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Abstract:

e Joint modelling of longitudinal and survival data has received much attention in the
recent years and is becoming increasingly used in clinical studies. When the lon-
gitudinal outcome and survival endpoints are associated, the many well-established
models with different specifications proposed to analyse separately longitudinal and
time-to-event outcomes are not suitable to analyse such data and a joint modelling
approach is required. Although some joint models were adapted in order to allow
for competing endpoints, this methodology has not been widely disseminated. The
present study has as main objective to model jointly longitudinal and survival data
in a competing risk context, discussing the different parameterisations of systematic
implementations of these models in the R, using a real data set as an example for
the comparison between the different model approaches. The relevance of this issue
is associated with the need to draw attention of the users of this statistical software
to the different interpretations of model parameters when fitting these models. To
reinforce the relevance of these models in clinical research, we give an example of a
data set on peritoneal dialysis that was analysed in this context, where death/transfer
to haemodialysis was the event of interest and renal transplant was the competing
event. Joint modelling results were also compared to separate analysis for these data.
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1. INTRODUCTION

In many clinical research studies, it is relevant to simultaneously analyse
information on a longitudinal repeatedly registered biomarker and on the time
to a specific outcome event. Furthermore, more than one outcome event may
occur. In these situations, when longitudinal and time-to-event outcomes are
associated, a joint modelling approach taking competing risks into account is
required to correctly analyse such data [23, 25].

Although, in cross-sectional clinical studies only one measure of each clinical
parameter (often the baseline) is used to guide medical decisions, the use of
additional information on repeated measures of clinical parameters allows a better
understanding of the disease progression or treatment benefits [1]. In this type of
longitudinal studies, the analysis of repeated measures of clinical parameters may
be supplemented with information about the time at which an event of interest
has occurred, that is, survival data (also designated by time-to-event data).

With the purpose of analysing separately longitudinal and survival data,
methods such as linear mixed model [4] and Cox proportional hazard model [3],
respectively, are well-established. However, when longitudinal measurements are
correlated with time-to-event (i.e., in the presence of informative censoring - when
the reason for censure is related to the study outcomes), when repeated measures
are measured with error and/or when some missing values are present a joint
modelling approach is required [23]. These aspects that realistically characterize
observed data lead to biased inferences if naive separate methods are applied
[5, 7,9, 12, 20, 23].

Therefore, in joint modelling methodology several objectives may be for-
mulated, according to the main focus of the analysis [5, 10]: (i) to analyse the
time-to-event outcome, taking into account the effect of a longitudinal outcome
as endogenous time-dependent covariate measured with error, (ii) to analyse the
longitudinal outcome in the presence of informative (non-random) dropout time
and (iii) to analyse effects of covariates of interest on both type of outcomes
(longitudinal and time-to-event) simultaneously.

Despite joint modelling of longitudinal and survival data is becoming in-
creasingly popular [2, 18, 24|, joint modelling in competing risk framework has
not been widely used in medical context. Given the complexity of the joint mod-
elling approach in the presence of competing risks, several limitations can be
enumerated, namely the small number of models implemented in statistical soft-
ware and the restriction associated to the number of shared random effects to be
integrated out in the likelihood function due to computational limitations [14].

Several authors have suggested extensions of joint models so that they
could be applied in a competing risks problem, such as Elashoff et al. [6, 7],
Williamson et al. [25], Li et al. [13] and Rizopoulos [19]. The approaches differ
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according to parameterisation, joint likelihood function and estimation method
considered. Up to now there are only two statistical packages, available in the
CRAN repository, that implement systematically two different parameterisations,
the JM package [19] and the joineR package [25].

A very recent review of several implementations of joint modelling was
published [11], which summarize four published models, which have software
available for model estimation. Each model features a different hazard function,
latent association structure between the longitudinal and survival submodels,
estimation approach and software implementation. The models described were
applied to a trial of anti-epileptic drugs. However, in this work we further discuss
the packages joineR and JM, namely the different interpretations of the model
coefficients and the application in another clinical area.

Peritoneal dialysis is one of the main renal replacement therapy. The pro-
gression of end-stage renal disease patients included in a peritoneal dialysis pro-
gram is monitored with regular control visits where several clinical parameters are
recorded, as well as the time until the occurrence of relevant endpoints. Then,
as in many other clinical research areas, in addition to the baseline character-
istics, peritoneal dialysis patient data present two different types of outcomes:
(i) longitudinal outcome, composed by clinical parameters measured at several
time points (such as albumin), and (ii) time-to-event outcome, composed by the
follow-up time until the occurrence of an event of interest. In the specific case
of peritoneal dialysis patients, it is only possible to observe the first outcome
event (and consequently the first time-to-event) from a set of possible competing
events: death/transfer to haemodialysis and renal transplant. For this reason,
we are in a competing risks framework [22].

