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1. INTRODUCTION

Nonlinear time series have attracted much attention in the last four decades.
Many classes of models have been proposed and applied with great success in
many important real-life problems; such as economics (Granger and Andersen
[11]), demography (Subba Rao and Gabr [33]), environmental studies (Gue-
gan [13]), etc. One of the most popular was the bilinear time series models
BL(p, q, P,Q)1. In the first time, these models were proposed and developed by
Granger and Andersen [11]; then becomes Phan and Tran [27], Subba Rao [32],
Guegan [12], Liu and Brockwell [25]. Particularly to those models, we quote
the first-order superdiagonal bilinear models BL(0, 0, 2, 1), who also recognized
applications in many fields (see, for example, [26, 36, 5]).

This paper deals with the presence of a first-order superdiagonal bilinear
model in panel data (a series of T observations made through time over a number
n of individuals), denoted by BLP (0, 0, 2, 1) and defined, for i = 1, 2, . . . , n and
t = 1, 2, . . . , T , as:

(1.1) Xi,t = bXi,t−2εi,t−1 + εi,t,

where Xi,t is a panel observation (for individual i at time t) described by a
nonlinear stochastic difference in time equation; (εi,t) is a white noise process,
i.e. a sequence of independent, identically distributed random variables with
mean zero, finite variance σ2 and density distribution ε 7→ f(ε) := (1/σ)f1(ε/σ)
(where f1 ∈ F0, see (2.1)) and b is a constant in R. The probabilistic properties
of a first-order superdiagonal time series model BL(0, 0, 2, 1) processes (such as
invertibility and stationarity) have been studied by several references [28, 12].
These properties also remain valid under a first-order superdiagonal panel model
BLP (0, 0, 2, 1). Let us denote by Fi,t(ε) and Fi,t(X) the σ−algebras generated
by {εi,s|s 6 t} and {Xi,s|s 6 t}, respectively, then,

1. equation (1.1) admits a unique stationary solution (Xi,t) (i.e., Fi,t(ε)-measurable)
iff b2σ2 < 1, in this case, one can write

(1.2) Xi,t =

∞∑
j=1

bjεi,t−2j

j∏
k=1

εi,t−2k+1 + εi,t;

2. equation (1.1) is invertible (i.e., εi,t is Fi,t(X)-measurable) iff 2b2σ2 < 1, in
this case, one can write

(1.3) εi,t = Xi,t +

∞∑
j=1

(−b)jXi,t−j

j∏
k=1

Xi,t−k−1.

1these models are defined as:

Xt =

p∑
j=1

ajXt−j +

q∑
j=1

cjεt−j +

P∑
j=1

Q∑
k=1

bjkεt−jXt−k + εt.
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Several methods–such as the method of moments, the least squares method
and the repeated residual method–have been established in the literature for
estimating the parameters of bilinear models, see, for example, Pham and Tran
[28], Sesay and Subba Rao [29], Grahn [15], Bouzaachane [5] and Tan and Wang
[34].

Before turning to the problem of estimating the parameters of model (1.1), it
is very important to know if it is indeed a BLP (0, 0, 2, 1), and how the test
proposed for testing randomness against first-order superdiagonal bilinear panel
dependence is efficient. Note that if b = 0, Xi,t reduces to white noise (Xi,t = εi,t),
else b 6= 0, panel data follows a BLP (0, 0, 2, 1) (alternative hypothesis)— such a
test is bilateral.

To start with, locally and asymptotically optimal parametric tests are constructed
using the Local Asymptotic Normality LAN property. Then, the special case of
the pseudo-Gaussian tests (optimal under Gaussian densities and valid under
finite-variance non-Gaussian ones) is derived. Unfortunately, their local asymp-
totic power, under non-Gaussian g1 (especially the skew and heavy-tailed ones),
can be extremely poor. Which leads us to the construction of rank-based optimal
tests (van der Waerden, Wilcoxon, Laplace, data-driven scores, etc.).

Asymptotic relative efficiencies with respect to the pseudo-Gaussian procedure
show that the van der Waerden version of our rank-based tests uniformly domi-
nates its pseudo-Gaussian countepart.

The paper is organized as follow: Section 2.1 provides the main definitions
and assumptions. The local asymptotic normality, with respect to b and σ2, in the
vicinity of b = 0, of the family of distributions associated with (1.1) (with specified
f1), is established in Section 2.2. In Section 3.1, we propose (still, for specified f1)
the optimal parametric test. The particular case of the pseudo-Gaussian test is
proposed in Section 3.2. Section 4 proposes rank-based procedures that remain
valid irrespective of f1. Particular cases (van der Warden, Wilcoxon, Laplace
scores, ...) are considered in Section 4.3. Asymptotic relative efficiencies with
respect to the pseudo-Gaussian test is derived in Section 5. Section 6 provides
some simulation results assessing the finite-sample performance of the various
tests proposed. Finally, section 7 concludes.

2. LOCAL ASYMPTOTIC NORMALITY

2.1. Notations and main technical assumptions

Denote by P
(n)
σ2,0;f1

the probability distribution under the null Xi,t = εi,t.

Under the alternative, the probability distribution is denoted by P
(n)
σ2,b;f1

(b 6= 0),
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the observations X(n) := (X
(n)′

1 , X
(n)′

2 , . . . , X
(n)′
n )′ with X

(n)
i := (Xi,1, . . . , Xi,T )′

is generated by (1.1).

We suppose that the vector X
(n)
0 := {(X(n)

i,−1εi,0, X
(n)
i,0 ), i = 1, 2, . . . , n} is

observable for each individual i, and admits a density hθ(.) continuous in θ.
The influence of these starting values is asymptotically negligible (see Hallin and
Werker (1999) [19] for a detailed discussion).

Throughout, we consider the class of standardized densities

(2.1) F0 :=

{
f1 :

∫ 0

−∞
f1(u)du = 0.5 =

∫ 1

−1
f1(u)du

}
.

