 2: The (AC) and (CP) of 90% CIs (β, λ) at ( 0.5, 2.0).
(n,m) CS MLE Boot-P Boot-t

β λ β λ β λ

(30,15) I 2.1214 3.2145 3.1354 5.2336 2.1019 3.2100

(0.88) (0.87) (0.87) (0.86) (0.89) (0.88)

II 2.1110 3.1177 3.1123 5.2210 2.1007 3.2006

(0.88) (0.89) (0.93) (0.88) (0.89) (0.91)

III 2.1133 3.1224 3.1209 5.2319 2.1016 3.2055

(0.87) (0.88) (0.92) (0.88) (0.89) (0.90)

IV 2.1125 3.1233 3.1212 5.2400 2.1109 3.2107

(0.88) (0.88) (0.88) (0.87) (0.89) (0.91)

(30,25) I 2.1009 3.2010 3.1210 5.2221 2.1000 3.2009

(0.89) (0.88) (0.87) (0.88) (0.89) (0.90)

II 2.0789 3.0166 3.1000 4.6215 1.9524 3.1612

(0.92) (0.91) (0.92) (0.93) (0.91) (0.89)

III 2.1087 3.0198 3.1017 5.1017 2.0041 3.2008

(0.89) (0.89) (0.89) (0.92) (0.90) (0.89)

IV 2.1108 3.1010 3.1205 5.1003 2.0000 3.2107

(0.91) (0.90) (0.92) (0.89) (0.90) (0.919)

(50,25) I 2.1023 3.1077 3.1187 5.2119 2.0139 3.1748

(0.89) (0.88) (0.89) (0.88) (0.88) (0.90)

II 2.0742 3.0142 2.9811 4.7217 1.9541 3.1752

(0.93) (0.89) (0.92) (0.88) (0.90) (0.92)

III 2.1102 3.1100 3.1107 5.1009 2.0051 3.2012

(0.88) (0.89) (0.91) (0.89) (0.91) (0.89)

IV 2.1111 3.1009 3.1217 5.1014 2.0021 3.2112

(0.88) (0.91) (0.91) (0.89) (0.90) (0.89)

(50,40) I 1.9821 3.0087 3.0584 5.0472 1.7742 3.1010

(0.89) (0.89) (0.92) (0.88) (0.89) (0.910)

II 1.7490 2.9874 2.6511 4.1145 1.7120 3.0770

(0.88) (0.89) (0.89) (0.93) (0.89) (0.91)

III 1.8890 3.1120 2.6742 4.1246 1.7331 3.1070

(0.89) (0.89) (0.89) (0.92) (0.90) (0.90)

IV 1.8741 3.10820 2.6662 4.1195 1.7320 3.1040

(0.91) (0.92) (0.89) (0.92) (0.91) (0.89)
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Table 3: AVG and RABs (MSEs) of ML and Bootstrap estimates for the parameters
(β=2.5 and λ=1.5).

(n,m) CS MLE Bootstrap
β λ β λ

(20,10) I 2.5390 1.4522 2.5561 1.4522

0.120(0.521) 0.109(0.471) 0.1324(0.641) 0.111(0.499)

II 2.5211 1.4745 2.5423 1.4642

0.115(0.446) 0.087(0.406) 0.125(0.549) 0.099(0.408)

III 2.5341 1.4624 2.5450 1.4602

0.120(0.498) 0.109(0.450) 0.129(0.587) 0.101(0.470)

IV 2.5327 1.4631 2.5462 1.4611

0.118(0.487) 0.105(0.450) 0.131(0.591) 0.105(0.465)

(20,15) I 2.5220 1.4842 2.5325 1.4740

0.101(0.521) 0.087(0.328) 0.101(0.554) 0.084(0.332)

II 2.5201 1.4892 2.5288 1.4884

0.087(0.421) 0.060(0.301) 0.099(0.511) 0.050(0.311)

III 2.5213 1.4811 2.5485 1.4811

0.099(0.460) 0.080(0.317) 0.110(0.522) 0.070(0.328)