As referred above, the focus of the present study is on the two approaches to
joint model, which are the only ones implemented in common statistical software
(R) for systematic use by any users, (1) JM package by Rizopoulos [19] and (2)
joineR package by Williamson et al. [25]. In practice these two implementations
of joint models correspond to different parameterisations with different parameter
interpretations. With this work we emphasize that it is important to discuss at
this stage the differences between the two joint models, since interpretation of
model parameters are different, and confusing interpretations may occur. Notice
that, using a real data set as an example, we want to analyse the differences of
the results when using the two model approaches and make interpretations on
the results. It is not our purpose to go further about the performance of the two
approaches. Additionally, the implementation of these approaches allows us to
illustrate the relevance of the joint modelling methodology in the evaluation of a
peritoneal dialysis program.

The objective of this present study is threefold: i) to jointly model longi-
tudinal and survival data in a competing risks framework; ii) to discuss different
parameterisations of systematic implementations of these models in the available
R statistical software; iii) to analyse data on peritoneal dialysis program under
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a joint modelling approach with competing risks and compare results with those
from separated longitudinal and survival analysis.

In the next section we review the theory of joint modelling, with focus
on the competing risks approach. The third section presents the results of the
analysis of the peritoneal dialysis dataset. Finally, a discussion and conclusion
compose the last section.

2. JOINT MODELLING IN THE PRESENCE OF COMPETING
RISKS

The joint modelling approach takes into account the association between
the survival and longitudinal process, determining simultaneously the parameter
estimates for both processes [14]. Different models can be considered, differing on
the decomposition of the joint likelihood of the longitudinal and survival processes
and on the submodels formulation for each outcome. The models most commonly
used are selection models, pattern-mixture models and random effects models,
and each model providing different information [21]. The two parameterisations
considered in this work are classified as random effects models, where the survival
process is assumed to be associated with the longitudinal process through shared
random effects. In the presence of competing risks, the survival submodel needs
to take into account the presence of several possible endpoints. In order to model
jointly a longitudinal and a time-to-event outcome in the presence of competing
risks some approaches are presented below.

According to the focus of the analysis, different specifications of the joint
model might be considered, which corresponds to different parameterisations of
the model, taking us to different interpretations of the model parameters.

When the focus is on the survival process and the interest is to analyse the
effect of a endogenous time-dependent covariate (for example a clinical parame-
ter such as albumin measured along time) on the time until an event of interest
(for example, death), the time-dependent cause-specific hazard regression model
usually used in competing risk survival analysis is not appropriate. Results ob-
tained from this model may be substantially biased since longitudinal measures
are measured with error [5, 6]. In these situations, the fundamental idea is to
construct a suitable model to describe the evolution in time for the longitudinal
outcome, and then to use this estimated evolution as time-dependent covariate
in the survival model, considering a jointly estimation [1].

Alternatively, when the focus is on the longitudinal process (for example,
of some clinical parameter such as albumin), the joint modelling approach is
required when missing observations of the longitudinal outcome may be related
with the endpoint observed (i.e. in the presence of informative censoring). The
use of a joint modelling approach reduces the bias in the estimates [14].
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Additionally, if the focus is on both processes, the aim of the model is on
inference regarding the strength of the link between the two processes [14, 16].

Let y;(t) be the observed value of a longitudinal response for the subject
7 at time point ¢, measured with error. Let T; and C; be the failure and non-
informative censoring times and k the event observed of a set of K possible events
(k=1,...,K). The event indicator is given by ¢; = {I(T; < C}), k}, where §; =0
if non-informative censoring occurs.

2.1. JM package

The JM package that implements the parameterisation proposed by Ri-
zopoulos [19] was adapted to a competing risks problem [19]. This approach
considers a linear mixed effects submodel for the longitudinal outcome and a
relative risk submodel for each possible competing event. This model allows
to quantity the effect of a longitudinal covariate in the time-to-event outcome,
particularly when the longitudinal covariate is measured with error [14].

