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Abstract:

• Extreme Value Theory has been asserting itself as one of the most important statistical
theories for the applied sciences providing a solid theoretical basis for deriving statis-
tical models describing extreme or even rare events. The efficiency of the inference
and estimation procedures depends on the tail shape of the distribution underlying
the data. In this work we will present a review of tests for assessing extreme value
conditions and for the choice of the extreme value domain. Motivated by two real
environmental problems we will apply those tests showing the need of performing such
tests for choosing the most appropriate parameter estimation methods.
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1. MOTIVATION AND INTRODUCTION

Extreme Value Theory (EVT) is concerned with the behaviour of extreme
values, i.e, values occurring at the tails of a probability distribution. Society,
human life, etc. tend to adapt to near-normal conditions, and these conditions
tend to produce fairly minimal impacts. In contrast, unusual and extreme condi-
tions can have a substantial impact despite, by definition, occurring in a very low
proportion of times. EVT is the branch of probability and statistics dedicated
to characterizing the very low or quite high values of a variable, the tail of the
distribution. EVT had its beginnings in the early to middle part of XX century
and Emil Gumbel was the pioneer in applications of statistics of extremes. In
Statistics of Extremes [23], he presents several applications of EVT on real world
problems in engineering and in meteorological phenomena. In this book appear
the first applications in hydrology.

Results in EVT rely on certain assumptions. However in some situations
they can be not fulfilled. So, before dealing with an application, it is important
to have an a priori knowledge on whether the underlying distribution verifies
those assumptions. On the other hand statistical inference procedures should be
performed according to the most adequate domain of attraction for the underlying
distribution. So, tests for extreme value conditions and for the choice of the tail
must be done before the application of any inferential procedure.

The motivation for this work came from a first study in Neves et al. [34]
and Penalva et al. [36] presenting a review of tests and parameter estimation
procedures applied to the daily mean flow discharge rate in the hydrometric
station of Fragas da Torre in the river Paiva. The data were collected from
1946/47 to 2005/2006, i.e., 60 years of data. In Penalva et al. [36] we drew
the attention for the need of a previous analysis for assessing extreme value
conditions and for the choice of the extreme value domain, in order to choose
the more adequate parameter estimators. We will review briefly the analysis
already performed considering the data now available during 66 years, 1946/2012
and using, for comparison, two recent classes of estimators of the tail index of
the extreme value distribution, introduced in Penalva et al. [37] and Gomes et
al. [21].

The procedures proposed are also applied and commented to another data
set referring to burned areas of wildfires in Portugal during 33 years (1984–2016).

So, the aim of this work is to perform an univariate extreme value analysis
illustrating and reviewing tests on the extreme value condition and on the sta-
tistical choice of the tail of the underlying distribution. This should be the first
step in order to choose the more adequate estimators. Some recent estimators of
the tail index are also compared.

The paper proceeds as follows. Section 2 contains the main results that are
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the basis of the theoretical background. In Section 3 the exploratory analysis of
the first case-study aforementioned is performed, parametric and semi-parametric
statistical approaches in EVT are briefly reviewed and first estimates of the main
parameters are presented. In Section 4, statistical testing procedures for extreme
value conditions and for choosing the tail are presented and applied to the data.
Section 5 is dedicated to perform the study and estimation in a second case-
study, showing the adequate procedure of performing the study. Finally Section
6 presents a first practical application on the effect of taking into consideration
or not the choice of the tail of the underlying distribution and consequently the
adequate EVI estimation. For the first case study, where estimation discrepan-
cies were detected when the choice of the tail was made previously or not, high
quantiles are estimated. A few comments on some other parameters that could
be considered and the work in progress finish this section.

2. THEORETICAL BACKGROUND

Let us assume that we have a sample (X1, . . . , Xn) of independent and iden-
tically distributed (iid) or possibly stationary, weakly dependent random variables
from an unknown cumulative distribution function (cdf) F . Let us consider the
notation (X1:n ≤ X2:n ≤ · · · ≤ Xn:n) for the sample of ascending order statistics
associated to that sample.

