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Abstract:

• The identification of the right methodology to perform binary classification based
on an observed quantitative variable is usually a complex choice. Thus, the use of
appropriate accuracy measures is crucial. In fact, the ROC curve reveals a lot of
information about the accuracy of the applied methodology for all the possible values
of the cut-point. In particular, the integral and partial areas under the ROC curve
are widely used. The φ index, in which sensitivity equals specificity, may also be
applied. Nevertheless, the accuracy at one specific cut-point may be sufficient to
assess the accuracy in some applications. Therefore, different ways to define the
optimal cut-point may be applied, such as the maximization of the Youden index,
the maximization of the concordance probability or the minimization of the distance
to the point with absence of misclassification. To compare the adequacy of these
measures, a simulation study was performed under different scenarios. The results
highlight the advantages and disadvantages of each procedure and advise the use of
the φ index.
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1. INTRODUCTION

Assume that an infection with prevalence rate p is affecting a population
with N individuals. Let Xi, with i = 1, · · · , N , be N independent Bernoulli
trials (Xi ∼ Ber(p)) with probability p, where the random variable (r.v.) Xi

denotes the presence (Xi = 1) or the absence (Xi = 0) of the infection in the i-th
individual. In addition, let Yi represents the value of a diagnostic test performed
by the i-th individual, characterized by the distribution D0 with parameter vector
θ0 if Xi = 0 and by the distribution D1 with parameter vector θ1 if Xi = 1, for
i = 1, . . . , N . Finally, let t be the cut-point of the binary classification (healthy
versus infected) based on the observation of the r.v. Yi. Under these conditions
we can define the following classification rule:

• If Yi ≤ t⇒ X−
i (a negative result, i.e. the individual is classified as healthy);

• If Yi > t⇒ X+
i (a positive result, i.e. the individual is classified as infected).

As a matter of fact, the opposite inequalities can also be applied. Nevertheless,
the reasoning is exactly the same and, therefore, we will restrict this presentation
to the previously described situation.

The intention is to perform a diagnostic test to achieve a binary classifica-
tion (e.g. healthy versus infected) based on the observed value of the quantitative
variable Yi. Nonetheless, almost all tests may result in misclassification due the
occurrence of false negative or false positive results. Thus, it is essential to assess
the performance of the applied binary classification procedure. The most common
measure to evaluate the performance is the area under the Receiver Operating
Characteristic (ROC) curve (AUC) [32], but it evaluates all possible cut-points,
even those that are clinically unsuitable [7]. The partial AUC (pAUC) has been
attracting the attention in medical issues [1, 2, 10] as well as in decision making
and machine learning applications [16, 17] since it focus on a suitable range of in-
terest for the true positive (or negative) rate [14]. Nevertheless, the partial AUC
has some limitations in the application on ROC curves that cross the diagonal
line, which are quite frequent in practice. Thus, there are still some contraindi-
cations for its widespread, regardless of some new proposals to overcome this
problem (e.g., [30, 33]). And, to the best of our knowledge, there is no simulation
study that allows to identify the existence of regions in which the computation
of pAUC is suitable even in those cases. Moreover, despite its advantages over
AUC, the pAUC continues to be unknown to many who apply binary classifica-
tion procedures based on a quantitative variable. Hence, the main goal of this
paper is to compare the usual measures of accuracy in binary classification in
order to identify the most appropriate, completing the works already presented
in [26, 25].

The main accuracy measures for binary classification based on a quanti-
tative variable are presented in Section 2. In Section 3, a simulation study is
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performed in order to compare those measures under different scenarios. All re-
sults were computed by the software using different distributions as well as
diverse sample sizes. Finally, the main conclusions are outlined in Section 4.

2. DIAGNOSTIC ACCURACY MEASURES

The usual accuracy measures for classification can be computed for each
possible value for the cut-point t, namely the specificity ϕe (or true negative
fraction) that corresponds to the probability of obtaining a negative result in a
healthy individual, i.e.

P
(
X−
i |Xi = 0

)
= P (Yi ≤ t|Xi = 0) = FD0

(t),

where FD denotes the distribution function of the distribution D. Similarly, the
sensitivity ϕs (true positive fraction) corresponds to the probability of getting a
positive result in an infected individual, i.e.

P
(
X+
i |Xi = 1

)
= P (Yi > t|Xi = 1) = 1− FD1

(t) = FD1
(t),

where FD denotes the survival function of the distribution D.

