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1. INTRODUCTION

Exchange rates are among the most important economic indices in the in-
ternational monetary markets, as they powerfully affect cross-border economic
transactions and have the greatest attention in monetary policy debates. There-
fore, central banks should pay special attention to exchange rates and the value
of their domestic currency (Dilmaghani and Tehranchian, 2015). Significant im-
pact of economic growth, trade development, interest rates and inflation rates
on exchange rates make it extremely difficult to predict them (Yu et al, 2007).
Therefore, exchange rates forecasting has become a very important and challenge
research issue for both academic and industrial communities. By now, there is
a vast literature considering the problem of exchange rate forecasting. We cate-
gorise them into three types:

(i) Explanation based methods: In these methods, the economic theory de-
scribes the evolution path of exchange rates based on the variability of
economic variables. Depending on the type of economic variables, macroe-
conomic or microeconomic, have been introduced two different methods:

(a) Monetary exchange rate models that use macroeconomic variables.
Investigation on these methods imply that, over long horizons, the
fluctuations in fundamentals can be used successfully for exchange rate
forecasting. More informations about these methods and a literature
review can be found for example in Engle and West (2005), Della Corte
and Tsiakas (2011) and Plakandaras (2015).

(b) Microstructural based models that use microeconomic variables. In
these methods, exchange rate fluctuations are related to short run
changes in microeconomic variables. More details can be found for
example in Papaioannou et al. (2013) and Janetzko (2014).

(ii) Extrapolation based methods: These methods use only historical data on
the exchange rates and can be categorized in two groups:

(a) Parametric methods: Autoregressive integrated moving average (ARIMA),
generalized autoregressive conditional heteroskedasticity (GARCH) and
vector autoregressive (VAR) models are the most widely used meth-
ods in this category. A good review on related works is provided by
Plakandaras (2015).

(b) Non-parametric methods: Machine learning methodologies and more
specifically Artificial Neural Network (ANN) and Support Vector Ma-
chines (SVM) gained significant merit in exchange rate forecasting (see
for example Yu et al, 2007).

Overall, according to the existing literature, the methods that incorporate
denoised series in the analysis produce better results than other methods (see,
for example, Fu (2010) and Lin et al. (2012)).
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In the light of the above discussion, in this study, we apply Singular Spec-
trum Analysis (SSA), which is a powerful non-parametric technique for time series
analysis. SSA incorporates the elements of classical time series analysis, multi-
variate statistics, multivariate geometry, dynamical systems and signal processing
(Golyandina et al, 2001). SSA is designed to look for nonlinear, non?stationary,
and intermittent or transient behaviour in an observed time series, and has
gained successful application in the various sciences such as meteorological, bio-
mechanical, hydrological, physical sciences, economics and finance, engineering
and so on. By now, many studies used SSA and its applications (see, for exam-
ple, Hassani et al. (2009a, 2013, 2015), Mahmoudvand et al. (2015, 2017), and
Mahmoudvand and Rodrigues (2016, 2017)). In particular, Ghodsi and Yarmo-
hammadi (2014) and Beneki and Yarmohammadi (2014) evaluated the forecasting
performance of neural networks (NN), and univariate singular SSA, for forecasting
exchange rates in some countries. They concluded that SSA is able to outperform
NN. In addition, Hassani et al. (2009b) used three time series of daily exchange
rates: UK Pound/US Dollar, Euro/US Dollar and Japanese yen/US Dollar, and
found that the multivariate singular spectrum analysis (MSSA) predictions com-
pare favourably to the random walk (RW) predictions, both for predicting the
value and the direction of changes in the exchange rate.

In this paper we compare the performances of SSA and MSSA in forecasting
exchange rates. The differences between this study and SSA-based related works
are as follows:

• The studies by Ghodsi and Yarmohammadi (2014) and Beneki and Yarmo-
hammadi (2014) used only the univariate SSA, whereas we consider both
univariate and multivariate SSA.

• The study by Hassani et al. (2009) used both univariate and multivariate
SSA, but they considered only one multivariate SSA forecasting algorithm,
whereas we apply four multivariate SSA algorithms to produce forecasts.