Consider m;(t) the true and unobserved value of the longitudinal outcome
yi(t) at time t. In order to measure the effect of an endogenous covariate on
the risk for an event, m;(t) needs to be estimated. Furthermore, the com-
plete history of the true unobserved longitudinal process up to time point ¢,
M;(t) = {mi(s),0 < s < t}, is successfully reconstructed using the available
measurements y; = {y;(t),t = 1,...,n;} of each subject (where n; represents the
number of longitudinal measurements for each subject i) and a set of modelling
assumptions. A linear mixed effects model is considered to describe the subject-
specific longitudinal evolutions and it is defined as:

(2.1) i (|21, Whi) = 21:(6)T B + Wii(t) + &i(t) = my(t) + ei(t)

where 1 denotes the vector of the unknown fixed effects parameters, x;(t) de-
notes row vectors of the design matrix for the fixed effects and ¢;(t) is the mea-
surement error term with variance o2 (g;(t) ~ N(0,02)). Wi;(t) is the value at
time ¢ of an unobserved zero-mean Gaussian random process.

To quantify the effect of m;(¢t) on the risk for an event, \;, the authors
proposed the use of a relative risk model:

(2.2) (| M;(t), 295) = No(t) exp{ad, By + am;(t)}

where A\g(t) denotes the baseline risk function and x5 is a vector of baseline
covariates with a corresponding vector of regression coefficients (3. Parameter
« quantifies the effect of the underlying longitudinal outcome on the risk for an
event: exp(a) denotes the relative increase in the risk for an event at time ¢ that
results from one unit increase in m;(t) at the same time point, adjusting for the
remaining exploratory variables in the model.
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In the presence of competing risks the notation for the survival submodel
needs to be adapted. Then, for the event k, the standard relative risk model can
be defined as:

(2.3) Ai (]| M (1), ;) = Aok (t) exp{ad; Boy. + (a1 4+ ag)my(t)}

where k = 1 represents the event of interest and k = 2, ..., K the competing events,
Aok(t) denotes the baseline risk function and x9 is a vector of baseline covariates
with a corresponding vector of regression coefficients (5. a1 quantifies the effect
of the underlying longitudinal outcome on the risk for the event of interest and
g, ..., g quantifies the additional effect of the underlying longitudinal outcome
on the risk for the respective competing event. In this model, each of 3}, is
interpreted as the effect of each explanatory variable on the relative risk of event
k after adjusting for the effect of the longitudinal response, which might also
include the effect of the same explanatory variable. Then, the overall effect of
a covariate on the hazard might be decomposed into the direct effect (survival
submodel) and the indirect effect (longitudinal submodel) [11].

The estimation method proposed in this approach is the maximum likeli-
hood considering a joint distribution of the observed outcomes {7}, d;,y;}. This
joint distribution is defined assuming that the vector of time-independent random
effects Wy; underlies both the longitudinal and survival processes (the random
effects account for both the association between the longitudinal and event out-
comes, and the correlation between the repeated measurements in the longitudinal
process). The likelihood function is given by

(2.4) (T, 0s, yil Whis 0) = p(Ti, 0| Wha; 0)p(yi| Whas 0)
and
(2.5) p(yilWhi; 0) = [ ] plyi(tiy)[Whi; 0}

j=1

where 0 = (0}, 95 , 971/;,1) denotes the full parameter vector, with 6; denoting the
parameters for the event time outcome, ¢, the parameters for the longitudinal
outcome and fyy, the parameters of the random-effects covariance matrix. Addi-
tionally, it is assumed that given the observed history, the censoring mechanism
and the visiting process are independent of the true event times and future lon-
gitudinal measurements.

In the presence of competing risks, the likelihood part for the event process
takes the form:

K
(T, 65| Wi 0, 1) = [ [ [Mow(Th) exp{a; By, + s (1) }]) 7O =H)
(2.6) =1

K T;
xexp(— 3 / Now(s) exp{ady By + agmi(s) }ds)
k=170
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The Expectation-Maximization (EM) algorithm was used to maximized the log-
likelihood function 1(0) = >"7" ; log p(T;, d;,yi;0). The aim is to find the param-
eter values # that maximize the observed data log-likelihood I(6), but by maxi-
mizing instead the expected value of the complete data log-likelihood (treating
random effects as missing data). Additional information of this approach can be
founded in Rizopoulos [19].

2.2. joineR package

Williamson et al. [25] proposed a competing risks random-effects joint
model fitting a cause-specific hazard submodel (allowing for competing risks)
with a separate latent association between longitudinal measurements and each
event [25]. The idea behind this model is to analyse data arising from compet-
ing survival and longitudinal processes simultaneously exploiting dependencies
between the components. Given that the main focus of this approach is the link
between longitudinal and survival processes, the association between these two
processes is represented through shared latent random effects. For example, for
a shared latent random effect model, this association is achieved through the in-
clusion of the longitudinal random intercept and/or random slope terms into the
survival process model [14].