Note that the probabilities ϕs and ϕe depend on the value t considered for
the cut-point and are inversely correlated, since increasing one of them implies
decreasing the other when the same classification test is performed. Figure 1
uses the densities of the healthy (distribution D0) and of the infected (distribu-
tion D1) individuals to emphasize the changes in the sensitivity and specificity
when different values for the cut-point are applied. The three graphs show the
decreasing sensitivity (shaded area represented on the right of the cut-point) and
the increasing specificity (shaded area represented on the left of the cut-point) as
the value of the cut-point increases.
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Figure 1: Sensitivity versus specificity on the use of different cut-points.
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2.1. The receiver operating characteristic (ROC) curve

The Receiver Operating Characteristic (ROC) curve allows to visualize
the evolution of ϕs and ϕe when the cut-point goes through all possible values,
from the point in which all individuals are classified as infected to the other
extreme where all individuals are classified as healthy. Therefore, this curve
reveals all pairs (1− ϕe , ϕs) which are also usually denoted by (x,ROC(x)). For
this reason, the ROC curve is often used to identify the optimal cut-point of
a binary classification methodology, as well as to compare the performance of
different methodologies [5, 6, 9, 15, 18, 32, 35]. The first graph of Figure 2
displays an example of a ROC curve.

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
3.

42
−

1.
63

0.
15

1.
94

3.
72

5.
5

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
3.

42
−

1.
63

0.
15

1.
94

3.
72

5.
5

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
2.

95
−

1.
25

0.
45

2.
15

3.
85

5.
56

x x0 1

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
3.

42
−

1.
81

−
0.

2
1.

41
3.

02
4.

63

y

y

0

1

Figure 2: The ROC curve (top left) and the integral (top right) and partial
(bottom) areas under the curve.

All ROC curves start in the point (0, 0) where all individuals are classified as
healthy, and therefore ϕe = 1 and ϕs = 0; and finish on the opposite situation, i.e.
where all individuals are classified as infected, ϕe = 0 and ϕs = 1. The segment
1−ϕe = ϕs connecting these two points represents a random classification without
using the information of Yi, where the probability of classifying any individual as
infected is equal to ϕs . Note that the accuracy in any point below this segment
would increase if the classification of all individuals were simply changed. The
other two vertices of the ROC plane correspond to the remaining extreme cases,
the ideal point (0, 1) with absence of misclassification ϕe = ϕs = 1; and the point
(1, 0) in which every individual is misclassified ϕe = ϕs = 0.
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2.1.1. The entire area under the ROC curve — AUC

The most widely used measure of accuracy is the area under the ROC curve
(AUC). The second graph of Figure 2 shows the integral area under the ROC
curve. It represents the mean value of ϕs for all possible values of ϕe . It can also
be interpreted as the probability of correctly classifying a pair when the r.v. Yi
is continuous, where 0.5 means unreliability, as in a random classification, and 1
corresponds to the perfect classification (absence of misclassification). The value
of the area is also related to the Wilcoxon-Mann-Whitney statistic, allowing to
make inference about the ROC curve [18, 35]. The AUC is possibly the most com-
monly used measure to assess the diagnostic accuracy of a binary classification
methodology [6, 18, 32]. However, this measure takes into account all possible
values for the cut-point, even those that are unsuitable in practice because it gen-
erates very low specificity or sensitivity levels. This is the main drawback of this
measure, although it summarizes the entire ROC curve it includes values which
are not clinically relevant. In fact, these values should be neglected, otherwise
they may interfere in the choice of the best methodology. Moreover, usually only
a specific cut-point is applied.

2.1.2. The standardized partial area under the ROC curve — spAUC

The partial area under the ROC curve (pAUC) can be used to evaluate
the performance at the interest cut-point values, for which the methodology per-
forms satisfactorily [3, 8, 14, 13, 31, 35]. These values usually correspond to high
specificity values, but can also be applied to high sensitivity values. The pAUC
over the high specificity range [1− x1, 1− x0] can be defined as

pAUC(x0, x1) =

∫ x1

x0

ROC(x) dx,

which corresponds to the area of the shaded region in the bottom left chart of
Figure 2. It analyses the ϕs when we fix the ϕe in a range of interest. However,
in some applications the goal is to evaluate the ϕe when the ϕs is significant. In
this cases the area is on the right of the ROC curve (see bottom right graph of
Figure 2). Thus, we can compute the pAUC over the high sensitive range [y0, y1]
using

pAUC(y0, y1) =

∫ y1

y0

1− ROC−1(y) dy,

where ROC−1 denotes the generalized inverse function of the function ROC. The
pAUC(y0, y1) corresponds to the area of the shaded region in the fourth chart of
Figure 2. This latter case does not correspond properly to the area below the
curve and perhaps the most appropriate designation would be the area on the
right of the curve instead of the area under the curve.
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In both cases, the pAUC verifies pAUC(0, 1) = AUC and

1

2

(
x21 − x20

)
≤ pAUC(x0, x1) ≤ x1 − x0, 0 ≤ x0 ≤ x1 ≤ 1.

Hence, in order to be interpreted analogously to AUC, pAUC can be standardized
by

spAUC(x0, x1) =
1

2

(
1 +

pAUC(x0, x1)− 1
2

(
x21 − x20

)
x1 − x0 − 1

2

(
x21 − x20

) )
.