The rest of this paper is organised as follows: Section 2 gives a brief descrip-
tion of MSSA and its forecasting algorithms. Section 3 presents a comparison
between SSA and MSSA with a real data set based on daily currency exchange
rates in four of the BRICS emerging economies: Brazil, India, China and South
Africa. We finish the paper by a summary conclusion in Section 4.

2. MULTIVARIATE SINGULAR SPECTRUM ANALYSIS

In this section we provide a brief description of MSSA. A more detailed
theoretical description can be found, for example, in Hassani and Mahmoudvand
(2013).
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The trajectory matrix X in MSSA can be defined by stacking the trajectory
matrices horizontally or vertically, i.e.

(2.2) X =
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]
.
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The block Hankel matrix S can then be defined by stacking the trajectory
matrices horizontally or vertically, i.e.

(2.5) S =

 S(1)

...

S(M)

 or S =
[
S(1) . . . S(M)

]
,
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and the block Hankel matrix N can then be defined by stacking the trajec-
tory matrices horizontally or vertically, i.e.

(2.6) N =

N(1)

...

N(M)

 or N =
[
N(1) . . . N(M)

]
.

The MSSA algorithms that use these forms as their trajectory matrix, are
called HMSSA and VMSSA, respectively.

Step 2: SVD. In this step, X will be decomposed by singular value de-
composition, as follows:

(2.7) X = X1 + . . .+ Xd,

where Xi’s are unitary matrices and d represents the rank of X. Denoting
by λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 the eigenvalues of XX′ and U1, U2, . . . , Ud, the
corresponding eigenvectors, we have:

Xj = UjU
′
jX , j = 1, 2 . . . , d.

Step 3: Grouping. Considering Xi to be associated to the i−th largest
singular value of X, this step intends to separate the signal and noise com-
ponents as follows:

X = X1 + . . .+ Xr︸ ︷︷ ︸
Ŝ=Signal

+ Xr+1 + . . .+ Xd︸ ︷︷ ︸
N̂=Noise

,(2.8)

where r < d.

Step 4: In this step, using anti-diagonal averaging on each block of Ŝ (see
Equation (2.8)), the denoised time series will be reconstructed. We use
notation S̃ to show the results of this step.

Step 5: The forecast engine of MSSA, which is a linear function of the last
L observations of the denoised time series, will be constructed in this step.
Details of these engines are given in the next subsection.

Step 6: In this step, h-steps ahead forecasts will be obtained by using the
forecast engine.

In general we have four different MSSA forecasting algorithms for MSSA,
as shown in Table 1. Computational formulas for these methods are provided in
the next subsection.

Note that VMSSA and HMSSA can be used for an univariate time series
and, in this case, are equivalent and equivalent to the univariate SSA. In fact,
there are two different univariate SSA algorithms to obtain forecasts: the recur-
rent SSA (RSSA) and the vector SSA (VSSA).
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Table 1: Possible forecasting algorithms for multivariate SSA.

Trajectory form Forecasting method Abbreviation

Recurrent HMSSA-R
Horizontal

Vector HMSSA-V

Recurrent VMSSA-R
Vertical

Vector VMSSA-V

2.1. DETAILS ABOUT THE FORECASTING ENGINE in MSSA

For simplicity in notation, denote by Z[, j] and Z[i, ], the j−th column,
and the i−th row of the matrix Z, respectively. Denote also W h[`, ] the l−th
row of Wh. It should be mentioned that the forecasting algorithms presented by
Hassani and Mahmoudvand (2013) are based on the recurrent formulas. Here,
we obtained a new representation of the algorithm by matrix power. This new
representation help us to compute and evaluate the algorithms easier than the
forms based on recurrent formulas.

The main idea to construct the forecast engine for MSSA is based on the
partitioning of the eigenvector matrix into two parts: the first partition as re-
gressor and the second as response. Then, regressing the second part on the first
by the least square method, it produces the forecast model.

Horizontal form

Let Uj = [u1,j , . . . , uL,j ]
′, j = 1, . . . , d, be the j-th eigenvector of XX′.