A Gaussian linear model is assumed for longitudinal response y(¢) at time
t (longitudinal submodel):

(2.7) Yi(tlz1s, W) = 21:(0)T 1 + Wii(t) + ei(t)

where 31 denotes the vector of the unknown fixed effects parameters, xy;(t) de-
notes row vectors of the design matrix for the fixed effects, W7y;(¢) the value at
time ¢ of an unobserved zero-mean Gaussian random process and ¢;(t) denotes

zero-mean Gaussian measurement error with variance o2.

The difference between the JM and joineR approaches is in the survival
submodel. Survival time is associated with the longitudinal response through
a second zero-mean latent Gaussian process Wy, (t), correlated with Wh,(t). A
semi-parameteric proportional hazards model is assumed conditioned to Wa;(t),
with hazard \; defined as:

(2.8) i(ta2i, Wai) = Xo(t) exp{z3; 82 + Wai(t)}

where \(¢) is an unspecified baseline hazard and 9 is a vector of baseline covari-
ates with a corresponding vector of regression coefficients 2. The longitudinal
and survival processes are assumed to be conditionally independent given Wj
and Ws, usually considered as a linear combination of Gaussian random effects
[25]. If the two processes W7 and Wy were independent, we would be in the pres-
ence of two separate analyses (longitudinal and survival). Though, being W7 and
W5 related with each other, their correlation will drive the association between
longitudinal and survival processes.
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This model was extended in order to include competing risks. In this case,
a cause-specific hazard submodel with a separate latent association between lon-
gitudinal measurements and each possible event was considered. The longitudinal
submodel remains the same type of model considered in the joint model without
competing risks. On the other hand, one survival submodel for each competing
risks is considered. Thus the survival submodel for cause k is defined as:

(2.9) N (|25, W) = Aok (t) exp{a3;Bor, + Wopi(t) }

where \oi(t), & = 1,2, ..., K, are unspecified baseline hazard functions, x5 is a
vector of baseline covariates and Woi(t) , k = 1,2, ..., K, are zero-mean latent
Gaussian processes. In this case, it is assumed that Woi(t) = v Wi (1), i.e., W3
and W5 are proportional. The parameter ~; indicates the level of association
between the two components, i.e, quantify the effect of the unobserved stochastic
process Wiy on the risk for the event k. Longitudinal responses and competing
risks survival times are assumed to be conditionally independent given W; and
Ws. In this parameterisation of the joint model the coefficient Sop corresponds
to the total effect of each explanatory variable on the relative risk of event k, after
adjusting for an unobserved Gaussian process that do not include fixed effects.
This different interpretation can be contrasted with the one previously given to
B4, in the JM package.

The likelihood function for observed data is factorized as the product of the
marginal distribution of y and the conditional distributions of competing events
n € (1,..., K) given the observed values of y.

Considering @ the combined vector of unknown parameters and L,(y,0)
the standard likelihood corresponding to the marginal multivariate normal dis-
tribution of y. Conditional on latent processes Woy(t), the competing risks are
independent of themselves and of the measurements y. The likelihood function
is given by:

K
(210) L(y7 9’ 77) = Ly(?/’ 9) H L77|y:k
k=1
where
(2.11) Lyjyk = Ewgy Ly, (0,1 = k[War) }

in which the conditional likelihood for each competing event, Ly, (0,7 =
k|Wsy) captures any likelihood contribution arising from the number of longi-
tudinal measurements observed before the kth competing event. In this model
parameterisation, it is assumed that there is an unobserved process W; that drives
both y and risk for event, A\;. The effect of covariates in hazard is both direct
and overall [11].

In order to maximize the likelihood of the observed data and estimate the
parameters of interest, EM algorithm is used, similarly as the JM approach. More
details of this approach can be founded in Williamson et al. [25], Diggle et al.
[5], Henderson et al. [10] and in Philipson et al. [17].
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3. PERITONEAL DIALYSIS DATA

In order to compare the two model specifications presented above and dis-
cuss the interpretation of model parameters, the methods, JM and joineR, were
used to analyse peritoneal dialysis data. For the joineR, the extension to accom-
modate competing risks was requested directly to the author since our analyse
started before the formal library to perform this analysis became available at
September 2017.

Along the permanence in peritoneal dialysis program, different types of
information concerning the patients and their health condition are collected.
Firstly, information about baseline characteristics of the patients such as sex
and age is considered. During the follow-up, albumin is usually recorded in each
control visit (usually one per month). Finally, the event that forced the patient
to abandon the treatment program (death, transfer to haemodialysis and renal
transplantation) and the respective follow-up time are also reported given their
clinical relevance. Then, due to the diversity of information resulting of the mo-
torization of these patients, efficient and powerful regression models, such as joint
models for longitudinal and time-to-event outcomes are required to analyse such
data.