Thus, spAUC varies between 0.5 (random classification) and 1 (absence of mis-
classification). Nevertheless, the use of pAUC or spAUC requires the definition of
the range of interest [x0, x1] or [y0, y1]. Usually [x0, x1] corresponds to [0, x1], i.e.
the highest values for specificity, and spAUC can be seen as (approximately) the
average of ϕs when specificity ranges in [1 − x1, 1]. Similarly, [y0, y1] commonly
corresponds to the highest values for the sensitivity, i.e. [y0, 1], and spAUC can
be seen as (approximately) the average of ϕe when sensitivity ranges in [y0, 1].

Note that the use of spAUC introduces some difficulties to solve issues
related to the arbitrariness of choosing the range of interest. Furthermore, some
authors highlight the loss of information, claiming a loss of statistical precision
as compared with inferences based on the entire AUC [7, 35].

2.2. The φ index

The use of the probability φ, which verifies ϕs = ϕe = φ for some cut-point,
to measure the performance of diagnostic tests in the context of compound tests
is advised in [23, 24]. In fact, it corresponds to the intersection of the ROC curve
with the straight line ϕs = ϕe , as Figure 3 illustrates. If this value does not exist,
as in the use of count distributions or small samples, the distance between ϕs

and ϕe shall be minimized and φ = ϕs+ϕe
2 .
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Figure 3: The φ index.

In the simulations performed in Section 3, computations of spAUC over
the range [φ−0.05,min{φ+ 0.05, 1}] for both specificity and sensitivity are used.
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The idea was to consider not only significant values for both measures but also
to use a small range (the largest range is equal to 0.1).

2.3. The optimal cut-point

In practical issues only a single cut-point is usually applied. Thus, the
knowledge of the accuracy at this specific point may be sufficient to assess the
classification methodology. Therefore, the selection of the optimal cut-point is a
complex decision that depends on several factors. For example, the severity of
the infection and the risk of not diagnosing the infection may clearly encourage
the choice of a high sensitivity and somehow neglect the specificity level. In the
opposite direction, the side effects of the treatment and the treatment cost may
favour the use of a high specificity and disregard the sensitivity level. Hence,
it may be important to decide between sensitivity or specificity in the selection
of the cut-point, because its determination implies a compromise between these
two measures. Nonetheless, in the absence of clinical factors that lead to the
choice of one of these measures over the other, some criterion of optimization can
be applied to choose the optimal cut-point. In fact, there are several available
methodologies in the literature to obtain the optimal cut-point value [4, 11, 19,
22, 29, 34, 36], such as the maximization of the Youden index, the minimization of
the distance to the point with absence of misclassification and the maximization
of the concordance probability.

2.3.1. The Youden index — YI

One way of determining the cut-point is to choose the point that maximizes
the Youden index (YI) defined by [4, 11, 20, 27, 34]

YI = ϕe + ϕs − 1 = FD0
(t)− FD1

(t).

Geometrically, it corresponds to the point on the ROC curve in which the vertical
distance is greater from the line 1 − ϕe = ϕs , i.e. the difference between ϕs and
1 − ϕe , as the first chart of Figure 4 shows. It also corresponds to the point t
which maximizes the sum ϕe + ϕs and, thus, maximizes the distance between
FD0

(t) (true positive rate) and FD1
(t) (false positive rate).

2.3.2. The closest-to-(0, 1) criteria — DI

As previously stated, the point (0, 1) corresponds to the perfect classifica-
tion procedure where all individuals are well classified. Therefore, we intend to
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be as close as possible to this situation. Hence, the minimization of the Euclidean
distance to the ideal point (0, 1), with ϕe = ϕs = 1, is another criteria to choose
the best cut-point [11, 19, 27, 29], i.e. minimizing

D =

√
(1− ϕe)

2 + (1− ϕs)
2 =

√
F

2

D0
(t) + F 2

D1
(t).

The second chart of Figure 4 illustrates this procedure. However, in order to
compare with the other measures, in the simulations performed in Section 3 it
will be used the maximization of

DI = 1−D = 1−
√
F

2

D0
(t) + F 2

D1
(t),

which corresponds to the minimization of D and provides the point on the ROC
curve that is the closest to the ideal case (0, 1). With this transformation all the
measures to select the cut-point take values in the range [0, 1] and increase with
the improvement of the accuracy of classification.

2.3.3. The concordance probability method — CP

When the r.v. Yi is continuous, the AUC can be interpreted as the concor-
dance probability. But, when Yi is not continuous (discrete or ordinal) [11, 12]
advocate the use of the concordance probability for a quantitative variable given
by the product of sensitivity and specificity, i.e.

CP = ϕe ϕs = FD0
(t)FD1

(t).