Under f1 ∈ F0, the median and median absolute deviation are 0 and σ respec-
tively; this standardization avoids all moment assumptions and has no impact on
subsequent results.

Our derivation of locally asymptotically optimal tests at density f1 will be
based on the local asymptotic normality, with respect to (σ2, b)′, of the families
of distributions

(2.2) P(n)
f1

:=
{

P
(n)
σ2,b;f1

|(σ2, b)′ ∈ R∗+ × R and 2b2σ2 < 1
}

at any θ := (σ2, 0)′.

This LAN property requires some technical assumptions on the innovation
density f1. Denote by FA the class of all densities f1 satisfying the following
technical assumptions:

(A.1) f1 ∈ F0;

(A.2) f1(u) > 0, ∀u ∈ R;

(A.3) f1 is absolutely continuous on bounded intervals, i.e., there exists f ′1 such
that

f1(b)− f1(a) =

∫ b

a
f ′1(u)du for all a < b,

and, letting Φf1 = −f ′1/f1, assume that I(f1) :=

∫
R

Φ2
f1(u)f1(u)du and

J(f1) :=

∫
R
u2Φ2

f1(u)f1(u)du are finite.

For instance, interesting special cases of f1 are obtained:

. The double-exponential or Laplace distribution, with standardized density

f1(u) = fL(u) := (1/2d) exp(−|u|/d),

with I(f1) = 1/d2 and J(f1) = 2; the normalizing constant d := 1/ ln(2) '
1.4426 is such that fL ∈ FA.
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. The logistic distribution, with standardized density

f1(u) = fLog(u) :=
√
b exp(−

√
bu)/(1 + exp(−

√
bu))2,

with I(f1) = b/3 and J(f1) = (12 + π2)/9; the normalizing constant b :=
(ln 3)2) ' 1.2069 is such that fL ∈ FA.

. The Student distributions (with ν > 2 degrees of freedom), with standard-
ized density

f1(u) = ftν (u) :=
Γ((ν + 1)/2)

Γ(ν/2)

√
aν/πν(1 + aνu

2/ν)−(ν+1)/2,

with I(f1) = aν(ν+1)/(ν+3) and J(f1) = 3(ν+1)/(ν+3); the normalizing
constant aν > 0 is such that ftν ∈ FA.

. The Gaussian distribution, with standardized density (with mean zero and
variance 1/a)

f1(u) = fN (u) :=
√
a/2π exp(−au2/2),

with I(f1) = a ' 0.4549 and J(f1) = 3.

2.2. LAN

Let us denote by θ(n) the local sequences of perturbations of θ = (σ2, 0)′,
where,

θ(n) = θ + n
−1
2 τ with τ =

(
τ1, τ2

)′ ∈ R2.

The bilateral test is equivalent to:{
P

(n)
θ;f1

: τ2 = 0

P
(n)

θ(n);f1
: τ2 6= 0.

Under the null, the likelihood function for (X
(n)
0 , X(n)) is

(2.3) Lθ;f (X
(n)
0 , X(n)) = hθ(X

(n)
0 )

n∏
i=1

T∏
t=1

f(Xi,t).

If τ2 6= 0, the likelihood function for (X
(n)
0 , X(n)) in this case is

(2.4)

Lθ(n);f (X
(n)
0 , X(n)) = hθ(n)(X

(n)
0 )

n∏
i=1

T∏
t=1

f
(
Xi,t +

∞∑
j=1

(−n
−1
2 τ2)jXi,t−j

j∏
k=1

Xi,t−k−1

)
= hθ(n)(X

(n)
0 )

n∏
i=1

T∏
t=1

f
(
Xi,t + Υn(τ2)

)
,
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where Υn(τ2) :=
∞∑
j=1

(−n
−1
2 τ2)jXi,t−j

j∏
k=1

Xi,t−k−1.

Denote by Λ
(n)

θ(n)/θ;f
the logarithm of the likelihood ratio (conditional on

X
(n)
0 ) for P

(n)

θ(n);f
against P

(n)
θ;f :

(2.5) Λ
(n)

θ(n)/θ;f
:= log

(
Lθ(n);f (X

(n)
0 , X(n))/Lθ;f (X

(n)
0 , X(n))

)
.

It can be expressed as follows:

Λ
(n)

θ(n)/θ;f
=

n∑
i=1

T∑
t=1

(
log f(Xi,t + Υn(τ2))− log f(Xi,t)

)
+ op(1).

The op(1) term (under P
(n)
θ;f , as n → ∞) corresponds to the influence of the

starting value X
(n)
0 .

Write Zi,t for the standardized residual

Zi,t(σ
2, b) := σ−1

(
Xi,t +

∞∑
j=1

(−b)jXi,t−j

j∏
k=1

Xi,t−k−1

)
,

and note that, under P
(n)
θ;f1

, these residuals coincide with σ−1εi,t. The local asymp-

totic normality result, with respect to σ2 and the parameter of interest b for a
fixed density f1, is established in the next proposition.

Proposition 2.1. Let f1 ∈ FA. Then the family P(n)
f1

is LAN at any

θ = (σ2, 0)′, with central sequence

(2.6) ∆
(n)
f1

(θ) :=

(
∆

(n)
f1;1(θ)

∆
(n)
f1;2(θ)

)
:=


1

2σ2
n
−1
2

n∑
i=1

T∑
t=1

[
Φf1(Zi,t)Zi,t − 1

]
n
−1
2 σ

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2

 ,

and information matrix

(2.7) Γf1(θ) :=
(
Γf1;ij(θ)

)
1≤i,j≤2

:=

 T

4σ4

(
J(f1)− 1

)
0

0 σ2(T − 2)I(f1)σ4
f1

 .