The sample of this study comprises patients included in the peritoneal dial-
ysis program of the Peritoneal Dialysis Unit, Nephrology Department, Hospital
Geral de Santo Anténio, Centro Hospitalar do Porto, Porto, Portugal. The sam-
ple is composed by 160 patients who started peritoneal dialysis therapy between
October 1999 and February 2013. Sex and age were considered as baseline covari-
ates. Serum albumin level is an important clinical parameter for end-stage renal
patients and it is used to assess the health status of patients in dialysis [15].
Low albumin level is associated with kidney failure. The number of measures
and the time between measures differed for each patient. Combined survival,
characterized by the combined event death/transfer to haemodialysis, represents
an important indicator for the evaluation of a peritoneal dialysis program. Then,
in this application, this combined event was considered as the event of interest
and renal transplantation as the competing risk event. Registry data collection
and analysis was submitted to ethical appreciation and approved by the National
Commission of Data Protection, which is the national supervisory authority for
personal data control.

Females represented 51.9% (n=83) of the total sample (n=160), which has
an overall mean age of 47.9 years (sd=14.4 years). Thirty patients (18.8%) had di-
abetes. The median of follow-up time was 27.4 months (IQR: 12.8-49.0 months).
Considering the longitudinal outcome, the number of measures of albumin varied
among patients, with a minimum of 1 observation and a maximum of 60 observa-
tions. The median of observations per patient was 13 (IQR: 6-23 observations).
The mean score of albumin was 3.7 g/dL (sd=0.4 g/dL) for a total of 3129 obser-
vations. Considering the time-to-event outcome, 53 (33.1%) patients experienced
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the event of interest (death or transfer to haemodialysis) and 41 (25.7%) the
competing risk (renal transplant). Survival times were censored for 66 (41.2%)
patients who were still active on the peritoneal dialysis program at the end of the
study.

3.1. Exploratory analysis

A spaghetti plot showing the albumin individual progressions (grey lines)
of the longitudinal response for the different competing events is presented in
Figure 1. The black lines in Figure 1 represent a smooth spline of all observation
points in the same plot.

Death+Transfer to HD Renal tranplant Censored

g L L I ' L 5 L L I 1 &

Albumin

T T T T T T T T T T T T T T T
o 20 40 B0 80 100 0 20 40 &0 80 100 120 a 50 100 150

Time (in months) Time (in months) Time (in months)

Figure 1: Smooth spline empirical mean of albumin evolution for the three
subset of events: death/transfer to haemodialysis, renal trans-
plant and censored.

Considering Figure 1, we verify that the mean of albumin score differs
slightly according to the final event observed, showing a possible association
between longitudinal albumin evolution and survival endpoint. Then, the analysis
requires a joint modelling approach.

An estimate of the empirical variogram ~y(u) is presented in Figure 2. The
diagram shows both the basic quantities (ujk, viji), where v, = %(mj — 7ig)?
is calculated from observed half-squared differences between pairs of residuals, of
an ordinary least squares model (considering albumin as dependent variables and
gender, age and time as independent variables), and w;ji = t;; — t;, the corre-
sponding time-differences, and the kernel smooth estimate of (). To accentuate
the shape of the smooth estimate, the vertical axis was truncated at 0.2. The var-
iogram smoothly increases with lag corresponding to a decreasing correlation as
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observations are separated in time. The horizontal line represents the variogram-
based estimate of the process variance, which is substantially large than the value
of the sample variogram, indicating that the positive correlation remains at arbi-
trarily large time separations. The empirical variogram of residuals, after fitting
the data for an ordinary least squares model, allows us to understand the correla-
tion structure of the longitudinal data. From Figure 2, we can see that the total
variance in the data can be decomposed into three variance components, variance
between and within subjects and measurement error. Therefore, a longitudinal
approach shows to be adequate for these data.

0.20
|

0.15

Variogram

Figure 2: Empirical Variogram.

The cumulative incidence curves [8] give a global idea about the survival
process. Figure 3 summarizes the cumulative incidence estimates for the two
possible events taking competing risks into account (the time axis were halted
at 60 months because the proportion of patients free of an event, but still in
follow-up, becomes small). The probability of death/transfer to haemodialysis
is always higher than the probability of renal transplantation. For example, the
probabilities of death/transfer to haemodialysis by 1, 2 and 3 years after starting
peritoneal dialysis were 0.08, 0.16 and 0.26 respectively and by the same time
points the probabilities of renal transplantation were 0.05, 0.14 and 0.20.