The interest is focused on the distribution of the maxima, that is, Mn :=
max(X1, . . . , Xn), for which we have

P (Mn ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x)

= P (X1 ≤ x) . . .P (Xn ≤ x) = Fn(x).(2.1)

We often deal with the maxima, given the “kind of symmetry”, min
(
X1, . . . , Xn

)
= −max

(
−X1, . . . ,−Xn

)
.

This problem has similarities to that one of determining the distribution
of Sn =

∑n
i=1Xi. Obviously Sn and possibly Mn may tend to infinity, and their

distribution is a degenerate one. The central limit theorem gives an answer to this
problem under some conditions, showing that the normal distribution is obtained
as the non-degenerate limit of Sn properly normalized by E[Sn] and

√
V ar[Sn].

As n goes to ∞, the distribution Fn in (2.1) has a trivial limit: 0, if
F (x) < 1 and 1, if F (x) = 1. So the idea for Mn was the same: first subtract a
n−dependent constant, then rescale by a n−dependent factor. The first question
is then whether one can find two sequences, {an} ∈ R+ and {bn} ∈ R and a non-
trivial distribution function, G, such that limn→∞ P ((Mn − bn)/an ≤ x) = G(x).

First results on the G distribution are due to Fréchet [17], Fisher and
Tippet [12], Gumbel [22] and von Mises [40]. But were Gnedenko [19] and de
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Haan [24] who gave conditions for the existence of those sequences {an} ∈ R+

and {bn} ∈ R such that when n→∞ and ∀x ∈ R,

(2.2) lim
n→∞

P
(
Mn − bn

an
≤ x

)
= lim

n→∞
Fn(anx+ bn) = EVξ(x).

EVξ is a nondegenerate distribution function, denoted as the Extreme Value cdf,
given by

(2.3) EVξ(x) =

{
exp[−(1 + ξx)−1/ξ], 1 + ξx > 0 if ξ 6= 0
exp[− exp(−x)], x ∈ R if ξ = 0.

When the above limit holds we say that F is in the domain of attraction (for
maxima) of EVξ and write F ∈ DM(EVξ).

The shape parameter ξ, in (2.3), is called the extreme value index (EVI) and
it is the primary parameter of interest in EVT analysis. The EVξ incorporates
the three (Fisher-Tippett) types: Gumbel, with ξ = 0, the right tail of F is of
an exponential type; Fréchet with ξ > 0, the right tail is heavy, of a negative
polynomial type, and F has an infinite right endpoint and Weibull with ξ < 0,
the right tail is light, and F has a finite right endpoint (x∗ < +∞).

These models can also incorporate location (λ) and scale (δ > 0) parame-
ters, and in this case, the EV cdf is given by,

(2.4) EVξ(x;λ, δ) ≡ EVξ((x− λ)/δ).

We may then consider, when the sample size n −→∞, the approximation

P [Mn ≤ x] = Fn(x) ≈ EVξ((x− bn)/an).

3. FIRST CASE-STUDY – A REVIEW

The source of river Paiva is in the Serra de Leomil in the North of Portugal
and it is a tributary of the river Douro, with a watershed area of approximately
700 Km. The discharge rate study of this river is a matter of major importance
since it is one of the main alternatives to the river Douro as source of water
supply in the south of Oporto region. The data are daily mean flow discharge
rate values (m3/s) from 1 October, 1946 to 30 September, 2012 - collected from
the “SNIRH: Sistema Nacional de Informação dos Recursos Hı́dricos”.

The descriptive study of these data revealed a tail heavier than that of the
normal. Results in Table 1 are similar to those in Penalva et al. [36].

EVT has been developed under two frameworks. The first one is the para-
metric framework, that considers a class of models associated to the limiting
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min 1st Qu. Median Mean 3rd Qu. max
0.00 9.11 17.1 34.4 37.3 920.0

n Skewness Kurtosis St Dev
11946 4.14 27.13 50.26

Table 1: Descriptive statistics for daily mean flow discharge rate values.

behaviour of the maxima, given in (2.2). The main assumption behind the para-
metric approach is that estimators are calculated considering the data following,
approximately, an exact EV probability distribution function, defined by a num-
ber of parameters. In this approach several methodologies have been developed
for estimating parameters: Block Maxima; Largest Observations; Peaks Over
Threshold, to refer the most well known.