More precisely, for any τ = (τ1, τ2)′ ∈ R2, under P
(n)
θ;f1

, as n → ∞ and fixed T ,
we have,

(2.8) Λ
(n)

θ(n)/θ;f1
= τ ′∆

(n)
f1

(θ)− 1

2
τ ′Γf1(θ)τ + op(1),

and ∆
(n)
f1

(θ) is asymptotically normal, with mean zero under P
(n)
θ;f1

, mean Γf1(θ)τ

under P
(n)

θ(n);f1
and variance Γf1(θ) under both.
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Proof: The proof relies on Swensen’s conditions 1.2 to 1.7 of lemma 1
in [30]. More precisely, the only delicate one is the condition 1.2. The main point
consists in showing that

(σ2, b) 7→ q
1
2

σ2,b;f1
(z) :=

[
1

σ
f1

(
z +

∑∞
j=1(−b)jxj

∏j
k=1 xk−1

σ

)] 1
2

is differentiable in mean quadratic. It is established in the following lemma.

Lemma 2.1. Let f1 ∈ FA. Define, for z ∈ R,

Dσ2q
1
2

σ2,0;f1
(z) =

1

4σ2
q

1
2

σ2,0;f1
(z)
(
z
σΦf1

(
z
σ

)
− 1
)
,

Dbq
1
2

σ2,b;f1
(z)|b=0

=
1

2σ
q

1
2

σ2,0;f1
(z)Φf1

(
z
σ

)
x1x0.

Then, as s and l→ 0,

1.

∫
R

[
q

1
2

σ2+s,l;f1
(z)− q

1
2

σ2+s,0;f1
(z)− lDbq

1
2

σ2+s,b;f1
(z)|b=0

]2

dz = o(l2),

2.

∫
R

[
q

1
2

σ2+s,0;f1
(z)− q

1
2

σ2,0;f1
(z)− sDσ2q

1
2

σ2,0;f1
(z)

]2

dz = o(s2),

3.

∫
R

[
q

1
2

σ2+s,l;f1
(z)−q

1
2

σ2,0;f1
(z)−(s, l)

 Dσ2q
1
2

σ2,0;f1
(z)

Dbq
1
2

σ2,b;f1
(z)|b=0

]2

dz = o(‖ (s, l)′ ‖2).

Proof of Lemma 2.1.

1. Let Υ(b) =
∞∑
j=1

(−b)jxj
j∏

k=1

xk−1. Then 1 takes the form

∫
R

[
1√

σ2 + s
f

1
2

1

(
z + Υ(l)√
σ2 + s

)
− 1√

σ2 + s
f

1
2

1

(
z√

σ2 + s

)
−l 1

2
√
σ2 + s

q
1
2

σ2+s,0;f1
(z)Φf1

( z√
σ2 + s

)
x1x0

]2

dz

= o(l2), is equivalent to∫
R

[
f

1
2
(
z + Υ(l)

)
− f

1
2
(
z
)
− l

2
f

1
2
(
z
)
Φf

(
z
)
x1x0

]2

dz = o(l2),

which is equivalent to∫
R
l2
[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l
+

1

2

f ′
(
z
)

f
1
2

(
z
)x1x0

]2

dz = o(l2),

hence, for proving that, it is sufficient to prove that

lim
l→0

∫
R

[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l
+

1

2

f ′
(
z
)

f
1
2

(
z
)x1x0

]2

dz = 0.



Pseudo-Gaussian and rank-based optimal tests for BLP (0, 0, 2, 1) models 9

We have

lim
l→0

f
1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l
= lim

l→0

f
1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

Υ(l)
× Υ(l)

l

=
(
f

1
2

(
z
))′ × (−x1x0)

= −1
2

f ′
(
z
)

f
1
2

(
z
)x1x0.

And just show that

∫
R

[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l

]2

dz 6
∫
R

[
−1

2

f ′
(
z
)

f
1
2

(
z
)x1x0

]2

dz <

∞.

We know that f
1
2

(
z + Υ(l)

)
− f

1
2 (z) =

∫ z+Υ(l)

z

1

2
f ′(t)f

−1
2 (t)dt, then

∫ +∞

z=−∞

[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l

]2

dz =

∫ +∞

z=−∞

1

l2

[ ∫ z+Υ(l)

t=z

1

2
f ′(t)f

−1
2 (t)dt

]2

dz

6
Υ(l)

l2

∫ +∞

z=−∞

∫ z+Υ(l)

t=z

[
1

2
f ′(t)f

−1
2 (t)

]2

dt dz

6
Υ(l)

l2

∫ +∞

t=−∞

∫ t

z=t−Υ(l)

[
1

2
f ′(t)f

−1
2 (t)

]2

dt dz

6

[
Υ(l)

l

]2 ∫ +∞

t=−∞

[
1

2
f ′(t)f

−1
2 (t)

]2

dt

6 (−x1x0)2

∫ +∞

t=−∞

[
1

2
f ′(t)f

−1
2 (t)

]2

dt

6
∫
R

[
−1

2
f ′(t)f

−1
2 (t)x1x0

]2

dt.

This completes the proof of part 1 of Lemma 2.1.

2. The problem here is reduced to the classical case of linear models considered
by Swensen (1985) [30].

3. The result here follows from 1 and 2 above. This completes the proof of
Lemma 2.1.

The diagonal form of the information matrix confirms that σ2 and b are not
related, in the parametric family (2.2). They play distinct and well separated
roles.

The Gaussian versions (f1 = fN ) of (2.6) and (2.7) are
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∆
(n)
N (θ) =


1

2σ2
n
−1
2

n∑
i=1

T∑
t=1

[
aZ2

i,t − 1
]

n
−1
2 σa

n∑
i=1

T∑
t=3

Zi,tZi,t−1Zi,t−2

 and ΓN (θ) =

 T

2σ4
0

0
σ2

a
(T − 2)

 ,

respectively.

The result of proposition 2.1, implies that, under assumptions FA, as n→
∞, the family of first-order superdiagonal panel models BLP (0, 0, 2, 1) possesses
the LAN property in a neighbourhood of white noise. This result leads us to
construct asymptotically optimal parametric tests under a specified f1. Note
that these tests are valid under a specified f1, and thereafter we will propose
more general tests such as Pseudo-Gaussian and Rank-based procedures which
are valid under general densities.

