
PREDICTIVE ESTIMATION OF POPULATIONMEAN
IN RANKED SET SAMPLING

Authors: Shakeel Ahmed
– Department of Statistics Quaid-i-Azam university Islamabad,

Pakistan (sahmed@qau.edu.pk)

Javid Shabbir
– Department of Statistics Quaid-i-Azam university Islamabad,

Pakistan (javidshabbir@gmail.com)

Sat Gupta
– Department of Mathematics and Statistics, University of North Carolina at Greensboro,

USA (sngupta@uncg.edu)

Abstract:

• The article presents predictive estimation of population mean of the study variable in
Ranked Set Sampling (RSS). It is shown that the predictive estimators in RSS using
mean per unit estimator, ratio estimator and regression estimator as predictor for non-
sampled values are equivalent to the corresponding classical estimators in RSS. On
the other hand, when product estimator is used as predictor, the resulting estimator
differs from the classical product estimator under RSS. Expressions for the Bias and
the Mean Squared Error (MSE) of the proposed estimators are obtained up to first
order of approximation. A simulation study is conducted to observe the performance
of estimators under predictive approach.
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1. INTRODUCTION

It is very common to construct estimators for population parameters of
a study variable using the information contained only in a sample of the study
variable. However, in many situations, statisticians are interested in using some
auxiliary information from the population itself which helps in finding more ef-
ficient estimators. In literature, a lot of work has been done on how to use the
auxiliary information (see for example, Agrwal and Roy (1999), Upadhyaya and
Singh (1999), Singh (2003), Singh and Tailor (2003), Kadilar and Cingi (2004,
2006), Yan and Tian (2010), and Singh et al. (2014)). In many situations, we may
be interested in estimating the average value of the variable being measured for
non-sampled units on the basis of sample data at hand. This approach is called
predictive method of estimation. This approach is based on superpopulation
models, and hence it is also called model-based approach. The approach assumes
that the population under consideration is a realization of random variables fol-
lowing a superpopulation model. Under this model the prior information about
the population parameters such as the mean, the variance, and other parameters
is utilized to predict the non-sampled values of the study variable.

Basu (1971) constructed predictive estimators for population mean using mean
per unit estimator, regression estimator, and ratio estimator as predictors for
the mean of unobserved units in the population. Srivastava (1983) compared
the estimator obtained by using the product estimator as a predictor for mean
of unobserved units in the population with the customary product estimator.
Recently, Yadav and Mishra (2015) have established predictive estimators using
product estimator as predictor for the mean of unobserved units of the population.

Basic statistical principles play a vital role in making inference about the pop-
ulation of interest. If these principles are violated, even optimal statistical pro-
cedures will not allow us to make legitimate statistical inferences about the pa-
rameters of interest. Ranked Set Sampling (RSS) technique is a good alternative
for Simple Random Sampling (SRS) for obtaining experimental data that are
truly representative of the population under investigation. This is true across
all of the sciences including agricultural, biological, environmental, engineering,
physical, medical, and social sciences. This is because in RSS measurements
are likely more regularly spaced than measurements in SRS. The RSS proce-
dure creats stratification of the entire population at the sampling stage i.e. we
are randomly selecting samples from the subpopulations of small, medium and
large units without constructing the subpopulation strata in advance. Ranked
set sampling method, proposed originally by McIntyre (1952) to estimate mean
pasture yields, has recently been modified by many authors to estimate the pop-
ulation parameters. Dell and Clutter (1972) showed that the mean estimator
is an unbiased estimator of the population mean under RSS for both perfect as
well as imperfect ranking. Muttlak (1997) suggested median ranked set sampling
(MRSS) for estimation of finite population mean. Al-Saleh and Al-Omari (2002)
used multistage ranked set sampling (MSRSS) to increase the efficiency of the
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estimator of the population mean for certain value of the sample size. Jemain
and Al-Omari (2006) suggested double quartile ranked set sampling (DQRSS) for
estimating the population mean. Many other authors have worked on estimation
of parameters in RSS (see Al-Omari and Jaber (2008), Bouza (2002), Al-Nasser
(2007), Ohyama et al. (1999), and Samawi and Muttlak (1996) among others).

In this study, we propose a predictive estimator, using ratio, product and
regression estimators as predictors for non-sampled observations under ranked set
sampling scheme. In Section 2, we review the predictive estimators introduced by
Basu (1971). Section 3 consists of the proposed estimators and their properties.
An efficiency comparison is carried out through simulations in Section 4. Some
concluding remarks are given in Section 5.