In the semi-parametric framework, the only assumption made is that the
limit in (2.2) holds, i.e., that the underlying distribution verifies the extreme
value condition. The EVI, ξ, that appears in (2.3), plays the central role in this
framework. Under this approach several EVI-estimators have been developed.
Some of the most relevant and also the most recent ones will be used here in the
estimation.

As an illustration of parametric approaches to estimate EVT parameters,
only the Block Maxima (BM) approach will be considered in this work. Other
procedures can be seen in Penalva et al. [36].

3.1. The Block Maxima (BM) method

The so-called Block Maxima (BM), Annual Maxima or Gumbel’s method
is the first parametric approach for modelling extremes, Gumbel [23]. In this ap-
proach the n−sized sample is splitted into m sub-samples (usually m corresponds
to the number of the observed years) of size l (n = m× l) for a sufficiently large
l. EVξ or one of the models, Gumbel, Fréchet or Weibull, with unknown ξ ∈ R,
λ ∈ R or δ ∈ R+ are then fitted to the m maxima values of the m sub-samples.

Table 2 and Figure 1 show a very light positive asymmetry and kurtosis.
It is also reasonable to consider data not correlated.

min 1st Qu. Median Mean 3rd Qu. max
32.2 177.25 261.5 279.24 371.5 920.0

m Skewness Kurtosis St Dev
66 0.99 2.308 157.17

Table 2: Basic descriptive statistics for the maximum values in each year.
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Figure 1: Plots of the maximum value in each year, the partial autocor-
relation function, the histogram and the boxplot.

Maximum likelihood estimates and standard errors were easily obtained
using the evd package in software [38].

ξ̂ λ̂ δ̂

-0.03 (0.08) 207.74 (17.52) 127.11 (12.72)

Table 3: Maximum likelihood estimates and standard errors (in paren-
thesis).

3.2. Semi-parametric estimators

In this framework we do not need to fit a specific parametric model based
on scale, shape and location parameters. We construct an EVI-estimator based
on the largest k top observations, with k intermediate, i.e. such that k = kn →∞
and k/n→ 0, as n→∞, assuming only that the model F underlying the data is
in DM(EVξ), in specific sub-domains of DM(EVξ), with EVξ provided in (2.3).

Most estimators show a strong dependence on that value k. They usually
present: a small bias and a high variance for small values of k;bias increases and
variance decreases when k increases; the need of looking for an adequate value of
k for which we have a minimum Mean Square Error. Thus, an intensive research
has been performed trying to obtain estimators overcoming these difficulties.
Currently there are several different EVI-estimators, so we decide to present and
compare here a very few. Here we will illustrate the application of the following
estimators: the classical Hill estimator, Hill [27], and a recent class of estimators,
the Lehmer mean-of-order-p (Lp) estimators, Penalva et al. [37] and Penalva [35],
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both defined for ξ > 0. Two of the estimators developed for ξ ∈ R are here
considered: the Moment estimator, Dekkers et al. [8] and the Mixed Moment
estimator, Fraga Alves et al. [16].

Recently, Caeiro et al. [4] introduced a class of reduced bias EVI-estimators.
This class can not only reduce the bias of the classical estimators but also do not
increase the asymptotic variance of the estimators, for adequate levels of k and
adequate estimation of parameters of second-order (β, ρ) ∈ (R,R−). These are
the scale and the shape second-order parameters, controlling the rate of first-
order convergence, and necessary for establishing distributional properties of the
estimators. Details on second-order conditions can be found in Beirlant et al. [2],
de Haan and Ferreira [25] and Fraga Alves et al. [15], among others. Those
estimators are then denoted minimum-variance reduced biased (MVRB) EVI-
estimators. We will consider two of those estimators, one based on the Hill and
the other on the Lp estimators, see Gomes et al. [21].