3. OPTIMAL PARAMETRIC AND PSEUDO-GAUSSIAN TESTS

As mentioned above, the Le Cam theory of LAN experiments allows for
constructing tests which are locally asymptotically optimal (namely, most strin-
gent). The basic idea is the weak convergence concept of the sequence of local
experiments to the Gaussian shift two-dimensional model ∆ ∼ N

(
Γτ,Γ

)
. For

a general theory on locally asymptotically optimal testing in LAN families, the
reader is referred to Le Cam (1986)[23], van der Vaart (1998)[35]).

We are interested in testing the null hypothesis b = 0 of randomness in
(1.1), with unspecified standardized error density in F0. To do, let us start with
the case when f1 ∈ F0 is specified, i.e., the null hypothesis is such that

H(n)
0 (f1) :=

⋃
σ2>0

{P(n)
σ2,0;f1

},

and parametric alternatives take the form

H(n)
1 (f1) :=

⋃
σ2>0

⋃
b∈R
{P(n)

σ2,b;f1
}.

3.1. Optimal parametric tests

Since θ = (σ2, 0)′ = (1, 0)′σ2 =: Ωσ2, then θ ∈ M(Ω), where M(Ω) is the
linear subspace of dimension 1 of R2 generated by the vector Ω := (1, 0)′. Recall
that we are testing τ2 = 0 against τ2 6= 0, which is equivalent to testing τ ∈M(Ω)
against τ /∈ M(Ω). Such tests should be based on the asymptotically chi-square
distribution (See, Ghosh, S. (1999) [10]) and therefore the test statistic takes the
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form

(3.1) Qf1(θ) := ∆
(n)′

f1
(θ)

[
Γ−1
f1

(θ)− Ω
(
Ω′Γf1(θ)Ω

)−1
Ω′
]
∆

(n)
f1

(θ).

By algebra calculations, one can write

(3.2) Qf1(θ) = Γ−1
f1;22(θ)∆

(n)2

f1;2 (θ) = ∆
(n)2

f1
/((T − 2)I(f1)σ4

f1) =: Q
f1
,

with, ∆
(n)
f1

= n
−1
2

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2.

The test based on (3.2) is locally asymptotically most stringent for the
problem of detecting the BLP (0, 0, 2, 1) dependance in white noise process. The
application of Le Cam’s third Lemma provides the asymptotic law of Q

f1
under

P
(n)

θ(n);f1
, so we have the following proposition.

Proposition 3.1. Let f1 ∈ FA. Then, for any τ = (τ1, τ2)′ ∈ R2,

(i) Q
f1

is asymptotically central chi-square with 1 degree of freedom under

P
(n)
θ;f1

, and asymptotically noncentral chi-square, still with 1 degrees of free-

dom and with noncentrality parameter λf1 := (T − 2)I(f1)σ2σ4
f1
τ2

2 under

P
(n)

θ(n);f1
;

(ii) the sequence of tests rejecting the null hypothesis P
(n)
θ;f1

whenever Q
f1
>

χ2
1,1−α

2, is locally asymptotically most stringent, at asymptotic level α, for⋃
σ2

{P(n)
σ2,0;f1

} against
⋃

σ2∈R∗+

⋃
b∈R

{
P

(n)
σ2,b;f1

}
;

(iii) the asymptotic power under P
(n)

θ(n);f1
is 1− F (χ2

1,1−α, λf1). 3

Proof: (i) From Proposition 2.1, one can write

(3.3) Qf1(θ) = Γ−1
f1;22(θ)∆

(n)2

f1;2 (θ),

with ∆
(n)
f1;2(θ) = n

−1
2 σ

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2 = σ∆
(n)
f1

,

where ∆
(n)
f1

:= n
−1
2

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2, then

Qf1(θ) =
[
σ2(T − 2)I(f1)σ4

f1

]−1[
σ∆

(n)
f1

]2
= ∆

(n)2

f1
/((T − 2)I(f1)σ4

f1) = Q
f1
.

2χ2
1,1−α is the (1 − α)-quantile of the central chi-square distribution with one degree of

freedom.
3F (., λf1) is the noncentral chi-square distribution function with one degree of freedom and

noncentrality parameter λf1 .
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(ii) Under P
(n)
θ;f1

: ∆
(n)
f1
∼ N

(
0, (T−2)I(f1)σ4

f1

)
, then ∆

(n)2

f1
/((T−2)I(f1)σ4

f1
) =

Q
f1
∼ χ2

1.

Under P
(n)

θ(n);f1
, from Le Cam’s third lemma, we have

∆
(n)
f1
∼ N

(
(T − 2)I(f1)σσ4

f1τ2, (T − 2)I(f1)σ4
f1),

hence ∆
(n)2

f1
/((T − 2)I(f1)σ4

f1
) = Q

f1
∼ χ2

1(λf1): noncentral chi-square of

one degree of freedom and non-centrality parameter

λf1 :=
(√

(T − 2)I(f1)σ4
f1
στ2

)2
= (T − 2)I(f1)σ2σ4

f1τ
2
2 .

(iii) We know that the power of the test is defined by

1−β := Prob

[
rejecting H(n)

f (θ) / H(n)
f (θ(n))

]
= Prob

[
Q
f1
> χ2

1,1−α / τ2 6= 0

]
where β is the second species risk and defined by

Prob

[
Q
f1
< χ2

1,1−α / τ2 6= 0

]
= F (χ2

1,1−α, λf1).

Hence, the power of the test is 1− F (χ2
1,1−α, λf1).

The Gaussian versions of Q
f1

is

(3.4) QN =
a3

T − 2

[
n
−1
2

n∑
i=1

T∑
t=3

Zi,tZi,t−1Zi,t−2

]2

.