3.2. Joint modelling

With the purpose of evaluating the relationship between longitudinal albu-
min scores and death/transfer to haemodialysis, in the presence of the compet-
ing risk renal transplantation, two joint model specifications implemented in the
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10

— Death/ Transfer to haemodialysis
-=-- Renal transplantation

CIF
0.2 04 08

0.0
I

Months

Figure 3: Cumulative incidence curves for death/transfer to haemodialysis
(solid line) and for renal transplantation (dotted line).

software R were analysed: the JM package proposed by Rizopoulos [19] and the
joineR package proposed by Williamson et al. [25], both adapted to a competing
risk situation. Furthermore, the parameters estimates and their standard errors
using the joint modelling specifications were compared to those obtained with
the independent models, a linear mixed model for the longitudinal outcome and
a time-dependent Cox model with competing risks for the survival outcome.

For the two joint model specifications discussed above, a linear mixed-
effects model was assumed for the longitudinal albumin outcome, with evolution
in time for each patient with different average effects per sex and age. For no-
tation simplification the individual index ¢ and time index j were dropped. The
longitudinal submodel used was defined as (see equations (2.1) and (2.7)):

(3.1) y(t) =m(t)+ E(t) = By + P115ex + BroAge + Bistime + by + bitime + E(t)

where y represents the albumin score and (11, B12 and P13 represent the pa-
rameters of the fixed-effects part composed by the main effect of sex, age and
time, respectively. The unobserved zero-mean Gaussian random process Wi(t)
as in Equation (2.1) and (2.7) is, in this case, a linear combination of a ran-
dom intercept by and a random slope b;. That is, (bg, b1) has bivariate Gaussian
distribution with variances o2(by) and o2(b1), respectively, and correlation p.

Notice that, from Figure 2 the empirical variogram indicates the need to
include a random effect at subject level (bg, included) but also a possible Gaussian
stochastic process with a time correlation structure, as well as a random noise
(e(t), included). However, we have fitted a model without a Gaussian stochastic
process because none of the systematic implementations, JM and joineR, allow
to include such a term in the model. This is due to the computational implemen-
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tation involved to estimate parameters of such a model. In particular, we would
have to integrate out a continuous Gaussian process in any time points observed.

In practice, this is one of the arguments of the importance of having system-
atic implementations of any statistical model to be fitted by any users. Though,
it implies correct interpretation and use of these statistical models. Therefore,
a random intercept effect and a random slope effect were included in the model
for peritoneal dialysis data, because this is the possible way to incorporate a
time-dependent correlation structure within patient, which was indicated by the
variogram, in any of the model implementations.

For the event process, the two approaches presented in this study have
different formulation.

For the JM joint model, two cause-specific relative risks models were as-
sumed, one for each possible event (see equation (2.3)):

A1(t) = Xoi(t) exp{ By Sex + By10Age + aam(t)}
(3.2)
A2(t) = Ao2(t) exp{ By Sex + Boo Age + (a1 + ag)m(t)}

The parameters (351, f515 and a1 denote the direct effects of sex, age, and
albumin, respectively, on the risk for death/transfer to haemodialysis and the
parameters 355, and (5,5 denote the effects of sex and age, respectively, on the
risk for renal transplantation. The parameter o corresponds to the additional
effect of the albumin score on the renal transplantation.

Considering the joineR joint model, a semi-parameteric cause-specific haz-
ard model for each event was assumed (see equation (2.9)):

A1(t) = No1(t) exp{Ba11Sex + Bai2Age + 11 Way (t)}
(3.3)
A2(t) = No2(t) exp{Bao1Sex + Paza Age + y2Waa(t)}

The parameters B211, B212 and 71 denote the effects of sex, age, and al-
bumin in the underlying unobserved process Wi, respectively, on the risk for
death/transfer to haemodialysis while the parameters f291, B221 and 2 denote
the effects of sex, age, and albumin in the underlying unobserved process Wi,
respectively, on the risk for renal transplantation. This approach has as focus
the link between the two longitudinal and survival processes. Therefore, the as-
sociation between these processes is represented through shared latent random
effects, achieved through the inclusion of the longitudinal random intercept (bg)
and random slope (b1) terms into the survival process.

The parameters estimates and respective p-value using joint modelling ap-
proaches are presented in Table 1. For both approaches, standard error of the
parameter estimates were obtained by refitting the models to 500 bootstrap sam-
ples generated using the original data. The bootstrap sampling was performed
with replacement.
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Among the joint models fitted, despite the formulation of the longitudinal
submodel was the same, the association structures and method of estimation used
can have different influences on the longitudinal submodel estimates [11]. In this
application, similar results were obtained for both approaches, with a decrease in
the albumin score along time.