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics associated to the
sample (X1, X2, . . . , Xn).

Let us define the log-excesses as Vik := lnXn−i+1:n−lnXn−k:n, and M
(l)
k,n :=

1
k

∑k
i=1 [Vik]

l, for l ∈ R \ {0}, and L
(r)
k,n := 1

k

∑k
i=1

[
1− Xn−k:n

Xn−i+1:n

]r
, for r ≥ 1.

The aforementioned estimators have the functional definitions:

• The Hill estimator, H, defined for ξ > 0, as

(3.1) ξ̂H(k) ≡ H(k) :=
1

k

k∑
i=1

Vik, k = 1, 2, . . . , n− 1.

• The Moment estimator, M, defined for ξ ∈ R, as

(3.2) ξ̂Mk,n := M
(1)
k,n + 1− 1

2

1−
(M

(1)
k,n)2

M
(2)
k,n

−1 , k = 1, 2, . . . , n− 1.

• The Mixed Moment estimator, MM, defined for ξ ∈ R, as

(3.3) ξ̂MM
k,n :=

ϕ̂k,n − 1

1 + 2 min(ϕ̂k,n − 1, 0)
, k = 1, 2, . . . , n− 1,

where

ϕ̂k,n :=
M

(1)
k,n − L

(1)
k,n(

L
(1)
k,n

)2 .

• The class of Lehmer mean-of-order-p (Lp) estimators, defined for ξ > 0 and



Statistical Testing and Estimation in Extreme Value Theory 195

p > 0, as
(3.4)

ξ̂L(k) ≡ Lp(k) :=
1

p

k∑
i=1

V p
ik

k∑
i=1

V p−1
ik

, k = 1, 2, . . . , n− 1,
[
L1(k) ≡ H(k)

]
.

• The class of corrected-Hill (CH) EVI-estimators, defined by

(3.5) CH(k) := H(k)
(

1− β̂(n/k)ρ̂/(1− ρ̂)
)
, k = 1, 2, . . . , n− 1,

where H(k) is the Hill estimator and β̂ e ρ̂ are consistent estimators of
parameters β e ρ. The use of CH(k) enables us to eliminate the dominant
component of bias of the H EVI-estimator, H(k), keeping its asymptotic
variance.

• More generally than the class in (3.5), we shall now also consider the direct
reduction of the dominant bias component of Lp(k), in (3.4), working with
the RB Lehmer’s EVI-estimators, Gomes et al. [21], defined by

(3.6) LRB
p (k) := Lp(k)

(
1− β̂(n/k)ρ̂/(1− ρ̂)p

)
, k = 1, 2, . . . , n− 1,

[LRB
1 ≡ CH in (3.5)]

Figure 2 shows the sample paths of estimates obtained when using the
aforementioned estimators.

Values of p in Lp(k) and LRB
p (k) were chosen using criteria given in Pe-

nalva [35].

The discrepancies observed, already noticed in Penalva et al. [36], regard-
ing the results of the above EVI-estimators and also compared with the results
obtained under the parametric approaches claim for tests on extreme value do-
main of attraction. This emphasizes the care to be taken with the choice of the
estimators, because even having very nice and stable paths, if conditions of their
applicability are not verified, they may not stabilize near the true value of the
parameter.

4. TESTING CONDITIONS IN EVT LIMITING RESULTS

In any of the above procedures it is assumed that the underlying cdf F
belongs to DM(EVξ), for a appropriate value of ξ, or it is in specific sub-domains
of DM(EVξ). This condition is known as the extreme value condition.
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Figure 2: Sample paths of the EVI-estimates considered.

4.1. Testing the extreme value condition

It is then important, before any application, to check the assumption:

(4.1) H0 : F ∈ DM(EVξ) for some ξ ∈ R.

Some tests for the hypothesis H0 are available, such as those in Dietrich et al. [9],
Drees et al. [10] and Hüsler and Li [28].