The maximization of the CP can be used to define the cut-point. The third chart
of Figure 4 shows the area of the rectangle which corresponds to the CP value.
Thus, covering all the points on the ROC curve as the upper left vertex of the
rectangle, we intend to determine the rectangle with maximum area.
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Figure 4: The optimal cut-point using the Youden index (left), the dis-
tance to the ideal point (center) and the concordance probability
(right).
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3. AN ACCURACY COMPARISON BY SIMULATION

In most cases, the focus in the application of a diagnostic test is the eval-
uation of the accuracy for a single cut-point, which shall be the best one for our
purposes. Thus, it is indeed critical to compare the differences between the area
AUC and the partial area spAUC under the ROC curve as well as the index φ,
and to realize if a greater value in these accuracy measures is sufficient to ensure
a good accuracy in the selected cut-point, considering the cut-points obtained by
the application of the three procedures provided in Subsection 2.3.

Hence, a simulation study was performed through the software using the
ROCR and pROC packages [21, 28]. All scenarios were analysed using 103 replicas
and the following accuracy measures were computed:

• AUC – the entire area under the ROC curve;

• SP90, SP75, SP50 – spAUC computed over the specificity range [0.9, 1],
[0.75, 1] and [0.5, 1], respectively;

• SE90, SE75, SE50 – spAUC computed over the sensitivity range [0.9, 1],
[0.75, 1] and [0.5, 1], respectively;

• φ (or Phi) – the φ index;

• SPφ (or SPPhi) – spAUC computed over the specificity range
[φ− 0.05,min{φ+ 0.05, 1}];

• SEφ (or SEPhi) – spAUC computed over the sensitivity range
[φ− 0.05,min{φ+ 0.05, 1}];

• YI – the maximum Youden index;

• DI – the maximum of 1-D where D denotes the distance to the ideal point
(0, 1);

• CP – the maximum of the concordance probability.

In order to compare the obtained results in these measures, the Spearman’s
rank correlation coefficients were computed to assess monotonic relationships
between them. Therefore, these correlations evaluate if the rank of the accuracy
in each model is made in the same way using different measures. Note that all
those measures vary in [0, 1] and increase with the improvement of the accuracy.

For the test design, diverse sample sizes were applied using equal number
of infected and healthy individuals, i.e. n0 = n1 = n ∈ {50, 100, 250, 500, 1000}.
The restriction n0 = n1 only aims to achieve the same accuracy in the estimation
of the sensitivity (only infected individuals are analysed) and specificity (only
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healthy individuals are used). Besides, different distributions for the characteri-
zation of the infected and healthy individuals were considered in the simulations,
both discrete and continuous. In order to simplify the presentation of the ob-
tained results, we will restrict to the cases where the two subpopulations have the
same distribution D0 = D1 but with different values for the parameter vectors, i.e.
θ0 6= θ1. This restriction aims to simplify the interpretation of the results. More-
over, to minimize and simplify the discussion of the main conclusions, only the
results obtained with some of the most applied distributions will be shown since
they include the most usual shapes of ROC curves. In particular, the following
distributions were used:

• Normal, with µ0 = 0, σ0 = 1, µ1 = 2 and σ1 ∈ {2/3, 1, 1.5, 2, 3};

• Gamma, with α0 = 2, β0 = 1, α1 ∈ {6, 9, 12} and β1 ∈ {1, 3};

• Binomial, with p0 = 0.25 and p1 ∈ {0.3, 0.4, 0.5};

• Geometric, with p0 = 0.2 and p1 ∈ {0.1, 0.02}.

The main goal is to evaluate the association between those accuracy mea-
sures and, therefore, to assess whether those measures are able to evaluate the
same criterion of accuracy.

3.1. The sample dimension

Let us consider that the r.v. Yi has Normal distribution with standard
deviation σ = 1 and mean µ0 = 0 in a healthy individual and µ1 = 2 in an
infected individual. Figure 5 contains the boxplot for different sample sizes n ∈
{50, 100, 250, 500, 1000} of the applied diagnostic accuracy measures which do
not depend on the cut-off value. As expected, the median seems to be always
the same, but the range of variation and the interquartile range decrease with
the increasing of the sample size. Besides, due to the symmetry of the ROC
curves around the line ϕe = ϕs , the partial areas over the specificity have the
same behaviour as the partial areas over the sensitivity, converging to the AUC
when the range of interest increases. In the last chart some ROC curves obtained
with different sample sizes are plotted to illustrate that the ROC curve becomes
smoother as n increases.