Unfortunately, this test statistic needs f1 to be specified as a standardized Gaus-
sian one, so the parameter a also has to be given. In the next, we will show
that an appropriate version remains asymptotically valid under arbitrary f1 with
finite variance and optimal under Gaussian one (pseudo-Gaussian test).

3.2. Pseudo-Gaussian tests

The Gaussian central sequence ∆
(n)
N ;2(θ) allows obtaining asymptotically

optimal tests under f1 = fN , as well as efficient detection of panel bilinear mod-
els, in the parametric Gaussian model characterized by Gaussian disturbances.
Extending the validity of the Gaussian optimal test to general densities g1 in a
broad class of densities is of course highly desirable. Let us show that this is

indeed possible and that a slight modification, ∆
∗(n)
N ;2 , say, of the efficient cen-

tral sequence ∆
(n)
N ;2 leads to a pseudo-Gaussian test which remaining valid when
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the actual density g1 belongs to the class F (2)
A of all densities in FA with finite

variance. Define

∆
∗(n)
N ;2 (θ) = n

−1
2 σa

n∑
i=1

T∑
t=3

(Zi,t −m(n)
1 )(Zi,t−1 −m(n)

1 )(Zi,t−2 −m(n)
1 ),

where m
(n)
1 =

1

nT

n∑
i=1

T∑
t=1

Zi,t is a
√
n−consistent estimator, under P

(n)
θ;g1

, of

µ1(g1) :=

∫
R
zg1(z)dz. Decomposing Zi,t −m(n)

1 into (Zi,t − µ1(g1)) + (µ1(g1) −

m
(n)
1 ), then, it is easy to check that under P

(n)
θ;g1

, as n→∞,

∆
∗(n)
N ;2 (θ) = n

−1
2 σa

n∑
i=1

T∑
t=3

(Zi,t− µ1(g1))(Zi,t−1− µ1(g1))(Zi,t−2− µ1(g1)) + op(1).

Then, still under P
(n)
θ;g1

, ∆
∗(n)
N ;2 (θ) is asymptotically normal with zero mean and

variance
Γ∗N ;g1;22 = a2σ2(T − 2)σ6

g1 ,

where σ2
g1 :=

∫
R

(z − µ1(g1))2g1(z)dz.

On the other hand, it is easy to see that, under P
(n)

θ(n);g1
, ∆
∗(n)
N ;2 (θ) and the

log-likelihood Λ
(n)

θ(n)/θ;g1
are jointly binormal; the desired result then follows from

a routine application of Le Cam’s Third Lemma.

A pseudo-Gaussian test may then be based on a statistic of the form
(3.5)

Q∗N ;g1
(θ) := (Γ∗N ;g1;22(θ))−1∆

∗(n)2

N ;2 (θ)

:=
1

(T − 2)σ6
g1

[
n
−1
2

n∑
i=1

T∑
t=3

(Zi,t −m(n)
1 )(Zi,t−1 −m(n)

1 )(Zi,t−2 −m(n)
1 )

]2

.

In practice, the pseudo-Gaussian test will be based on

Q†N :=
1

(T − 2)s6

[
n
−1
2

n∑
i=1

T∑
t=3

(Zi,t −m(n)
1 )(Zi,t−1 −m(n)

1 )(Zi,t−2 −m(n)
1 )

]2

,

where s2 =
1

nT

n∑
i=1

T∑
t=1

(Zi,t−m(n)
1 )2 is the empirical variance of the (Zi,t−m(n)

1 )’s.

Showing that, under P
(n)
θ;g1

, Q†N − Q∗N ;g1
(θ) = op(1)., as n → ∞, we thus

have the following result.

Proposition 3.2. Let g1 ∈ F (2)
A . Then,
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(i) Q†N is asymptotically central chi-square with 1 degree of freedom under

P
(n)
θ;g1

, and asymptotically noncentral chi-square, still with 1 degree of free-

dom and with noncentrality parameter λN := (T − 2)σ2
gτ

2
2 under P

(n)

θ(n);g1
;

(ii) the sequence of tests rejecting the null hypothesis
⋃

g1∈F(2)
A

⋃
σ∈R∗+

{
P

(n)
σ2,0;g1

}
whenever Q†N > χ2

1,1−α, is locally asymptotically most stringent, at asymp-

totic level α, against alternatives of the form
⋃
σ∈R∗+

⋃
b∈R

{
P

(n)
σ2,b;fN

}
;

(iii) the asymptotic power under P
(n)

θ(n);g1
is 1− F (χ2

1,1−α, λN ).

4. OPTIMAL RANK TESTS

We start by describing the group invariance structure of the testing problem
considered. Then we introduce (and study the properties of) rank-based versions
of the central sequences. This will allow us to develop the resulting (optimal)
rank tests and to derive their asymptotic properties. The general results of Hallin
and Werker (2003) indicate that semiparametrically efficient and rank-based pro-
cedures have been established in relation with ranks that are being maximal
invariants under model-generating groups of transformations. It is clearly that

the null hypothesis H(n)
0 is invariant under the group (G(nT ), ?), such as for any

transformation Gh of RnT we define Gh(Y11, . . . , YnT ) := (h(Y11), . . . , h(YnT )),
where y 7→ h(y) is continuous and monotone increasing and lim

y→±∞
h(y) = ±∞.

The invariance principle therefore suggests restricting to tests that are invariant
with respect to this group. The maximal invariant associated with (G(nT ), ?) is

the rank R(n) :=
(
R

(n)
1,1 , . . . , R

(n)
n,T

)
, where R

(n)
i,t denotes the rank of Z

(n)
i,t among(

Z
(n)
1,1 , . . . , Z

(n)
n,T

)
. It is easy to check that (G(nT ), ?) is actually a generating group

for the null hypothesis H(n)
0 . As a direct corollary, rank tests are distribution-free

under the whole null hypothesis. This explains why rank tests will be validity-
robust.