IV 2.5217 1.4804 2.5477 1.4814

0.097(0.455) 0.082(0.322) 0.108(0.518) 0.069(0.331)

(30,20) I 2.5198 1.4811 2.5311 1.4720

0.100(0.515) 0.086(0.312) 0.099(0.44) 0.081(0.311)

II 2.5190 1.4893 2.5288 1.4870

0.060(0.400) 0.055(0.280) 0.070(0.500) 0.046(0.287)

III 2.5196 1.4814 2.5462 1.4900

0.090(0.454) 0.076(0.312) 0.101(0.511) 0.065(0.314)

IV 2.5211 1.4774 2.5477 1.4855

0.097(0.455) 0.079(0.318) 0.106(0.519) 0.062(0.325)

(30,25) I 2.5101 1.4954 2.5210 1.4894

0.089(0.256) 0.050(0.214) 0.060(0.265) 0.042(0.266)

II 2.5121 1.4998 2.5109 1.4899

0.051(0.202) 0.020(0.148) 0.052(0.215) 0.040(0.200)

III 2.5111 1.4974 2.5109 1.4864

0.060(0.215) 0.023(0.201) 0.069(0.261) 0.045(0.212)

IV 2.5113 1.4982 2.5110 1.4870

0.059(0.212) 0.021(0.212) 0.067(0.242) 0.046(0.209)
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Table 4: The (AC) and (CP) of 90% CIs (β, λ) at ( 2.5, 1.5).
(n,m) CS MLE Boot-t Boot-P

β λ β λ β λ

(20,10) I 4.1147 3.1231 5.2414 3.5421 4.1009 3.1037

(0.87) (0.88) (0.85) (0.86) (0.89) (0.89)

II 3.9544 3.0032 3.9881 3.2131 3.7542 3.0011

(0.88) (0.88) (0.87) (0.88) (0.89) (0.91)

III 3.9654 3.0172 3.9991 3.2321 3.8045 3.0712

(0.88) (0.89) (0.92) (0.88) (0.90) (0.92)

IV 3.9622 3.0161 3.9970 3.2300 3.8039 3.0702

(0.88) (0.89) (0.93) (0.92) (0.91) (0.91)

(20,15) I 3.7541 3.1001 3.7865 3.1124 3.7111 3.0099

(0.91) (0.89) (0.88) (0.89) (0.89) (0.91)

II 3.1542 2.8570 3.7742 2.899 3.1421 2.8110

(0.89) (0.88) (0.89) (0.89) (0.90) (0.91)

III 3.1588 2.8598 3.7760 2.9200 3.1441 2.8132

(0.88) (0.89) (0.91) (0.88) (0.91) (0.91)

IV 3.1570 2.8592 3.7755 2.9136 3.1432 2.8127

(0.89) (0.90) (0.92) (0.91) (0.92) (0.90)

(30,20) I 3.7531 3.0991 3.7854 3.1118 3.7101 3.0088

(0.92) (0.89) (0.89) (0.89) (0.90) (0.92)

II 3.1522 2.8550 3.7720 2.8965 3.1400 2.8094

(0.90) (0.88) (0.91) (0.89) (0.91) (0.91)

III 3.1573 2.8585 3.7750 2.9199 3.1432 2.8124

(0.89) (0.89) (0.88) (0.88) (0.92) (0.91)

IV 3.1555 2.8580 3.7742 2.9127 3.1421 2.8118

(0.89) (0.88) (0.92) (0.93) (0.91) (0.91)

(30,25) I 3.7014 3.0665 3.7116 3.0772 3.6542 3.0545

(0.91) (0.89) (0.89) (0.92) (0.91) (0.92)

II 3.5124 3.0256 3.5198 3.0281 3.5111 3.0231

(0.901) (0.89) (0.91) (0.89) (0.90) (0.91)

III 3.5321 3.0290 3.5221 3.0321 3.5185 3.0287

(0.88) (0.89) (0.89) (0.88) (0.91) (0.91)

IV 3.5314 3.0282 3.5214 3.0307 3.5172 3.0281

(0.89) (0.898) (0.90) (0.92) (0.901) (0.92)