Table 1 provides the Spearman’s rank correlation coefficients between all
the computed measures when the sample dimension is n = 1000 (upper triangular
matrix) and when the sample dimension is n = 50 (lower triangular matrix). The
results do not seem to have significant differences between the values obtained
with n = 50 and n = 1000. The correlation between the partial areas and the
entire area seems to increase when the interval of interest increases and converges
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Figure 5: D0(θ0) = N(0, 1) versus D1(θ1) = N(2, 1) with different sample
dimensions: n = 1000 (top left), n = 500 (top middle), n = 250
(top right), n = 100 (bottom left), n = 50 (bottom middle), and
ROC curves (bottom right).

to all of the support [0, 1] as expected. The partial areas SPφ and SEφ exhibit
significant correlation with AUC albeit having lower range in its computation.
Moreover, the φ index clearly reveals higher correlation with the measures YI,
DI and CP used to set the best cut-point. Besides, the measures YI, DI and CP
are strongly correlated with each other.

AUC SP90 SE90 SP75 SE75 SP50 SE50 φ SPφ SEφ YI DI CP

AUC 1 .784 .784 .928 .927 .988 .988 .815 .869 .864 .841 .828 .837
SP90 .791 1 .326 .912 .515 .818 .713 .550 .628 .575 .571 .560 .567
SE90 .780 .329 1 .516 .910 .712 .817 .561 .584 .628 .585 .572 .581
SP75 .935 .912 .531 1 .758 .959 .893 .810 .874 .841 .834 .823 .830
SE75 .925 .525 .915 .766 1 .892 .957 .818 .848 .872 .844 .831 .840
SP50 .991 .818 .718 .960 .896 1 .972 .831 .890 .880 .857 .844 .852
SE50 .989 .722 .817 .902 .957 .975 1 .834 .885 .885 .862 .848 .858
φ .823 .558 .592 .811 .830 .838 .842 1 .894 .890 .958 .977 .965
SPφ .866 .668 .576 .870 .816 .884 .876 .810 1 .981 .948 .931 .944
SEφ .862 .559 .690 .807 .881 .869 .885 .818 .882 1 .944 .927 .940
YI .884 .634 .654 .865 .877 .896 .902 .913 .887 .890 1 .987 .998
DI .863 .594 .629 .848 .868 .877 .884 .957 .888 .894 .975 1 .993
CP .878 .619 .646 .860 .876 .891 .897 .937 .887 .891 .994 .989 1

Table 1: Spearman’s rank correlation coefficient, with n = 1000 (upper
triangular matrix) versus n = 50 (lower triangular matrix).



Accuracy Measures for Binary Classification Based on a Quantitative Variable 235

3.2. Normal distribution with different standard deviation

Let us now consider that the r.v. Yi has Normal distribution with standard
deviation σ0 = 1 and mean µ0 = 0 in a healthy individual and µ1 = 2 in an
infected individual. The standard deviation in an infected individual varies in
σ1 ∈ {2/3, 1, 1.5, 2, 3} and we are collecting samples with size n = 1000. Ob-
viously, the accuracy will get worse with the increase of σ1. For σ1 ∈ {2/3, 1}
the partial areas over the sensitivity are similar to the partial areas over the
specificity (see Figure 6). Nevertheless, for σ1 ∈ {1.5, 2} the boxplots are quite
different and for σ1 = 3 the boxplot of SE90 is not even shown. Hence, this case
reveals problems on the computation of the partial area over a range of high sen-
sitivity. If we observe the last chart of Figure 6, for the worst plotted ROC curve
the spAUC computed over the sensitivity range [0.9, 1] would be lower (even after
standardization) than 0.5 and, therefore, it is even worse than the random clas-
sification. Consequently, this measure is not shown. Note, also, that the worst
ROC curves are not symmetric around ϕe = ϕs and consequently the partial ar-
eas over the specificity have different behaviour comparing with the partial areas
over the sensitivity. However, the partial areas over a neighbourhood of φ do not
seem to have any problems in assessing accuracy.
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Figure 6: D0(θ0) = N(0, 1) versus D1(θ1) = N(2, 2/3) (top left), N(2, 1)
(top middle), N(2, 1.5) (top right), N(2, 2) (bottom left), N(2, 3)
(bottom middle), and ROC curves (bottom right), with n =
1000.

Table 2 displays the Spearman’s rank correlation coefficients between all
the computed measures when the r.v. Yi is characterized by N(0, 1) for a healthy
individual and characterized by N(2, 2/3) (upper triangular matrix) and N(2, 2)
(lower triangular matrix) for an infected individual. There seems to be some
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differences between the results obtained in these two situations, but the main
conclusions appear to be the same. The correlation between the partial areas
and the entire area continues to increase when the interval of interest increases
to the support [0, 1] and the φ index continues to reveal quite strong correlations
with the measures YI, DI and CP. Even though, when σ1 = 2 these correlations
are lower.