2. PREDICTIVE ESTIMATORS IN SIMPLE RANDOM SAMPLING

Let U = {U1, U2, ..., UN} be a population of size N. Let (yi, xi) be the values of
the study variable y and the auxiliary variable x on the i -th (0 ≤ i ≤ N) unit of
U.

Let S be the set of all possible samples from U using simple random sampling
with replacement (SRSWR). For any given s ∈ S, let ϑ(s) be the number of
distinct units in s and let s̄ denote the set of all those units of U which are not
in s. Basu (1971) presented population mean as follows:

Ȳ =
ϑ(s)

N
Ȳs +

N − ϑ(s)

N
Ȳs̄,(2.1)

where Ȳs =
1

ϑ(s)

∑
i∈s yi and Ȳs̄ =

1
N−ϑ(s)

∑
i∈s̄ yi. Under simple random sampling

with size ϑ(s) = n, the predictor for overall population mean is given by

Ȳ =
n

N
Ȳs +

N − n

N
Ȳs̄,(2.2)

where Ȳs = 1
n

∑
i∈s yi and Ȳs̄ = 1

N−n

∑
i∈s̄ yi. An appropriate estimator of the

population mean is then given by

t =
n

N
ȳs +

N − n

N
T,(2.3)

where T is the predictor of Ȳs̄. Basu (1971) used the mean per unit estima-
tor ȳ = 1

n

∑
i∈s yi, ratio estimator ȳr = ȳs

x̄s
X̄s̄, product estimator ȳp = ȳs

X̄s̄
x̄s

and regression estimator ȳlr = ȳs + β(X̄s̄ − x̄s) as predictors. Here, X̄s̄ =
1

N−n

∑
i∈s̄ xi =

NX̄−nx̄s
N−n and β = Syx

/
S2
x
, where β is regression coefficient of Y

on X, and X̄ is the population mean of the auxiliary variable based on N units
both are assumed to be known in advance. Also, let S2

x = 1
N−1

∑N
i=1(xi − X̄)2

and Syx = 1
N−1

∑N
i=1(yi − Ȳ )(xi − X̄).
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It has been shown by Basu (1971) that while using simple mean per unit esti-
mator, ratio estimator and regression estimator as T, the predictive estimator
t becomes the corresponding classical simple mean estimator ȳ, ratio estimator
ȳr and regression estimator ȳlrrespectively. However, when product estimator is
used, then t becomes

tp = ȳs
nX̄ + (N − 2n)x̄s

NX̄ − nx̄s
.(2.4)

It can be easily noticed that tp is quite different from the usual product
estimator.

The Bias and Mean Squared Error (MSE) of t with ratio and product estimators
as predictor are given below up to 1st order of approximation:

(2.5) Bias(tr) ∼= Ȳ
1

n

(
C2
x − ρCyCx

)
,

Bias(tp) ∼= Ȳ
1

n

(
θC2

x + ρCyCx

)
(2.6)

and

(2.7) MSE(tr) ∼= Ȳ 2 1

n

(
C2
y + C2

x − 2ρCyCx

)
,

(2.8) MSE(tp) ∼= Ȳ 2 1

n

(
C2
y + C2

x + 2ρCyCx

)
,

where Cy =
Sy

Ȳ
, Cx = Sx

X̄
, ρ =

Syx

SySy
, S2

y = 1
N−1

∑N
i=1(yi− Ȳ )2 and θ = n

N−n . Also

the bias and MSE of tp are given by

(2.9) Bias(ȳp) ∼= Ȳ
1

n

(
ρCyCx

)
and

(2.10) MSE(ȳp) ∼= Ȳ 2 1

n

(
C2
y + C2

x + 2ρCyCx

)
.

From Equations (2.8) and (2.10), it is clear that ȳp and tp have same MSE
when first order of approximation is used although they are different estimators.
The variance of tlr is given by

(2.11) V ar(tlr) =
1

n
S2
y

(
1− ρ2

)
.
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3. PREDICTIVE ESTIMATOR IN RANKED SET SAMPLING

To obtain a Ranked Set Sample from a superpopulation consisting of N units,
an initial sample of m units is selected and ranked according to the attribute of
interest. A variety of mechanisms are used for ranking purpose, i.e. visual inspec-
tion of units, expert opinion, or through the use of some concomitant variables.
If ranking is performed on the auxiliary variable X, the unit that is judged to
be the smallest ranked unit from the selected sample is called the first judgment
order statistic and is denoted by Y [1]. On the other hand, when ranking is per-
formed on the study variable Y itself, the smallest ranked unit (called smallest
order statistic) is selected from the sample and denoted by Y (1). Then a second
sample of size m (independent of the first sample) is selected from the population
and is ranked in the same manner as the first. From the second sample, we select
the unit ranked as the second smallest in the sample (i.e. the second judgment
order statistic) and is denoted by Y [2] or Y (2) according to the above mentioned
definitions. This process continues till inclusion of the largest ranked unit from
the m-th sample selected for judgment. This entire process results into m obser-
vations and is called a cycle. We complete r cycles to obtain a ranked set sample
of size n = rm units.