Denote by Ur the matrix of its first r eigenvectors, corresponding to the r largest
singular values of X. We can then do the partition as follows:

(2.9) Ur =


u1,1 u1,2 · · · u1,r
u2,1 u2,2 · · · u2,r

...
... · · ·

...
uL−1,1 uL−1,2 · · · uL−1,r
uL,1 uL,2 · · · uL,r


The gray colour row corresponds to the response and the remaining rows are
considered to be the regressors. In the next two subsections we give more details
about the HMSSA-R and HMSSA-V.
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HMSSA-R

Assume that UO
r and UOr are the first L − 1 rows of Ur and last row of

Ur, respectively (see equation (2.9)). In addition, let us define:

(2.10) W =

[
0 I

0 Â

]
, Â =

(
1−UOrU

′
Or

)−1
UOrU

O
r
′
,

where I is the (L − 1) × (L − 1) identity matrix and 0 is a column vector with
L− 1 zeros. Then, the h-steps ahead forecasts can be obtained by:

(2.11) ŷ
(m)
T+h = Wh[L, ]S̃[,mK], m = 1, . . . ,M, h = 1, 2, . . . .

The coefficients Wh[L, ] are generated by the whole system of time series, i.e.,
they consider the correlation among time series. In addition, S̃[,mK] is smoothed
again based on the information of all time series. It should be noticed, however,
that the forecasts for all individual time series are made by using the same coef-
ficients.

HMSSA-V

Considering the same notation as in HMSSA-R, we can define:

(2.12) W =

[
0 Π

0 Â

]
, Π = UO

r UO
r
′
+ Â′(1− UOrU

′
Or)Â,

where 0 is column vector with L−1 zeros. Then, the h-steps ahead forecasts can
be obtained by:

(2.13) ŷ
(m)
T+h =

1

L

h+L−1∑
`=h

W `[L− `+ h, ]Ŝ[,mK], m = 1, . . . ,M, h = 1, 2, . . .

To better understand how HMSSA-R and HMSSA-V differ, we need to compare
Equations (2.11) and (2.13). Note that S̃ in Equation (2.11) is obtained by
diagonal averaging (see Step 4), and then multiplied by the coefficient Wh[L, ]
to produce the forecasts. However, Ŝ in Equation (2.13) is the result of grouping
(see Step 3), which is then multiplied by the coefficients W `[L− `+ h, ] and the
forecasts are produced by averaging.

Both methods, HMSSA-R and HMSSA-V, employ a fixed coefficients for
all time series to produce the forecasts. In the approach that considers vertical
based methods, we consider different coefficients to produce forecasts for different
time series in the multivariate framework. In what follows, we describe how the
vertical based methods produce forecasts.
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Vertical form

Denote by Ur the matrix of the first r eigenvectors of XX′ corresponding
to the r largest singular values of X. This matrix has dimension LM × r and we
can partitioning as follows:

(2.14) Ur =



u1,1 u1,2 · · · u1,r
u2,1 u2,2 · · · u2,r

...
... · · ·

...
uL−1,1 uL−1,2 · · · uL−1,r
uL,1 uL,2 · · · uL,r
uL+1,1 uL+1,2 · · · uL+1,r

uL+2,1 uL+2,2 · · · uL+2,r
...

... · · ·
...

u2L−1,1 u2L−1,2 · · · u2L−1,r
u2L,1 u2L,2 · · · u2L,r

...
... · · ·

...
u(M−1)L+1,1 u(M−1)L+1,2 · · · u(M−1)L+1,r

u(M−1)L+2,1 u(M−1)L+2,2 · · · u(M−1)L+2,r
...

... · · ·
...

u(ML−1,1 uML−1,2 · · · uML−1,r
uML,1 uML,2 · · · uML,r


The gray colour rows correspond to the response and the remaining rows are
considered to be the regressors. In the next two subsections we give more details
about the VMSSA-R and VMSSA-V.

VMSSA-R

Assume that UO
r is constructed by removing the rows L, 2L, . . . , ML, from

Ur, and UOr is the matrix that is constructed by stacking the rows L, 2L, . . . ,
ML, of Ur (see equation (2.14)). In addition, let us define:

(2.15) W =



0 I

0 Â0[1, ]
0 I

0 Â0[2, ]
...