AUC SP90 SE90 SP75 SE75 SP50 SE50 φ SPφ SEφ YI DI CP

AUC 1 .890 .876 .969 .970 .997 .997 .771 .616 .599 .798 .786 .796
SP90 .690 1 .597 .953 .801 .904 .878 .736 715. .402 .703 .751 .761
SE90 .721 .289 1 .779 .942 .860 .888 .753 .359 .656 .776 .767 .775
SP75 .847 .906 .392 1 .919 .980 .963 .794 .673 .578 .824 .811 .823
SE75 .952 .484 .825 .655 1 .963 .980 .807 .573 .637 .835 .823 .833
SP50 .947 .793 .505 .945 .821 1 .993 .777 .629 .604 .805 .793 .803
SE50 .998 .659 .730 .830 .960 .939 1 .780 .616 .605 .807 .795 .805
φ .857 .579 .451 .815 .765 .909 .861 1 .286 .282 .959 .979 .963
SPφ .885 .603 .473 .842 .790 .936 .888 .982 1 .595 .403 .354 .394
SEφ .896 .606 .510 .813 .822 .924 .898 .843 .911 1 .405 .354 .396
YI .793 .821 .367 .947 .608 .887 .783 .757 .785 .770 1 .990 .999
DI .849 .656 .432 .897 .711 .919 .849 .908 .934 .886 .859 1 .992
CP .825 .735 .397 .935 .657 .909 .820 .831 .859 .835 .949 .942 1

Table 2: Spearman’s rank correlation coefficient, with n = 1000, N(0, 1)
versus N(2, 2/3) (upper triangular matrix) and N(2, 2) (lower
triangular matrix).

3.3. Gamma distribution

Figure 7 and Table 3 show the results when the r.v. Yi has Gamma dis-
tribution with α0 = 2, β0 = 1 for a healthy individual, and α1 ∈ {6, 9, 12} and
β1 ∈ {1, 3} for an infected individual. The boxplots of the partial areas SP90

and SP75 relative to D1(θ1) = Gamma(6, 3) are not shown in Figure 7. It reveals
problems on the computation of the partial area over a range of high specificity.
If we observe the graph with the ROC curves, the curve with the worst perfor-
mance is below the line of random classification in the high specificity values.
Thus, the standardized partial area under the ROC curve would be lower than
0.5 (accuracy worse than in random classification). As in previous case, some of
the ROC curves are not symmetric around ϕe = ϕs and, therefore, the partial
areas over the specificity are quite different from the partial areas over the sen-
sitivity. Moreover, the partial areas over a neighbourhood of φ seem to continue
to assess accuracy without revealing any problem, regardless of whether they are
being computed over the sensitivity or over the specificity.
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Figure 7: D0(θ0) = Gamma(2, 1) versus D1(θ1) = Gamma(6, 1) (top
left), Gamma(9, 1) (top middle), Gamma(12, 1) (top right),
Gamma(6, 3) (bottom left), Gamma(9, 3) (bottom middle), and
ROC curves (bottom right), with n = 1000.

Table 3 displays the Spearman’s rank correlation coefficients between all
the computed measures when the r.v. Yi is characterized by Gamma(2, 1) for a
healthy individual and characterized by Gamma(12, 1) (upper triangular matrix)
and Gamma(9, 3) (lower triangular matrix) for an infected individual. In the
Gamma(12, 1) case, the AUC and the different spAUC are strongly correlated,
but the rank correlations between AUC or any of the spAUC and the measures
YI, DI and CP are not that significant. In fact, the index φ is the only accuracy
measure that revels strong correlations with these indexes to select the optimal
cut-point, albeit these correlations are not so significant in the Gamma(9, 3) case.

3.4. Discrete distributions

In these last scenarios, two count distributions are analysed, the Binomial
with n trials and success probability p (B(n, p)) and the Geometric distribution
with probability p (G(p)). Hence, in the first scenario let the r.v. Yi have B(20, p)
with p0 = 0.25 for a healthy individual and p1 ∈ {0.5, 0.4, 0.3} for an infected
individual. In the second scenario, the r.v. Yi is characterized by G(p) where
p0 = 0.2 for a healthy individual and p1 ∈ {0.1, 0.02} for an infected individual.
The results in both scenarios do not reveal any problem in the calculation of any



238 Rui Santos, Miguel Felgueiras, João Paulo Martins, and Liliana Ferreira

AUC SP90 SE90 SP75 SE75 SP50 SE50 φ SPφ SEφ YI DI CP

AUC 1 .994 .858 1.000 .966 1.000 .997 .638 .979 .802 .654 .656 .655
SP90 .592 1 .836 .995 .956 .994 .990 .639 .990 .772 .652 .656 .653
SE90 .657 .183 1 .856 .933 .858 .870 .811 .770 .984 .832 .830 .833
SP75 .875 .778 .335 1 .965 1.000 .997 .639 .981 .800 .655 .657 .656
SE75 .809 .250 .910 .465 1 .966 .975 .709 .923 .881 .727 .727 .728
SP50 .993 .619 .571 .905 .751 1 .997 .638 .979 .802 .654 .656 .655
SE50 .934 .357 .784 .660 .935 .904 1 .648 .974 .814 .666 .666 .667
φ .859 .351 .540 .650 .736 .859 .892 1 .545 .794 .924 .958 .936
SPφ .899 .380 .552 .707 .759 .900 .916 .867 1 .697 .566 .566 .566
SEφ .886 .359 .558 .671 .761 .886 .920 .979 .935 1 .832 .822 .831
YI .769 .230 .790 .442 .947 .730 .890 .709 .733 .733 1 .981 .998
DI .849 .311 .627 .578 .860 .837 .925 .878 .901 .909 .841 1 .989
CP .821 .276 .693 .518 .916 .798 .921 .800 .833 .829 .927 .948 1