Let Ω is the all possible samples of size n = rm can be taken from a
superpopulation U using a ranked set sampling scheme. Suppose that ω be a
single set Ω having size n=rm. Let ω̄ denote the set of all those units of U which
are not in ω. Let yi[i] and xi(i) be the values of the study variable Y and the
auxiliary variable X for i-th unit taken from the i-th judgment ranked sample for
actual quantification, where i=1,2,. . . ,m. It is assumed that ranking is performed
with respect to the auxiliary variable X.

For a ranked set sample of size n=rm (for simplicity, we use r=1), we obtain the
following estimators

trss[j] =
m

N
ȳrss +

N −m

N
T[j], (j = 1, 2, 3, 4),(3.1)

where ȳrss = 1
m

∑
i∈ω yi[i] and T[j] is the predictor for mean of non-sampled

observations (Ȳω̄) which is defined by T[1] = ȳrss, T[2] = ȳrss(r), T[3] = ȳrss(lr) and

T[4] = ȳrss(p), where ȳrss[r] = ȳrss
X̄ϖ
x̄rss

, ȳrss[lr] = ȳrss+β
(
X̄ϖ − x̄rss

)
and ȳrss[p] =

ȳrss
x̄rss

X̄ϖ
. Here, X̄ϖ = 1

N−m

∑
i∈ϖ xi(i) =

NX̄−mx̄rss
N−m , and x̄rss =

1
m

∑
i∈ω xi(i).

Inserting T[j] for (j=1,2,3,4) in Equation (3.1), we have

(3.2) trss[1] = ȳrss,

(3.3) trss[2] = ȳrss
X̄

x̄rss
,

(3.4) trss[3] = ȳrss + β(x̄rss − X̄),
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and

(3.5) trss[4] = ȳrss
mX̄ − (N − 2m)x̄rss

NX̄ −mx̄rss
.

Equations (3.2), (3.3) and (3.4) show that trss[1], trss[2] and trss[3] are equivalent
to ȳrss, ȳrss[r] and ȳrss[lr] respectively. On the other hand trss[4] differs from ȳrss[p]
(usual product estimator under RSS).

To obtain the Bias and the MSE of proposed predictive estimators, we consider
the following error terms

∈0=
ȳrss
Ȳ

− 1 and ∈1=
x̄rss
X̄

− 1

such that E(∈0) = E(∈1) = 0 and

E(∈2
0) = Ȳ −2

(
S2
y

m
− 1

m2

m∑
i=1

δ2y[i]

)
,

E(∈2
1) = X̄−2

(
S2
x

m
− 1

m2

m∑
i=1

δ2x(i)

)
and

E(∈0∈1) = Ȳ −1X̄−1

(
Syx

m
− 1

m2

m∑
i=1

δy[i]δx(i)

)
,

where δy[i] = Ȳ[i] − Ȳ and δx(i) = X̄(i) − X̄ for i = 1, 2, ...,m.
Here, Ȳ[i] and X̄(i) are population means of the study variable and the auxiliary
variable respectively for i -th order statistic. It is easy to show that trss[1] is an
unbiased estimator of the population mean Ȳ with

V ar(trss[1]) =
S2
y

m
− 1

m2

m∑
i=1

δ2y[i].(3.6)

It is clear that V ar(trss[1]) ≤
S2
y

m . This indicates that trss[1] is more efficient than
ȳs(sample mean under SRSWR). Similarly, the bias and the MSE of trss[2], up
to first order of approximation, are given by

Bias(ȳrss[2]) ∼=
Ȳ

m

[(
C2
x − ρCyCx

)
− 1

m

(
m∑
i=1

W 2
x(i) −

m∑
i=1

Wy[i]Wx(i)

)]
(3.7)

and

MSE(trss[2]) ∼=
1

m

(
S2
y +R2S2

x − 2RρSySx

)
− 1

m2

m∑
i=1

κ2[i],(3.8)

where κ[i] = Wy[i] −RWx(i), Wy[i] =
δy[i]
Ȳ

, Wx(i) =
δx(i)
X̄

and R = Ȳ
X̄
.