...
0 I

0 Â0[M, ]


, Â =

(
IM×M −UOrU

′
Or

)−1
UOrU

O
r
′
,

where I is the (L− 1)× (L− 1) identity matrix, 0 is a column vector with L− 1
zeros and [0, Â0[i, ]] is a vector of size LM where, before each L− 1 elements of
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Â[i, ], i = 1, . . . ,M, a zero is added. Then, the h-steps ahead forecasts can be
obtained by:

(2.16) ŷ
(m)
T+h = Wh[mL, ]S̃[,K], m = 1, . . . ,M, h = 1, 2, . . . .

VMSSA-V

Considering the notation as in VMSSA-R, we can define:

(2.17) W =



0 Π1

0 Â0[1, ]
0 Π2

0 Â0[2, ]
...

...
0 ΠM

0 Â0[M, ]


, Π = UO

r UO
r
′
+ Â′(IM×M − UOrU

′
Or)Â,

where 0 is a column vector with L− 1 zeros and Πj represents the rows number
(j − 1)(L − 1) + 1, . . . , j(L − 1) of Π, j = 1, . . . ,M . Then, the h-steps ahead
forecasts can be obtained by:

(2.18) ŷ
(m)
T+h =

1

L

h+L−1∑
`=h

W `[mL− `+ h, ]Ŝ[,K], m = 1, . . . ,M, h = 1, 2, . . .

The comparison between VMSSA-R and VMSSA-V is similar to the com-
parison between HMSSA-R and HMSSA-V, i.e., the part of the time series that
is used to produce forecasts in VMSSA-R comes from an diagonal averaging pro-
cess, whereas the the part of the time series that is used to produce forecasts in
VMSSA-V comes from the grouping step which then is subjected to a weighted
average.

2.2. MSSA choices

There are two main decisions the user has to make while fitting a MSSA
model: the window length, L, and the number of singular values used to recon-
struct the series and to construct the forecast engine, r. Despite of the impor-
tance of these choices, there have been just a few studies about these choices
in the multivariate case. Regarding to the window length, Hassani and Mah-
moudvand (2013) showed that a value close the MT/(M + 1) and T/(M + 1)
is optimal for HMSSA and VMSSA, respectively. There are also several studies
in the univariate case that can be used similarly to find a suitable value for the
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multivariate case (see for example Golyandina et al. (2001) and Golyandina and
Zhigljavsky (2013)). A weighted correlation and scree plots of the singular values
are among the simplest ways to find a proper value for r.

2.3. PREDICTION INTERVALS FOR MSSA FORECASTS

Prediction intervals can be very useful in assessing the quality of the fore-
casts. There are two different types of prediction interval for SSA forecasts, but
here we will focus on the bootstrap based method. More details can be found
in Golyandina et al. (2001) and Golyandina and Zhigljavsky (2013). To obtain
the bootstrap prediction interval for the h-steps-ahead forecast, the first step is
to obtain the MSSA decomposition YT = S̃T + ÑT . Then, we simulate p in-
dependent copies ÑT,i, i = 1, . . . , p, of the residual series NT . Adding each of

these residual series to the signal series S̃T , we get p time series YT,i = S̃T +ÑT,i.
Applying the MSSA forecasting algorithm, keeping unchanged the window length
L and the number r of eigenvalues/eigenvectors used for reconstruction, to the

series YT,i, i = 1, . . . , p, we can obtain p forecasting results h-steps-ahead ŷ
(m)
T+h,i

m = 1, . . . ,M . The empirical α/2 and 1 − α/2 quantiles of the p h-steps-ahead

forecasts ŷ
(m)
T+h,1, . . . ŷ

(m)
T+h,p, correspond to the bounds of the bootstrap prediction

interval with confidence level 1− α.