4.1. Rank-based versions of central sequences

According to Hallin and Werker (2003) [20] and under the LAN property

with efficient central sequence ∆
(n)
f1;2, an efficient semiparametric inference ob-

tained conditioning ∆
(n)
f1;2 by the rank vector R(n), under the null hypothesis

(4.1) ∆
∼

(n)

f1;2
:= E

[
∆

(n)
f1;2 | R

(n)
]
.
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The conditional definition (4.1) of ∆
(n)
f1;2 gives a statistic based on the ranks of

exact scores, thus Hájek’s projection theorem establishes the asymptotic equiva-
lence between a non-parametric statistic and its parametric counterpart (for more
details, consult the book of Hájek, Šidák and Sen (1999) [21]).

To combine validity-robustness/invariance with Le Cam optimality at den-
sity f1, we introduce rank-based versions of the central sequence that appear in
the LAN property above (Proposition 2.1).

(4.2) ∆
∼

(n)

f1;2
:= n

−1
2 σ

n∑
i=1

T∑
t=3

{
ϕf1
( R(n)

i,t

N + 1

)
F−1

1

(R(n)
i,t−1

N + 1

)
F−1

1

(R(n)
i,t−2

N + 1
)−mf1

}

with N = n(T − 2), ϕf1 := Φf1 ◦ F
−1
1 and

mf1 :=
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

ϕf1
( t1
N + 1

)
F−1

1

( t2
N + 1

)
F−1

1

( t3
N + 1

).

Let

s
(n)2

f1
:=

1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

[
ϕf1
( t1
N + 1

)
F−1

1

( t2
N + 1

)
F−1

1

( t3
N + 1

)

]2

+
2

N(N − 1)(N − 2)(N − 3)

∑∑∑∑
16t1 6=t2 6=t3 6=t46N

ϕf1
( t1
N + 1

)
ϕf1
( t2
N + 1

)
F−1

1

( t2
N + 1

)
×
[
F−1

1

( t3
N + 1

)

]2

F−1
1

( t4
N + 1

)
+

2

N(N − 1)(N − 2)(N − 3)(N − 4)

∑∑∑∑∑
16t1 6=t2 6=t3 6=t4 6=t56N

ϕf1
( t1
N + 1

)
F−1

1

( t2
N + 1

)
F−1

1

( t3
N + 1

)

×ϕf1
( t3
N + 1

)
F−1

1

( t4
N + 1

)
F−1

1

( t5
N + 1

)

+
N − 5

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)

∑∑∑∑∑∑
16t1 6=t2 6=t3 6=t4 6=t5 6=t66N

ϕf1
( t1
N + 1

)
F−1

1

( t2
N + 1

)
F−1

1

( t3
N + 1

)

×ϕf1
( t4
N + 1

)
F−1

1

( t5
N + 1

)
F−1

1

( t6
N + 1

)
−Nm2

f1 .

Define the cross-information coefficients I(f1, g1) and σ(f1, g1) as

I(f1, g1) :=

∫ 1

0
Φf1(F−1

1 (u))Φg1(G−1
1 (u))du and σ(f1, g1) :=

∫ 1

0
F−1

1 (v)G−1
1 (v)dv.,

we then have, for the rank-based ∆
∼

(n)

f1;2
, the following asymptotic representation

result.

Proposition 4.1. Let f1 and g1 ∈ FA. Then, as n→∞ and fixed T,
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(i) under P
(n)
θ;g1

,

(4.3)
∆
∼

(n)

f1;2
:= E

(n)
g1

[
∆

(n)
f1;2 | R

(n)
1,1 , . . . , R

(n)
n,T

]
+ oL2(1)

= ∆
∗(n)
f1,g1;2 + oL2(1),

with (denoting by G1 the distribution function associated with g1)
(4.4)

∆
∗(n)
f1,g1;2 := n

−1
2 σ

n∑
i=1

T∑
t=3

ϕf1
(
G1(Zi,t)

)
F−1

1

(
G1(Zi,t−1)

)
F−1

1

(
G1(Zi,t−2)

)
;

(ii) still under P
(n)
θ;g1

, ∆
∼

(n)

f1;2
has zero mean and variance Γ

∗(n)
f1;22 := σ2(T−2)s

(n)2

f1
=

Γ∗f1;22 + o(1), where Γ∗f1;22 := (T − 2)I(f1)σ2σ4
f1

;

(iii) ∆
∗(n)
f1,g1;2 is asymptotically normal, with zero mean under P

(n)
θ;g1

, mean

(T−2)I(f1, g1)σ2(f1, g1)σ2τ2 under P
(n)

θ(n);g1
and variance Γ∗f1;22 under both.

Proof: The proof of Part (i) of the proposition follows along the same
lines as in Hallin et al. (1985) [16], and therefore is omitted. Part (ii) is obtained

by direct computation. As for Part (iii), under P
(n)
θ;g1

, the result straightforwardly
follows from classical central limit theorem. On the other hand, it is easy to

see that, still under P
(n)

θ(n);g1
, ∆
∗(n)
f1,g1;2 and the log-likelihood Λ

(n)

θ(n)/θ;g1
are jointly

binormal; the desired result then follows from a routine application of Le Cam’s
Third Lemma.

4.2. Optimal rank tests

The rank-based version of the quadratic statistic is given by
(4.5)

Q
∼f1

:= (Γ
∗(n)
f1;22)−1∆

∼
(n)2

f1;2

=
1

(T − 2)s
(n)2

f1

[
n
−1
2

n∑
i=1

T∑
t=3

{
ϕf1
( R(n)

i,t

N + 1

)
F−1

1

(R(n)
i,t−1

N + 1

)
F−1

1

(R(n)
i,t−2

N + 1
)−mf1

}]2

,

we then have the following general result.