Table 3: Spearman’s rank correlation coefficient, with n = 1000,
Gamma(2, 1) versus Gamma(12, 1) (upper triangular matrix)
and Gamma(9, 3) (lower triangular matrix).

of the spAUC, despite some of the ROC curves being asymmetric around the
line ϕe = ϕs . Thus, in some cases the partial areas over the specificity assume
different values when compared with the partial areas over the sensitivity, but all
measures were computed in the analysed cases.
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Table 4 shows the Spearman’s rank correlation coefficients between all the
computed measures when the r.v. Yi is characterized by B(20, 0.25) for a healthy
individual and by B(20, 0.5) for an infected individual (upper triangular matrix),
and Geometric(0.2) for a healthy individual versus Geometric(0.1) for an infected
individual (lower triangular matrix). The results using count distributions appear
to be similar to those previously obtained with the use of continuous distributions.
Thus, the φ index continues to present very significant correlations with the
measures YI, DI and CP, higher in the Binomial case than in the Geometric
case.

AUC SP90 SE90 SP75 SE75 SP50 SE50 φ SPφ SEφ YI DI CP

AUC 1 .822 .837 .941 .954 .991 .994 .798 .905 .870 .799 .799 .798
SP90 .571 1 .410 .934 .641 .851 .783 .703 .799 .599 .704 .672 .699
SE90 .598 .126 1 .628 .928 .791 .860 .562 .670 .810 .563 .576 .566
SP75 .786 .860 .235 1 .839 .966 .923 .853 .942 .830 .854 .834 .851
SE75 .786 .203 .885 .352 1 .934 .973 .801 .886 .916 .801 .802 .802
SP50 .936 .689 .351 .909 .533 1 .983 .823 .929 .881 .823 .812 .822
SE50 .955 .357 .687 .582 .883 .816 1 .810 .915 .889 .811 .803 .810
φ .818 .318 .375 .556 .564 .806 .830 1 .920 .804 1.00 .990 1.00
SPφ .893 .397 .387 .641 .596 .892 .889 .924 1 .910 .921 .897 .918
SEφ .888 .414 .378 .649 .589 .890 .877 .847 .983 1 .805 .801 .805
YI .854 .541 .310 .844 .462 .933 .745 .744 .829 .829 1 .990 1.00
DI .862 .405 .344 .668 .532 .891 .835 .881 .960 .952 .869 1 .993
CP .865 .422 .339 .697 .522 .904 .827 .863 .947 .941 .901 .990 1

Table 4: Spearman’s rank correlation coefficient, with n = 1000,
B(20, 0.25) versus B(20, 0.5) (upper triangular matrix) and
Geometric(0.2) versus Geometric(0.1) (lower triangular matrix).

3.5. Sensitivity and specificity on the optimal cut-point

The first quartile q1 and the third quartile q3 of the sensitivity ϕs and of
the specificity ϕe on the cut-points selected by the application of the YI, DI and
CP criteria are displayed on Table 5. It is also shown q1 and q3 of the φ index, in
which ϕs = ϕe or, at least, its distance is minimized and φ = ϕs+ϕe

2 . The results
clearly stand out the diverge accuracy levels obtained when the cut-points are
set by YI, DI, and CP. Moreover, the results suggest that these differences
may occur in any sense, i.e. none of these measures gives priority to sensitivity
or to specificity in relation to the others measures. For example, the cut-point
selected by the YI generates better sensitivity (consequently worse specificity) in
the cases Gamma( . , 3) but generates worse sensitivity (and better specificity)
in the N(2, 1.5) or G(0.10) cases. On the other hand, the cut-point selected by
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the DI criterion generates better sensitivity (consequently worse specificity) in
the cases N(2, . ) but generates worse sensitivity (and better specificity) in the
Gamma( . , 3) cases. Therefore, the accuracy of the cut-points selected through
theses procedures must be evaluated and compared in each application.

Let us also point out that the φ index can also be used to select the cut-
point in any application, as the results displayed in Table 5 prove. In this case
the balance between sensitivity and specificity is a priority (these measures are
the same, or at least very close), with a clear reduction in the variation of these
measurements (as we can ascertain by comparing the interquartile range).