3. NUMERICAL RESULTS

3.1. DESCRIPTION OF THE DATA

In this section, we consider daily currency exchange rate data for the BRICS
countries (Brazil–BRL, Russia–RUB, India–IND, China–CHN and South Africa–
RAND). However the complete data from Russia could not be found which made
us discard this country from our study, which does not interfere with the re-
sults as the recent behaviour is very similar to India. Fourteen years of data,
between September 2001 and September 2015, were considered. The data was
collected from the Board of Governors of the Federal Reserve System (US) –
https://reserach.stlouisfed.org. Figure 1 shows the behaviour of the daily ex-
change rates for the four considered countries, between September 2001 and
September 2015, when compared with USD.
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Figure 1: Daily exchange rates for Brazil, India, China and South Africa
between September 2001 and September 2015, when compared
with USD.

3.2. PRELIMINARY ANALYSIS

In this section, we will assess the evidence provided by data in favour of
using methods such as MSSA. In particularly, we check stationarity and causality.

Stationarity testing

We use the Augmented Dickey-Fuller method to test for the presence of unit
root in the exchange rate time series. Results given in Table 2 indicate that the
exchange rates are non-stationary processes. In this way, the non-stationary time
series should be differentiated before using a standard time series approach, or we
might apply directly methods that do not depend on the stationarity assumption
such as SSA and MSSA.
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Table 2: Augmented Dickey-Fuller test for the four exchange rates.

BRL IND CHN RAND

Test statistics 0.256 -1.265 -0.239 -0.962
P-value 0.991 0.889 0.992 0.945

Testing causality

A question that frequently arises in time series analysis is weather one eco-
nomic variable can help to forecast another economic variable. Here the question
is weather one exchange rate time series can help us in forecasting other exchange
rate time series and vice versa. One way to address this question was proposed by
Granger. The results of this test, for the differentiated time series, are reported
in Table 3 for all six pairs of exchange rates series. P-values in Table 3 suggest
us to reject all null hypothesises with a significance level of 10%, except one case
which has a high P-value. So in general, the exchange rates can help to forecast
each other which, again, motivates us to use MSSA.

Table 3: Pairwise Granger causality tests.

Series Null hypothesis:

Series 2 does not Granger-Cause Series 1 Series 1 does not Granger Cause Series 2

Series 1 Series 2 F-Statistics P-value F-Statistics P-value

BRL IND 11.95 0.00061 0.50 0.47771
BRL CHN 1.49 0.22171 1.93 0.16461
BRL RAND 6.50 0.01081 0.99 0.32012
IND CHN 9.82 0.00174 0.89 0.34661
IND RAND 0.04 0.85452 17.89 0.00002
CHN RAND 0.19 0.66181 12.31 0.00051

3.3. ACCURACY OF FORECASTS

As it is usual in forecasting literature (see for example Hyndman, 2010),
the mean square error (MSE) of forecasts is used to compare the accuracy of the
methods under analysis. In order to find reliable values for MSE, we divide the
observations into two parts: training and testing sets. Since the length of our data
set is large, we decide to produce the results with several different segmentation:
17, 35, 70 and 140 observations for testing sets and remaining for training sets.
Note that when considering 35 observations in the testing set, we consider about
99% of the observations (3481 observations) for modelling and the remained 1%
are considered for testing.



14 Rahim Mahmoudvand, Paulo Canas Rodrigues and Masoud Yarmohammadi

Let us now explain how we obtain the one-step-ahead forecasts in this case.
We considered 3481 observations and find forecasts for the 3482−th observation
by all methods. Then we considered 3482 observations and forecast the 3483−th
observation by all methods, and repeat until the end of the series (i.e. until
observation 3515). In this way, we find 35 predictions for each method that
can be compared with the observed values using the MSE. Note that in this
way, we begin with 3477 [3472] observations for 5 [10] steps ahead and we only
consider the 5−th [10−th] forecasts, in each stage, to compute MSE. The results
for 1, 5 and 10 steps ahead forecasts and different sizes of the testing sets are
presented in Tables 4, 5, 6 and 7. The results in these tables, indicate a better
performance of the MSSA related algorithms when compared with the univariate
SSA related algorithms. This improvement of MSSA related algorithms is visible
in all time series under consideration, except the 10 steps ahead prediction of the
USD/RAND currency. In order to show the gains in MSE, one may compare the
ratio of the minimum of MSE by MSSA related algorithms over the minimum of
MSE by univariate related algorithms. The results are reported in Table 8. As
it can be seen in this table, improvement by MSSA when its MSE compare with
univariate SSA, varied between 0.66 to 1.38 and in most of cases MSSA produces
an improvement over SSA.