Proposition 4.2. Let f1 and g1 ∈ FA. Then, for any τ = (τ1, τ2)′ ∈ R2,
as n→∞ and for all fixed T ,

(i) Q
∼f1

is asymptotically central chi-square with 1 degree of freedom under

P
(n)
θ;g1

, and asymptotically noncentral chi-square, still with 1 degree of free-
dom and with noncentrality parameter

λf1,g1 := (T − 2)I2(f1, g1)σ4(f1, g1)σ2τ2
2 /I(f1)σ4(f1)
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under P
(n)

θ(n);g1
;

(ii) the sequence of tests rejecting the null hypothesis
⋃

g1∈FA

⋃
σ2

{
P

(n)
σ2,0;g1

}
when-

ever Q
∼f1

> χ2
1,1−α, is locally asymptotically most stringent, at asymptotic

level α, against alternatives of the form
⋃
σ∈R∗+

⋃
b∈R

{
P

(n)
σ2,b;f1

}
;

(iii) the asymptotic power under P
(n)

θ(n);f1
is 1− F (χ2

1,1−α, λf1,g1).

4.3. Examples of non-parametric statistics

The quadratic statistic Q
∼f1

is a non-parametric statistic that depends only

on the determining of the score function f1 and provides general form for the
optimal rank tests of the null hypothesis of randomness.

The three most important particular cases for the rank test statistic pre-
sented are the van der Waerden (normal score), the Wilcoxon (logistic score)
and the Laplace (double-exponential score) test statistics, which are respectively
optimal at normal, logistic and double-exponential distributions.

(i) The van der Waerden’s test statistic is given by

Q
∼vdW

:=
a2

(T − 2)s
(n)2

fN

∆
∼

(n)2

vdW
,

with

(4.6) ∆
∼

(n)

vdW
= n

−1
2

n∑
i=1

T∑
t=3

{
Ψ−1

( R(n)
i,t

N + 1

)
Ψ−1

(R(n)
i,t−1

N + 1

)
Ψ−1

(R(n)
i,t−2

N + 1
)−mvdW

}
and

mfN =
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

Ψ−1
( t1
N + 1

)
Ψ−1

( t2
N + 1

)
Ψ−1

( t3
N + 1

),

where Ψ is the standard normal distribution function.

(ii) The Wilcoxon’s test statistic is given by

Q
∼W

:=
1

(T − 2)bs
(n)2

l

∆
∼

(n)2

W
,

with
(4.7)

∆
∼

(n)

W
= n

−1
2

n∑
i=1

T∑
t=3

{(
2
R

(n)
i,t

N + 1
−1

)
log

(
R

(n)
i,t−1

N + 1−R(n)
i,t−1

)
log

(
R

(n)
i,t−2

N + 1−R(n)
i,t−2

)
−ml

}



18 A. Lmakri, A. Akharif, A. Mellouk and M. Fihri

and

ml =
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

(
2t1

N + 1
−1

)
log

(
t2

N + 1− t2

)
log

(
t3

N + 1− t3

)
.

(iii) The Laplace’s test statistic is given by

Q
∼L

:=
d2

(T − 2)s
(n)2

De

∆
∼

(n)2

L
,

with
(4.8)

∆
∼

(n)

L
= n

−1
2

n∑
i=1

T∑
t=3

{
sign

(
F−1

1

( R(n)
i,t

N + 1

))
F−1

1

(R(n)
i,t−1

N + 1

)
F−1

1

(R(n)
i,t−2

N + 1
)−mDe

}
and

mDe =
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

sign

(
F−1

1

( t1
N + 1

))
F−1

1

( t2
N + 1

)
F−1

1

( t3
N + 1

),

where F1 is the distribution function of the double-exponential and

F−1
1 (u) =

{
d log(2u) if 0 < u 6 1

2
−d log(2− 2u) if 1

2 6 u < 1.

5. ASYMPTOTIC RELATIVE EFFICIENCIES

In order to compare the performance of the parametric and non-parametric
tests presented, we calculate the Asymptotic Relative Efficiencies (AREs) of rank
based tests with respect to the Pseudo-Gaussian one. The results obtained are

satisfactory. Hence, under P
(n)

θ(n);g1
, for any g1 and for different scores f1, the

asymptotic relative efficiencies of Q
∼f1

with respect to QN are

(5.1)

AREg1(Q
∼f1

/QN ) =

(
λf1,g1
λN

)2

=

(
I2(f1, g1)σ4(f1, g1)

σ2
g1σ

4
f1
I(f1)

)2

.

Table (1) gives the numerical values of (5.1) forQ
∼f1

= Q
∼vdW

, Q
∼W

, Q
∼La

, Q
∼ t5

, Q
∼sN (2)

and Q
∼st5(2)

under densities g1 that are normal, Logistic, Double exponential,

Student-t5, Skew-normal sN (2) and Skew-Student st5(2).

Note that for f1 = vdW these values are always greater than one, i.e., the
van der Waerden test (vdW) always has an efficiency greater than or equal to one,
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the equality being realized only if the density underlying g is itself a Gaussian
density (N ), which means that rank based tests are asymptotically more powerful
than Gaussian tests (this result is proved in many cases, see for example, Chernoff
and Savage (1958) [6] and Hallin (1993) [18] for ARMA models). Note also
that each value is maximum in its corresponding column. Thus, at each of the
densities, non-parametric tests perform better, compared to the Pseudo-Gaussian
test.

Scores f1

Actual density g1 N l De t5 sN (2) st5(2)

Van der Waerden 1.0000 1.1723 1.5244 1.3435 1.6328 1.7262
Wilcoxon 0.9347 1.2026 2.3421 1.5002 1.9782 1.7822
Laplace 0.4275 1.1337 4.0000 1.0349 1.5433 1.6889
Student-t5 0.8160 1.1569 2.7812 1.5625 1.8922 1.9501
Skew-normal sN (2) 0.9520 1.0989 1.5633 1.1490 2.2301 2.3301
Skew-Student st5(2) 0.5179 0.9734 1.9331 1.2150 1.7325 3.0133

Table 1: Asymptotic relative efficiencies of some rank tests compared to
their Pseudo-Gaussian counterpart.