Let X1, X2, . . . , Xn be iid random variables with cdf F and suppose that
some additional second order conditions hold then, for η > 0, Dietrich et al. [9]
introduced the test statistic written as

(4.2) En := k

∫ 1

0

(
logXn−bktc,n − logXn−k,n

ξ̂+
− t−ξ̂− − 1

ξ̂−

(
1− ξ̂−

))2

tηdt,

where k is again an intermediate sequence such that k = kn → ∞, k/n → 0
and k1/2A(n/k) → 0 as n → ∞ and A is related to the second order condition
already referred to and ξ̂+ and ξ̂− are the moment estimators, Dekkers et al. [8],
of ξ+ := max(0, ξ) and ξ− := min(0, ξ).

Hüsler and Li [28] present an algorithm for testingH0 using the test statistic
En in (4.2). They have carried out an extensive simulation study with guidelines
for obtaining the value of η and have provided quite accuracy tables for the
quantiles χ1−α of the variable limiting of En, see Hüsler and Li [28] for details.
Values of En are compared with values of χ1−α: if En > χ1−α hypothesis H0 is
rejected with a type I error α. Otherwise there is no reason to reject H0.
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For our data, the application of the test based on (4.2), provided values
of the test statistic smaller than the corresponding asymptotic 0.95−quantile for
a large range of k−values. So, since the sample path of test statistic is almost
always outside the rejection region, except for a small range of k, we find no
evidence to reject the null hypothesis, see Figure 3.
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Dietrich, de Haan and Huesler (2002)'s method,  eta=2

k
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Figure 3: Plot of the sample paths for the E-test, based on the test statistic
in (4.2) and the corresponding quantile. Available sample size
n = 11946.

See also Hüsler and Li [28], Neves and Fraga Alves [32] and Penalva et
al. [36] for a description of other tests.

4.2. Statistical choice of extreme domains of attraction

Once the hypothesis H0 : F ∈ DM(EVξ) is not rejected, it is of major
importance to decide for the type of the tail, i.e., the natural hypothesis testing
are now:

(4.3) H0 : F ∈ DM(EV0) vs H1 : F ∈ DM(EVξ)ξ 6=0,

or against the one-sided alternatives

F ∈ DM(EVξ)ξ<0 or F ∈ DM(EVξ)ξ>0.

This is known as the statistical choice of extreme domains of attraction.

Under the semiparametric framework, several tests have been proposed
in literature, among which we can mention: Galambos [18], Castillo et al. [5];
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Hasofer and Wang [26]; Falk [11]; Correia and Neves [7], that considered the
Hasofer and Wang statistic and presented a slight modification. An extensive
simulation study has been performed in Fraga Alves and Gomes [13], Marohn [29,
30], Fraga Alves [14] and Segers and Teugels [39]. Castillo et al. [5] considered
tests to distinguish between polynomial and exponential tails, based on properties
of the coefficient of variation (CV).

Neves and Fraga Alves [32, 33] studied the following tests statistics, that
will be here applied.

The Ratio-test:

(4.4) R∗n(k) :=
Xn:n −Xn−k:n

1
k

∑k
i=1 (Xn−i+1:n −Xn−k:n)

− log k
d−→

n→∞
EV0.

The Gt-test:

(4.5) Gn(k) :=
1
k

∑
i=1 (Xn−i+1:n −Xn−k:n)2(

1
k

∑k
i=1Xn−i+1:n −Xn−k:n

)2 ,
and

G∗n(k) =
√
k/4 (Gn(k)− 2)

d−→
n→∞

N(0, 1).

The HW-test:

(4.6) Wn(k) :=
1

k

[
1− Gn(k)− 2

1 + (Gn(k)− 2)

]
,

and
W ∗n(k) =

√
k/4 (kWn(k)− 1)

d−→
n→∞

N(0, 1).

For the two-sided tests R∗, G∗ or W ∗, the null hypothesis is rejected if
R∗(G∗)(W ∗) < χα/2 or R∗(G∗)(W ∗) > χ1−α/2, where χp is the p probability
quantile of the corresponding limiting distribution.