Table 4: MSE based on 17 forecasts for each combination of forecasting
method, time series and number of steps ahead.

currency

Method
BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.0154 0.0228 0.0333 0.2084 0.7419 2.0543 0.0137 0.0155 0.0171 0.0115 0.0234 0.0699
VMSSA-R 0.0234 0.0338 0.0489 0.2604 0.7553 1.9602 0.0138 0.0152 0.0162 0.0119 0.0262 0.0874
HMSSA-V 0.0022 0.0076 0.0110 0.2048 0.8737 1.7994 0.0016 0.0100 0.0186 0.0113 0.0423 0.0714
HMSSA-R 0.0021 0.0058 0.0109 0.2065 0.8752 1.8802 0.0016 0.0097 0.0185 0.0114 0.0372 0.0818

VSSA 0.0025 0.0074 0.0160 0.2946 0.8913 2.0659 0.0017 0.0112 0.0206 0.0138 0.0372 0.0699
RSSA 0.0026 0.0074 0.0119 0.3164 0.8661 2.0407 0.0017 0.0110 0.0206 0.0128 0.0271 0.0639

Table 5: MSE based on 35 forecasts for each combination of forecasting
method, time series and number of steps ahead.

currency

Method
BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.0159 0.0212 0.0292 0.1182 0.3904 1.1842 0.0071 0.0081 0.0090 0.0104 0.0254 0.0816
VMSSA-R 0.0201 0.0267 0.0373 0.1451 0.3934 1.0789 0.0078 0.0084 0.0089 0.0166 0.035 0.0891
HMSSA-V 0.0021 0.0114 0.0241 0.1289 0.5369 1.0701 8e-04 0.0049 0.0092 0.0124 0.0483 0.0854
HMSSA-R 0.0021 0.0104 0.0235 0.1275 0.4897 1.0522 8e-04 0.0047 0.0090 0.0119 0.0400 0.0803

VSSA 0.0032 0.0145 0.0296 0.1692 0.5578 1.3482 8e-04 0.0055 0.0101 0.0148 0.0631 0.0892
RSSA 0.0034 0.0121 0.0248 0.1769 0.4725 1.1398 8e-04 0.0054 0.0100 0.0133 0.0335 0.0636

The results for length and coverage ratio for the 95% prediction intervals
can be found in Tables 10 and 11, respectively. The performance of both mul-
tivariate methods in the horizontal form, HMSSA-R and HMSSA-V, is overall
better in terms of coverage ratios, despite having also overall larger length in
the prediction intervals. Although the univariate methods give smaller length for
the prediction intervals, their coverage ratio is, generally, much worse than the
multivariate methods.
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Table 6: MSE based on 70 forecasts for each combination of forecasting
method, time series and number of steps ahead.

currency

Method
BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.0107 0.0136 0.0185 0.0906 0.3247 0.8630 0.0043 0.0049 0.0055 0.0325 0.0755 0.1727
VMSSA-R 0.0139 0.0175 0.0231 0.1044 0.2683 0.6190 0.0059 0.0062 0.0065 0.0443 0.0839 0.1497
HMSSA-V 0.0019 0.0091 0.0169 0.1057 0.3628 0.6917 4e-04 0.0025 0.0047 0.0131 0.0588 0.1220
HMSSA-R 0.0019 0.0081 0.0164 0.1009 0.3196 0.6519 4e-04 0.0024 0.0046 0.0124 0.0507 0.1124

VSSA 0.0023 0.0137 0.0286 0.1189 0.3828 0.9635 4e-04 0.0029 0.0053 0.0154 0.0615 0.0882
RSSA 0.0025 0.0097 0.0194 0.1212 0.3087 0.6991 4e-04 0.0027 0.0051 0.0146 0.0425 0.0815

Table 7: MSE based on 140 forecasts for each combination of forecasting
method, time series and number of steps ahead.