6. SIMULATION

To enhance the interpretation and validity of the theoretical results of the
previous sections, we present a simulation experiment using R-programming. The
purpose of this section is to evaluate the performance of the proposed tests,
at asymptotic level α = 5%. We simulated several BLP (0, 0, 2, 1) panel data
described by

(6.1) Xi,t = bXi,t−2εi,t−1 + εi,t i = 1, 2, . . . , 100, t = 1, 2, . . . , 12,

where,

• b = 0 for null hypothesis, and b = 0.05, 0.1, 0.15, 0.2 for increasingly severe
alternatives,

• the (εi,t)’s are i.i.d. with a symmetric density - Gaussian (N ), logistic (l),
double exponential (De), Student with ν = 5 degrees of freedom (t5) - or
with an asymmetric density - the skew-normal sN (δ) and skew-Student
st5(δ) densities 4 (both with skewness parameter value δ = 2).

We performed the simulations for n = 100 and T = 12. In each case we generated
2500 independent samples of size N = n(T − 2) = 1000 from (6.1).

4See, for instance, Azzalini and Capitanio (2003) [2] for a definition of skew-normal and
skew-Student densities.
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For each replication, we performed the following tests at asymptotic level
α = 5%: the pseudo-Gaussian test based on Q†N , the van der Waerden test based
on Q
∼vdW

, the Wilcoxon test based on Q
∼W

, the Laplace test based on Q
∼L

, the rank

tests based on Student with 5 degrees of freedom and data-driven skew-Student
stν̂(δ̂) scores.

Rejection frequencies are reported in Tabel 2, they amply confirm the excel-
lent overall performances of our rank-based procedure with data-driven scores. It
also appears from the skew-normal and skew-Student simulations that asymme-
try significantly improves the superiority of rank tests over the pseudo-Gaussian
one.

7. CONCLUSION

The problem of testing the null hypothesis of a randomness against first-
order superdiagonal panel model BLP (0, 0, 2, 1) (in large n and small T ) is con-
sidered for specified and unspecified error density. Optimal parametric and
pseudo-Gaussian procedures are derived based on the Local Asymptotic Nor-
mality property. Moreover, the pseudo-Gaussian test appears to have quite poor
performances under skewed and heavy-tailed distributions. Therefore a rank-
based version of the test is considered. Particular cases such as van der Waer-
den, Wilcoxon, Laplace and data-driven scores are given. These tests exhibit
remarkably high ARE values with respect to their pseudo-Gaussian counterpart.
Simulations confirm the excellent overall performances of the proposed tests.
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Underlying densities g1 Test b
0 0.05 0.1 0.15 0.2

Pseudo Gaussien 0.0520 0.2236 0.7224 0.9680 0.9996
Van der Waerden 0.0512 0.2448 0.6844 0.9564 1.0000

Normal Wilcoxon 0.0508 0.2280 0.7400 0.9640 1.0000
Laplace 0.0512 0.2160 0.6928 0.8840 0.9992

Student-t5 0.0496 0.2360 0.6560 0.9760 1.0000
Data-Driven 0.0524 0.2800 0.7400 0.9760 1.0000

Pseudo Gaussien 0.0464 0.2400 0.7144 0.9632 0.9992
Van der Waerden 0.0488 0.2688 0.7204 0.9844 0.9996

Logistic Wilcoxon 0.0520 0.3044 0.7880 0.9620 0.9980
Laplace 0.0496 0.2960 0.7320 0.9840 0.9980

Student-t5 0.0560 0.2488 0.7640 0.9840 0.9996
Data-Driven 0.0500 0.3240 0.8360 0.9920 1.0000

Pseudo Gaussien 0.0524 0.2236 0.6908 0.9544 0.9972
Van der Waerden 0.0476 0.2324 0.7820 0.9956 0.9888

Double exponential Wilcoxon 0.0492 0.3720 0.8412 0.9884 0.9992
Laplace 0.0520 0.4924 0.9080 0.9960 1.0000

Student-t5 0.0484 0.3920 0.8800 0.9920 1.0000
Data-Driven 0.0480 0.3760 0.8760 0.9520 1.0000

Pseudo Gaussien 0.0496 0.3248 0.8768 0.9932 0.9996
Van der Waerden 0.0488 0.3044 0.8660 0.9924 1.0000

Student-t5 Wilcoxon 0.0492 0.4964 0.9248 0.9732 0.9989
Laplace 0.0488 0.4560 0.8840 0.9880 0.9996

Student-t5 0.0476 0.4640 0.9560 0.9960 1.0000
Data-Driven 0.0540 0.4960 0.9720 1.0000 1.0000

Pseudo Gaussien 0.0496 0.1264 0.4572 0.7900 0.9612
Van der Waerden 0.0464 0.1328 0.4112 0.8084 0.9488

Skew-normal sN (2) Wilcoxon 0.0468 0.1440 0.4560 0.8240 0.9440
Laplace 0.0492 0.2120 0.4824 0.7244 0.8680

Student-t5 0.0432 0.1760 0.4120 0.7360 0.9240
Data-Driven 0.0460 0.2080 0.5360 0.8080 0.9400

Pseudo Gaussien 0.0480 0.2240 0.6800 0.9392 0.9904
Van der Waerden 0.0524 0.2368 0.7200 0.9240 0.9888

Skew-Student st5(2) Wilcoxon 0.0488 0.3120 0.7284 0.9688 0.9992
Laplace 0.0540 0.3160 0.6800 0.9124 0.9640

Student-t5 0.0504 0.2840 0.7280 0.9440 0.9920
Data-Driven 0.0484 0.3480 0.8360 0.9720 0.9960

Table 2: Rejection frequencies (out of 2500 replications), for b = 0 (null
hypothesis) and various non-zero values of b (alternative hy-
potheses), with error density g1 that is Gaussian (N ), logistic
(l), double exponential (De), Student (t5), skew-normal (sN (2))
and skew-Student t5 (st5(2)) of the pseudo-Gaussian and rank
based (based on van der Waerden, Wilcoxon, Laplace, Student-
t5 and data-driven scores) procedures.