For the one-sided tests, the null hypothesis is rejected in favour of either
unilateral alternatives, for example, for R∗n,

H l
1 : F ∈ DM (EVξ)ξ<0 or Hr

1 : F ∈ DM (EVξ)ξ>0,

if
R∗n(k) < χα or R∗n(k) > χ1−α.

Figure 4 illustrates the application of those tests.

These tests suggest the non rejection of the null hypothesis, leading us
to consider that the underlying distribution of the data are in the domain of
attraction of the Gumbel distribution.
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Such as we have already pointed out in Penalva et al. [36], with fewer years
of data, we think that this explains the discrepancy observed in Figure 2, where
were plotted sample paths of very well behaved EVI-estimators, but not adequate
to the tail of the data under study. We claim again for the need of performing at
first the tests described and illustrated briefly in this Section.

5. SECOND CASE-STUDY – THE ANALYSIS

The second set of data analysed in this work, and also studied in Gomes
et al. [20] based on a shorter period of time, consists of the burned area (ha), in
Portugal, related to each of the wildfires occurred in a period from 1984 to 2016,
exceeding 100 ha, making a total of 6507 observations. The data analysed here
do not seem to have a significant temporal structure. This new data set is used
to illustrate what we have just commented.

The main results of a graphical and descriptive analysis are shown in Table
4 and in Figure 5. Tables and graphics provide evidence on the heaviness of the
right tail. Notice that similar conclusions were obtained by Beirlant et al. [1], for
data analysis of burned area of wildfires exceeding 100 ha, recorded in Portugal
from 1990 till 2003 (n = 2627).

See in Figure 6 the application of the test to the extreme value condition,
based on (4.2). We find no evidence to reject the null hypothesis, i.e., F ∈
DM(EVξ).
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min 1st Qu. Median Mean 3rd Qu. max
100 138.55 215.81 485.35 427.51 58012.75

n Skewness Kurtosis St Dev
6507 19.01 568.90 1407.58

Table 4: Descriptive statistics for burned area of wildfires exceeding
100ha.
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Figure 5: Plot of burned areas, histogram and boxplot, for wildfires, ex-
ceeding 100 ha.
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Figure 6: Plot of the sample paths for the E-test, based on (4.2) statistics,
with the corresponding quantile. Available sample size n =
6507.

The tests to the statistical choice of the tail, such as was described and
presented in Subsection 4.2, produced now the plots presented in Figure 7. Those
tests suggest the rejection of the null hypothesis, leading us to consider that the
underlying distribution of the data is in the domain of attraction of the Fréchet
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distribution.
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Figure 7: Sample paths of the statistics R∗
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χ0.025 and χ0.975 for the standard Gumbel distribution in dashed
lines, and the G∗

n and W ∗
n sample paths statistics, with the

associated quantiles of the standard normal distribution in solid
lines.

Here we will consider again, in the BM methodology, blocks as the years of
observations, m = 33. Figure 8 and Table 5 were obtained for the burned area
of wildfires exceeding 100 ha.

min 1st Qu. Median Mean 3rd Qu. max
641.33 2860.10 6235.83 8956.80 8652.43 58012.75

m Skewness Kurtosis St Dev
33 2.90 9.85 10889.31

Table 5: Basic descriptive statistics for maximum values in each year.
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Figure 8: Maximum value of burned areas in each year, histogram and
boxplot.
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Below are given the estimates of the main parameters.

ξ̂ λ̂ δ̂

0.52 (0.21) 4007.95 (754.45) 3599.50 (727.93)

Table 6: Maximum likelihood estimates (standard errors in parenthesis).

The ξ estimate corroborates the first idea pointing that the data present
clearly a tail heavier than that one of the first case-study.

Figure 9 shows the sample paths of estimates obtained using the aforemen-
tioned estimators. Values of p in Lp(k) and LRB

p (k) were also chosen using criteria
given in Penalva [35]. A quick analysis of the sample paths of the EVI-estimates
allow us to consider as ξ̂ a value between 0.55 and 0.65, which is also in agreement
with a heavy tail detected for the underlying cdf F and with the result obtained
under the parametric approach.
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Figure 9: Sample paths of the EVI-estimates considered.