YI DI CP φ
ϕ

s
ϕ

e
ϕ

s
ϕ

e
ϕ

s
ϕ

e
ϕ

s
= ϕ

e

q1 q3 q1 q3 q1 q3 q1 q3 q1 q3 q1 q3 q1 q3

n=50 .800 .900 .840 .920 .820 .885 .840 .900 .820 .900 .840 .905 .820 .860
n=100 .810 .890 .840 .910 .830 .880 .830 .880 .820 .890 .830 .890 .820 .860
n=250 .816 .876 .828 .888 .832 .864 .832 .868 .828 .872 .828 .876 .828 .852
n=500 .822 .868 .828 .874 .834 .860 .834 .860 .830 .866 .828 .866 .834 .850
n=1000 .825 .861 .829 .865 .833 .855 .834 .855 .830 .860 .830 .860 .835 .846
N(2, 2/3) .927 .944 .928 .946 .931 .942 .929 .941 .929 .944 .927 .944 .930 .937
N(2, 1.5) .710 .751 .849 .887 .758 .782 .808 .836 .733 .768 .829 .865 .782 .794
N(2, 2) .631 .672 .880 .914 .701 .725 .803 .833 .667 .700 .843 .879 .740 .755
N(2, 3) .554 .587 .923 .949 .631 .655 .810 .843 .592 .621 .875 .910 .684 .699
Ga(6, 1) .869 .898 .832 .864 .864 .882 .847 .866 .869 .895 .835 .864 .856 .866
Ga(9, 1) .952 .967 .937 .952 .950 .961 .942 .953 .953 .966 .938 .952 .946 .952
Ga(12, 1) .982 .989 .977 .985 .982 .987 .979 .984 .982 .989 .977 .984 .979 .983
Ga(6, 3) .854 .906 .283 .338 .642 .693 .454 .489 .668 .726 .434 .474 .533 .547
Ga(9, 3) .852 .894 .555 .601 .756 .792 .641 .668 .797 .840 .608 .642 .689 .701
Ga(12, 3) .889 .922 .718 .755 .840 .867 .766 .787 .875 .905 .736 .766 .795 .808
B(50, .5) .861 .877 .892 .904 .861 .876 .892 .904 .861 .876 .892 .904 .861 .876
B(50, .4) .741 .759 .778 .795 .741 .759 .778 .795 .741 .759 .778 .795 .741 .759
B(50, .3) .571 .597 .606 .631 .572 .593 .606 .627 .572 .593 .606 .627 .572 .593
G(.10) .470 .546 .733 .802 .581 .606 .658 .683 .570 .602 .663 .696 .608 .655
G(.02) .774 .804 .918 .943 .815 .833 .875 .898 .787 .813 .906 .932 .839 .852

Table 5: First and third quartiles of sensitivity and specificity on the
optimal cut-point.

4. CONCLUSION — FINAL REMARKS

In most situations AUC, spAUC and φ are strongly correlated and, there-
fore, seem to be able to evaluate the same criterion of accuracy. Neverthe-
less, AUC shows less variability than spAUC, mainly on small samples and in
cases with worse accuracy. Moreover, spAUC with sensitivity or specificity over
[φ − 0.05,min{φ + 0.05, 1}] shows less variability than over [0.9, 1], [0.75, 1] or
even [0.5, 1], albeit assessing a smaller range. In some cases, it is not possible
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to compute the spAUC over a range of sensitivity using the Normal distribu-
tion and over a range of specificity using the Gamma distribution. Actually, in
some situations the spAUC seems to provide better results when computed over
a range of specificity (rather than sensitivity), but the opposite may also occur
in other cases. However, the partial areas computed over a neighbourhood of
φ do not seem to have any problem in assessing accuracy even when the ROC
curve crosses the diagonal line and, therefore, it enables to overcome the main
drawback usually identified in the application of the spAUC. Furthermore, the
φ index has higher correlation with YI, DI, CP than AUC or any of the com-
puted spAUC. In fact, the φ index seems to be the measure with higher rank
correlation with the sensitivity and specificity of the optimal cut-point selected
by the use of any of the analysed optimization criteria. Additionally, this index
can also be applied to select the optimal cut-point, ensuring a balance between
sensitivity and specificity. Accordingly, this index seems to perform better in the
evaluation of the most appropriate model as well as in the selection of the optimal
cut-point. Finally, it is equally important to point out that the cut-points set by
YI, DI, and CP can, in some cases, be quite different and generate significantly
distinct accuracy measures. Hence, in each application their performances should
be evaluated and the selected cut-points compared.

In fact, the variability of the diagnostic accuracy measures in simulations
under the same scenario is quite high and, therefore, the obtained estimates
do not always reveal the true accuracy of the applied classification procedure.
Hence, new estimation techniques for these measures (or other measures) must
be investigated in order to minimize this variability and to achieve more robust
estimates, for example applying bootstrap or other resampling techniques.
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