Considering the results obtained for the survival submodel with the JM
package [19], we verify an association between albumin and the risk of death/
transfer to haemodialysis (& = —1.24,p = 0.011), meaning that a unit decrease
in the marker corresponds to a exp(—(—1.24)) = 3.5-fold increase in the risk
for death/transfer to haemodialysis, controlling for the remaining factors in the
model. No association between albumin and the risk of renal transplantation
was found (& + é&2) = 0.54 (se = 0.47), p = 0.250). Younger patients have a
statistically significant higher hazard of getting a renal transplant (hazard ratio
for one year decrease in age equals exp(—(—0.041)) = 1.04 (p < 0.001). The
direct effect of age in the hazard must be interpreted by also adjusted for the
age-specific effect on albumin (longitudinal submodel). The log-likelihood from
this joint model was -730.2515.

Results based on the joineR package [25] show a significantly 41 estimate
indicating that albumin score is positively associated with time to death/transfer
to haemodialysis. However, no evidence of association between albumin and time
to renal transplantation was found (42 = 0.28, p = 0.625). As expected, the esti-
mates of the association parameters for the two competing events have opposite
signs given that these two events have opposite reasons for discontinuation of
therapy. Age (direct effect) was identified as statistically significant risk factor
for renal transplantation (higher ages present lower hazard of renal transplanta-
tion), but not for death/transfer to haemodialysis. The log-likelihood from this
joint model was -603.9029.

3.3. Separate analysis

Comparison of the parameters estimated and their standard errors from
the joint model with the naive independent approach (independent linear mixed
model and cause-specific hazard model), presented in Table 2, shows the dif-
ferences of approaches. Results obtained for longitudinal outcome were similar.
However, different results were obtained for time-to-event outcome. In separate
analysis, sex was a significant factor for both events (HR = 1.41 (p < 0.001) for
event death/transfer to haemodialysis and HR = 1.42 (p < 0.001) for event
renal transplantation). Additionally, albumin (considered as time-dependent
covariate) was a statistically significant factor for the event renal transplant
(HR =1.57, p < 0.001).
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JM package joineR package

Coefficient (se) p Coefficient (se) p
Longitudinal model
Fixed effects
Intercept 3.88 (0.11) < 0.001 3.88 (0.12) < 0.001
Sex (male) 0.24 (0.062) <0.001  0.24 (0.078)  0.002
Age -0.0052 (0.002)  0.014 -0.0051 (0.002)  0.025
Time -0.0015 (0.0018)  0.400 -0.0014 (0.0007)  0.069
Survival submodel
Event of interest (D/TH)
Sex (male) 0.41 (0.33)  0.209 0.12 (0.28)  0.649
Age 0.012 (0.011)  0.278  -0.007 (0.010)  0.502
Association coefficient -1.24 (0.49)  0.011 -1.41 (0.50)  0.005
Competing risk (RT)
Sex (male) 0.51 (0.40)  0.204 0.62 (0.37)  0.091
Age -0.041 (0.012) < 0.001  -0.048 (0.013) < 0.001
Association coefficient 0.54* (0.47)  0.250 0.28 (0.59)  0.625
&(2) 0.0524 0.0524
& (bo) 0.147 0.159
(1) 0.000117 0.000123
p -0.388 -0.346
Log-likelihood -730.2515 -603.9029

Table 1: Parameter estimates for joint models fitted to albumin (longitu-
dinal outcome) and time to peritoneal dialysis treatment failure
(survival outcome) in the presence of competing risks. * indi-
cates aj + as. joineR package: Williamson et al. [24]; JM pack-
age: Rizopoulos [19]. D/TH: Death/Transfer to haemodialysis;
RT: Renal transplantation.

4. DISCUSSION/CONCLUSION

It is very common to find clinical studies with both longitudinal measure-
ments and event times. These measures are recorded on the participant of the
study during follow-up time. Joint models are appropriate when interest lies in
the association between a longitudinal covariate measured with error in a sur-
vival analysis or when accounting for event-dependent dropout in a longitudinal
analysis. Several simulation studies have shown that joint model could be sub-
stantially more efficient than the separate analysis [6] because these models use
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Separate analysis

Coefficient (se) p

Longitudinal model Fixed effects

Intercept 3.88 (0.11) < 0.001

Sex (male) 0.24 (0.062) < 0.001

Age 20.005 (0.002)  0.014

Time -0.0013 (0.0011)  0.270
Survival model Event of interest (D/TH)