From Equations (2.7) and (3.8), it is obvious that MSE(trss[2]) ≤ MSE(tr), i.e.
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trss[2] is more efficient than the predictive type ratio estimator under SRSWR.
Further, we can show that trss[3] is an unbiased estimator of Ȳ with variance

V ar(trss[3]) =
S2
y

m

(
1− ρ2

)
− 1

m2

m∑
i=1

A2
[i],(3.9)

where A[i] = Wy[i]−βWx(i), ∀ i = 1, 2...,m. Equation (3.9) shows the superiority
of the predictive type regression estimator as compared to its counterpart in
SRSWR.

Finally, to compute the Bias and the MSE of trss[4], note that

trss[4] =Ȳ (1+ ∈0)
mX̄ + (N − 2m)X̄(1+ ∈1)

NX̄ −mX̄(1+ ∈1)
,

=Ȳ (1+ ∈0)

(
1 +

(N − 2m) ∈1

N −m

)(
1 +

m ∈1

N −m

)−1

.

Assuming
∣∣∣ m
N−m

∣∣∣ < 1, and expanding up to first order of approximation using

binomial expansion, we have

(3.10) trss[4] − Ȳ ∼= Ȳ
(
∈0 + ∈1 + ∈0∈1 +ϕ ∈2

1

)
where ϕ = m

N−m . Taking expectation of Equation (3.10) , we get

Bias(trss[i]) ∼=
Ȳ

m

[
Cyx + ϕC2

x − 1

m

m∑
i=1

(
δyx[i] + ϕδ2x(i)

)]
.(3.11)

MSE of trss[4] can be obtained by squaring and taking expectation in Equation
(3.10). This gives

MSE(trss[4]) ∼=
1

m

(
S2
y +R2S2

x + 2RρSySx

)
− 1

m2

m∑
i=1

B2
[i],(3.12)

where B[i] = Wy[i] +RWx(i) for i = 1, 2, ...,m.

From Equations (2.6), (2.8), (3.11) and (3.12) it can be noticed that the expression
for bias of trss[4] is different from that of usual product estimator although they
have the same MSE for first order of approximation.

4. SIMULATION STUDY

To compare the efficiencies of the proposed estimators, we conduct a simulation
study as follows:

1. Generate a hypothetical population on two variables X and Y, where X
is generated using three different distributions with some specific values of
parameters as described in first row of Table 1.
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2. Then Y is generated as Y=ρ× X + e, where e is generated using a standard
normal distribution and ρ is the correlation coefficient between X and Y
which is fixed at 0.5, 0.7 and 0.9.

3. Take an RSS and a SRSWR, each having size n = rm, and compute the
proposed estimators and corresponding estimators in SRSWR, where r =
5, 10 and m = 2, 4, 6.

4. Repeat Step 2, 10,000 times. Then compute the mean squared error of each
estimator to obtain relative efficiency of the proposed estimators.

Table 1 provides relative efficiency of proposed predictive estimators in RSS with
respect to simple mean estimator in SRS i.e.

RE[j] =
V ar(ȳs)

MSE(trss[j])
for j = 1, 2, 3, 4.

Table 1 shows that the relative efficiencies of the RSS increases with the increase
of the correlation between the auxiliary variable and the study variable. RE also
increases with the increase of the set size m. Predictive estimator using ratio
estimator and regression estimator as predictors are almost equally efficient for
all the case that considered in this study. However, the product estimator gives
worse performance as the correlation between the study variable and the auxiliary
variable increases. But this because product estimator is not preferable for pre-
diction in ranked set sampling, when ranking is performed based on an auxiliary
variable that has positive correlation with the variable of interest. Efficiencies
of the proposed estimators are significantly higher when uniform distribution is
used to generate data in the interval [0, 10]. Efficiency is at its peak for uniform
distribution with high positive correlation between the study variable and the
auxiliary variable.
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5. CONCLUSION

Assuming a superpopulation model, we developed some predictive type estima-
tors in ranked set sampling as RSS is more efficient method of sample selection for
actual measurements. Properties (bias and efficiency) are examined up to first or-
der of approximation. It is observed that the predictive estimators are equivalent
to the corresponding classical estimators in RSS when simple mean estimator,
ratio estimator and regression estimator are used as predictors for non-sampled
values. On the other hand, predictive estimator has different form as compared
to the corresponding classical product estimator when product estimator is used
as predictor.

This study can be extended by using exponential type estimators and some other
efficient estimators as predictor
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