currency

Method
BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.0248 0.0296 0.0362 0.0784 0.2743 0.6804 0.0037 0.0042 0.0048 0.0374 0.0807 0.1589
VMSSA-R 0.0309 0.0361 0.0423 0.0882 0.2241 0.512 0.0049 0.0052 0.0056 0.0482 0.0869 0.1448
HMSSA-V 0.0020 0.0102 0.0202 0.0861 0.3171 0.5706 2e-04 0.0015 0.0026 0.0145 0.0789 0.1368
HMSSA-R 0.0020 0.0092 0.0189 0.0831 0.2724 0.5334 2e-04 0.0013 0.0026 0.0141 0.0708 0.1276

VSSA 0.0022 0.0146 0.0343 0.1117 0.4013 0.8755 2e-04 0.0017 0.0033 0.0179 0.0779 0.0991
RSSA 0.0023 0.0109 0.0244 0.1128 0.3083 0.604 3e-04 0.0016 0.0029 0.0177 0.0611 0.1000

Table 8: Ratio of best MSE by MSSA over the best MSE by univariate
SSA based on 17, 35, 70 and 140 forecasts and 1, 5 and 10 steps
ahead.

currency

Testing size
BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

17 0.84 0.78 0.92 0.70 0.86 0.88 0.94 0.88 0.79 0.88 0.86 1.09
35 0.66 0.86 0.95 0.70 0.83 0.92 1.00 0.87 0.89 0.78 0.76 1.26
70 0.83 0.84 0.85 0.76 0.87 0.89 1.00 0.89 0.90 0.85 1.20 1.36
140 0.91 0.84 0.77 0.70 0.73 0.85 1.00 0.81 0.90 0.80 1.16 1.29

4. CONCLUSION

In this paper, we used univariate and multivariate SSA to forecasts the
daily exchange rates of Brazil, India, China and South Africa. As a preliminary
analysis, we conducted the traditional time series analysis of unit root test and
found that all series are non-stationary. We also used Granger test to see weather
series support each other. With the exception of the forecasts for 5 and 10 steps
ahead for RAND, MSSA outperformed SSA in terms of forecasting accuracy.
Accordingly, we can conclude that MSSA can be of great help to forecast exchange
rates.
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Table 9: Length of 95% prediction interval based on 35 forecasts for each
combination of forecasting method, time series and number of
steps ahead.

currency

Method
BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.292 0.312 0.324 0.363 0.672 0.660 0.271 0.283 0.296 0.187 0.288 0.359
VMSSA-R 0.261 0.362 0.377 0.335 0.544 0.568 0.332 0.355 0.363 0.179 0.249 0.273
HMSSA-V 0.385 0.608 0.625 0.389 0.605 0.644 0.381 0.598 0.647 0.362 0.595 0.650
HMSSA-R 0.365 0.539 0.592 0.370 0.545 0.607 0.346 0.552 0.573 0.356 0.552 0.618

VSSA 0.063 0.111 0.094 0.621 1.188 1.120 0.020 0.035 0.031 0.247 0.339 0.368
RSSA 0.059 0.101 0.088 0.589 1.008 0.911 0.032 0.029 0.001 0.235 0.315 0.344

Table 10: Coverage ratio for 95% prediction interval based on 35 fore-
casts for each combination of forecasting method, time series
and number of steps ahead.

currency

Method
BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.89 0.88 0.79 0.43 0.51 0.33 0.97 0.95 0.96 0.80 0.76 0.67
VMSSA-R 0.92 0.91 0.91 0.67 0.64 0.60 0.79 0.70 0.69 0.77 0.70 0.64
HMSSA-V 0.99 0.97 0.86 0.49 0.40 0.23 0.99 0.99 0.99 0.91 0.77 0.66
HMSSA-R 0.99 0.99 0.86 0.43 0.40 0.23 0.86 0.99 0.99 0.99 0.83 0.66

VSSA 0.26 0.40 0.26 0.63 0.66 0.37 0.66 0.66 0.60 0.69 0.57 0.54
RSSA 0.29 0.31 0.20 0.66 0.63 0.31 0.66 0.63 0.60 0.69 0.66 0.43
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