6. FIRST COMMENTS ON PRACTICAL EFFECTS OF
MISSING THOSE TESTS. A FEW COMMENTS

We showed, with this work based on the two case-studies, that the real-
ization of tests on the extreme value conditions and on the statistical choice of
the tail of the underlying distribution are with no doubt the first step to prop-
erly apply the several estimation approaches and to choose the more adequate
estimators.
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A first illustration of the practical effects in the estimation of other im-
portant parameters when the choice of the tail is performed or not a priori, is
presented. It is well known how an accurate EVI estimation is important because
it dominates the tail behaviour of a distribution. However in several situations,
such as risk management or catastrophic situations, where human lives can be
in danger, in addition to modelling the tails, other parameters are of the major
importance to be estimated, such as extreme quantiles, return levels or return
periods of the distribution of the process at risk. For the first case study, high
quantiles were estimated.

While it is true that EVI determines the asymptotic behaviour of the tail
and the quantiles of a distribution, other parameters (for example, scale and lo-
cation) are no less important for an accurate estimation of quantiles, see Matthys
and Beirlant [31] and Caeiro and Gomes [3], among others.

In the first example studied, Section 3., and in the parametric approach, a
negative value, although very close to zero, was obtained for ξ̂. Now considering
the location and scale parameters estimates and by inverting the EVξ cdf in (2.3),
for ξ 6= 0, the extreme quantiles, for very small values of p, can be easily estimated
as

(6.1) χ̂1−p := λ̂− δ̂

ξ̂

[
1− (− ln(1− p))−ξ̂

]
.

For example, for p = 0.01, 0.001, 0.0001, the corresponding quantile estimates are
χ̂0.99 = 753.9114; χ̂0.999 = 1000.7254 and χ̂0.9999 = 1230.6420.

In the semi-parametric framework, and using the estimates displayed in
Figure 2 that show a more stable sample path (and also the Hill estimates as
reference), as usually is done, high quantile estimates, also for the previous values
of p were calculated.

It was used the moment estimator described in Matthys and Beirlant [31],
subsection 2.3, defined as:

(6.2) χ̂ξ̂1−p,k+1 := Xn−k:n â
ξ̂
n,k+1

cn
ξ̂ − 1

ξ̂
; cn :=

k

np
for k < n

with

âξ̂n,k+1 =
Xn−k:n H

ρ1(ξ̂)
, ρ1(ξ) =

{
1 for ξ ≥ 0
1/(1− ξ) for ξ < 0.

where ξ̂ is a consistent estimator of ξ. Here the H, L8, CH and LRB8 estimates,
displayed in Figure 2, were used in (6.2).

Figure 10 shows the paths of χ̂0.99(k), χ̂0.999(k) and χ̂0.9999(k).

However, if we have first performed the statistical test in (4.3), we were
led not to reject the null hypothesis so we will consider ξ = 0. In this case the
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Figure 10: Sample paths of the quantiles estimates.

extreme quantiles can be estimated under the approach aforementioned, based
on the inversion of the EVξ cdf in (2.3), for ξ = 0, i.e.

(6.3) χ̂1−p(k) := λ̂− δ̂ ln (− ln(1− p)) ,

and for the previous values of p we will obtain χ̂0.99 = 788.3877; χ̂0.999 =
1079.6836 and χ̂0.9999 = 1370.4655.

We see that the quantiles estimates show large discrepancies among the
procedures used. It is then advisable to perform a careful choice of the tail and
also of the EVI-estimators in which the quantile estimates are based. This is out
of scope of this article and an important topic for future research.

The next challenge is modelling and estimating clusters of extreme values
since they are linked with incidences and durations of catastrophic phenomena.
Here, an important parameter comes into play, the extremal index θ, that char-
acterizes the degree of local dependence in the extremes of a stationary sequence.
It needs to be adequately estimated, not only by itself but because its influence
on other relevant parameters, such as a high quantile. Ignoring θ may lead to an
underestimation of marginal quantile of F and an overestimation of quantiles of
the EV.
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