Sex (male) 0.34 (0.070) < 0.001

Age 0.022 (0.0025)  0.371

Albumin -0.58 (0.086) < 0.001

Competing risk (RT)

Sex (male) 0.35 (0.085) < 0.001

Age -0.039 (0.0031) < 0.001

Albumin 0.45 (0.10) < 0.001

Table 2: Parameter estimates longitudinal and survival model fitted sep-
arately, considering albumin as longitudinal outcome and time
to peritoneal dialysis treatment failure as survival outcome in
the presence of competing risks. Longitudinal model: linear
mixed model; survival model: cause-specific. Cox propor-
tional hazard model with time-dependent covariate. D/TH:
Death/Transfer to haemodialysis; RT: Renal transplantation.

information from both outcomes. The literature about this theme is vast, and
some review paper [14, 16, 21, 23] present and discuss different type of joint
models focused on a single event with non-informative censoring. However, the
majority of these models have only one event for the time-to-event outcome, ex-
cluding the possibility of observing competing risks. A very recent review paper
described four approaches of joint models of longitudinal and survival data in
the presence of competing risks, with application to an epilepsy drug randomized
controlled trial. However, despite the recent methodological developments in the
field of joint modelling of competing risks and longitudinal data, they remain still
limited options for fitting these models in standard statistical software programs
[11].

This work represents as far as we know the first study in the peritoneal
dialysis area using joint modelling approach of longitudinal and survival data
taking competing risks into account. The results obtained with this methodology
produced new information about peritoneal dialysis program. Specifically, with
this model it is possible to evaluate the association between the two processes,
which cannot be obtained with standard survival models, contributing for a better
knowledge of peritoneal dialysis program resulting in better management of the
treatment program.
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The development of different parameterisations with different perspectives
and focuses allows to obtain different conclusions, and the choice of the model
was related with the main clinical objective defined. Therefore, the three main
objectives formulated in the context of joint modelling could be related with three
main clinical research questions: (i) to evaluate the impact of albumin level on
the combined survival, given that albumin level were recorded with measurement
error; (ii) to analyse longitudinal evolution of albumin clinical parameter, given
that lower levels of albumin may be associated with higher risk of mortality
and morbidity (consequently less fit for renal transplant), i.e., in the presence of
informative censoring; (iii) to evaluate the association between the progression
of albumin level and combined survival and the identification of factors that
influenced both outcomes.

In this paper, two parameterisations of a random shared effects joint model
were compared considering an example in peritoneal dialysis. These two ap-
proaches are focused in distinct aspects. The parameterisation implemented in
JM focuses mainly on the influence of a longitudinal variable measured with error
in the estimation of the survival submodel. In this case, it is possible to quan-
tify the effect of the longitudinal outcome in the survival hazard. On the other
hand, the parameterisation implemented in joineR focuses mainly on the link
between the processes, considering shared latent random effects to represent the
correlation between longitudinal and survival process [14]. For this reason, the
evaluation of the effect of an unobserved condition, shared between longitudinal
and survival, in the hazard is possible using this parameterisation.

The two parameterisations presented provided complementary conclusions,
given that they have different focus/objectives. The JM package was used to build
a joint model when the focus is on a patient’ s survival and the inaccuracies in
estimating albumin score. The joineR package was used to investigate the effect of
a patient’s changing albumin levels linking the longitudinal and survival processes
through latent random effects. Although the two parameterisations present some
differences relatively to the formulation, the modelling method of the baseline
function and the survival submodel, the results had shown an evident relationship
between the two processes in both approaches. This fact justifies the need for a
joint modelling approach, and the advantages of the use of this methodology is
highlighted when comparing results with separate analysis. Different conclusions
were obtained considering separate analysis or a joint analysis, as shown in the
previous section. Considering independent approaches, the focus is on the effect
on parameters estimates and their standards errors ignoring the link between
the longitudinal and survival processes and the longitudinal response measured
with error within the survival process [14]. For separate analysis the effects
of covariates that are significant, became not significant when a joint analysis
approach is done. This might be due to variability that is being overestimated
in a separate analysis, which is due to association between the two processes,
longitudinal and survival. When this is taking into account this effect disappears.

In conclusion, joint modelling for longitudinal and time-to-event outcomes
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in the presence of competing risks is useful in different areas of applications when
the interest is the evaluation of the relationship between these two types of out-
comes. In clinical studies diverse information about the patient is collected along
a disease stages or treatment duration, and these models become an appropriate
approach. Then it is necessary to alert clinicians for the implications and the
advantages of a proper data collection and a correct data analysis.
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