6. Numerical Example

For demonstration purposes, the estimation procedure described in the pre-
vious section is applied to the set of simulated progressive Type-II censoring data
under the constant-stress partially ALT. The MLEs and the two bootstrap CIs are
computed for model parameters β and λ with the real parameters are equal to 1.5
and 2.0, respectively. In this example, we simulate samples of size (m1 = m2 = 15
of n1 = n2 = 30 ) from the GHLD under the two progressive CSs R1 = R2 ={1,
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0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0} using the algorithm described in
Balakrishnan and Sandhu [24]. The simulated data are presented in Table 5. In
Figure 1, the two probability density functions show the effect of an acceleration
factor. The iteration procedure of the MLE needs the initial value of parameter
obtained from the profile log-likelihood function (Figure 2) as 1.8. The point
estimates and related RABs and MSEs of the parameters as well as the 90% and
95% ACIs are listed in Table 6. Also, the point estimates and the relate RABs
and MSEs of the parameters as well as the 90% and 95% PBCIs and BTCIs are
presented in Table 7. We observed that the BTCIs and approximate MLE inter-
vals are narrower than the PBCIs and always include the population parameter
values.

Table 5: Simulated progressively censored samples with constant PALTs.
Normal 0.13901 0.22961 0.26912 0.47032 0.51005 0.52645 0.53583
conditions 0.56987 0.65999 0.79289 0.80636 0.89349 1.56115 1.63822

1.66079
Accelarated 0.00274 0.02767 0.06181 0.06717 0.12004 0.14341 0.25042
conditions 0.27614 0.31457 0.42484 0.54109 0.54112 0.75652 1.13610

1.41038

Table 6: MLEs, MSEs, RABs and (90%-95%) approximate confidence intervales
(.)ML RAB MSE 90% 95%
1.5495 0.0330 0.0495 (0.7769, 2.3221) (0.9011, 2.1979)
1.8034 0.0983 0.1966 (0.7231, 2.8837) (0.8968, 2.7100)

Table 7: percentile bootstrap CIs and Bootstrap-t CIs based on 500 replications.
(.)Boot RAB MSE 90% 95%

BPCI BTCI BPCI BTCI
1.7421 0.1614 0.2421 (0.3241, 3.1205) (0.7981, 2.2954) (0.6581, 2.6325) (0.8881, 2.1472)

2.3415 0.1707 0.3415 (0.5213, 3.2140) (0.7751, 2.7098) (0.4578, 2.6590) (0.7922, 2.5213)

7. Concluding Remarks

In product-life testing experiments, reducing the time and cost, especially
for units with high reliability, illustrates the importance of ALTs. Different types
of ALTs are available, one of the types most suitable for different situations is
the constant-stress partially ALTs. Also, the experimenter in some situations is
unable to obtain complete information of failure times for all experimental units
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Figure 1: Probability density under normal and accelerated condition.

Figure 2: Profile log likelihood function of λ.
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or is in need to remove some units other than the final point of the experiment.
The conventional Type-I and Type-II CSs do not have the flexibility of allowing
to remove any units at points other than the final point of the experiment. Hence,
in this paper, we adopted a more general CS with the constant-stress partially
ALT, known as progressive Type-II censoring. Simulation studies were presented
to assess and compare the performance of the proposed methods. From the
results, we observed the following.

1 For fixed values of sample size n and with increasing effected sample size
m, the MSEs and RABs of the considered parameters decrease.

2 For fixed values of the sample and failure time sizes, CS II, in which the
censoring occurs after the first observed failure, gives more accurate results
through the MSEs and RABs than the other schemes..

3 Results for the CS III and CS IV are more similar.

4 The bootstrap-t credible intervals give more accurate results than the ACIs
than the bootstrap CIs because the lengths of the former are less than
the lengths of the latter, for different sample sizes, observed failures, and
schemes.

5 For fixed sample sizes and observed failures, CS II moreover gives lower
lengths for the three methods to obtain the CIs compared with the other
three schemes.
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