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Abstract:

• In this paper, exact prediction intervals of the record-values process are constructed.
The record-values process model, may be considered as the collection of record-values
with integer or non-integer indices. It includes both usual k-th record-values and
fractional k-th record-values models. For constructing the prediction intervals, two
predictive pivotal quantities are developed. The distributions of the predictive pivotal
quantities are derived and it is revealed that the distribution functions of the predic-
tive pivotal quantities are similar for the upper and lower fractional record-values.
More results are obtained for the exponential upper record-values process, including
two point predictors and their exact mean square errors. Some efficient algorithms
are given and Monte Carlo simulation studies are conducted for comparing pivotal
quantities. Finally, three real data sets are analyzed.
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1. INTRODUCTION

Record values arise naturally in many practical problems and there are sev-
eral situations pertaining to meteorology, hydrology, sporting and athletic events
where only record-values may be recorded. Outcomes of competitions, e.g. in
athletics, arise in ascending order. In particular, sport events attract many spec-
tators since records and best results appeal to people. Being most popular in
sports, lists of best results and records are of particular interest in many other
areas of real life as well. For an elaborate treatment on records and their applica-
tions see: Arnold et al. [6], Nevzorov [40], Gulati and Padget [27], and Ahsanullah
([1], [3]). The first result for record-values involving independent and identically
observations was reported by Chandler [17]. Dziubdziela and Kopocins̀ki [21]
generalized the concept of record-values of [17] to a more generalized nature and
called them k-th record-values. Since the k-th member of the sequence of the
classical record-values is also known as the k-th record value, the record-values
defined in [21] is also called generalized record-values. Some properties and appli-
cations for current records are given in Barakat et al. [11]. Stigler [46] introduced
the concept of order statistics process, which may be considered as fractional or-
der statistics for non-integer index. Jones [31] gave an alternative construction of
Stigler’s uniform fractional order statistics. Namely, ordinary order statistics of
a sample from uniform distribution are used to construct random variables (rv’s)
with the same joint distribution as Stigler’s order statistics. Some applications
of fractional order statistics are given in Hutson [30]. Bieniek and Szynal [14]
follows a similar method of fractional order statistics to introduce the fractional
record-values or the record-values process, which can be considered as a family
of k-th record-values with n replaced by a positive number t.

One of the most important problems in statistics, is to predict future events
based on past or current events. A predictor may be either a point or an interval
predictor. Point predictor of future records was studied by Kaminsky and Nelson
[32], Ahsanullah [2], Nagaraja [37], and Doganakso and Balakrishnan [19]. Pre-
diction intervals of future records were given in Dunsmore [20], Balakrishnan et
al. [7], Berred [13], AL-Hussaini and Ahmad [4], and Raqab and Balakrishnan
[42]. Bayesian and non-Bayesian approaches have been extensively studied by
many authors, e.g. Lawless [36], Kaminsky and Rhodin [34], Geisser [25], Na-
garaja [39], and Kaminsky and Nelson [33]. Recent works of prediction using
pivotal quantities include, Barakat et al. ([8], [9], [10], [12]), El-Adll [22], Aly [5],
and El-Adll and Aly [23].

1.1. Motivation of the study

According to Theorem 6.3.1 page 339 of Galambos [24], the ordinary record-
values are very rare to be observed. For example, one may wait too many years
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before observing the next upper (lower) record of the amount of water added to
a given river. Although the fractional k-th record-values cannot be observed in
practice, prediction of future fractional k-th record-values is prominent in appli-
cations. As an example, the prediction of fractional k-th record-values can be
applied in reliability and survival data analysis since the fractional k-th record-
values may be considered as an estimator of the inverse cumulative hazard func-
tion and therefore the quantiles of the population cdf. On the other hand, the
employment of the k-th fractional record-values provides an interval estimate
with accurate significant level, while the use of the k-th ordinary record-values
gives an interval estimate with approximate significant level (e.g., [14]).

Furthermore, our study is carried in a general framework which include
prediction of the usual record-values, as well as k-th ordinary record-values, as
special cases. Thereby, all the obtained new results not only have theoretical
importance but also have practical importance. Thus the results of this paper,
which are given in the present general framework, are beneficial when it is nec-
essary to predict the quantiles of a distribution for which, the type of the hazard
function may be changed in future.

In the next section, we give a comprehensive survey for the main results of
the record values process, that will be needed in this paper, most of these results
are due to [14].

In Sections 3 and 4 of this paper, two prediction intervals for future frac-
tional upper (lower) records are constructed based on two general predictive piv-
otal quantities. More details for the exponential distribution including, two point
predictors and their exact mean square errors are considered for the upper record-
value process. In Section 5, two simulation studies are carried out to explain the
efficiency of the proposed results. In one of them, the distribution parameters are
assumed to be unknown. Some applications to real data are given in Section 6.
Two basic algorithms for generation ordinary record-values and fractional upper
record-values, as well as an algorithm to implement these prediction intervals,
are given in an Appendix.

2. PRELIMINARY RESULTS

In this section, some important preliminary and auxiliary results for the
basic distribution theory of ordinary and fractional records are presented. Let
{Xn, n > 1} be a sequence of independent and identically distributed (iid) ran-
dom variables (rv’s) having a continuous cumulative distribution function (cdf)
F (x) and probability density function (pdf) f(x). Furthermore, suppose that
X1:n, X2:n, ..., Xn:n denote the order statistics of the random sample X1, X2, ..., Xn.
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2.1. Ordinary records

An observation Xj is called an upper record value if its value exceeds that
of all previous observations. Thus, Xj is an upper record value if Xj > Xi for
every i < j. In other words, the upper record value Rn of a random sample of
size n can be expressed as Rn = Xn:n = max{X1, X2, ..., Xn}. Dziubdziela and
Kopocins̀ki [21] extended the concept of upper record to the k-th upper record,
for k > 1, which is formulated in the following definition.

Definition 2.1. (cf. Dziubdziela and Kopocins̀ki [21]). The k-th upper
record times, Tk(n), n > 1, of the sequence {Xi, i > 1} is defined for fixed k > 1,
as Tk(1) = 1 and

Tk(n + 1) = min{j > Tk(n) : Xj:j+k−1 > XTk(n):Tk(n)+k−1}, n > 1,

and the k-th upper record-values as R
(k)
n = XTk(n):Tk(n)+k−1, n > 1.

The k-th lower record-values is defined similarly. Clearly, R
(k)
1 = X1:k =

min{X1, · · · , Xk}. For k = 1 we have R
(1)
n = Rn = Xn:n. In other words, the

k-th upper record sequence is the sequence of the k-th largest yet seen. Although
the term “record times”is used in all definitions related to records in statistical
literature, it does not mean the time in its verbal sense. The pdf of the k-th
upper record value is

(2.1) f
R

(k)
n

(r) =
kn

Γ(n)
[H(r)]n−1[F̄ (r)]k−1f(r), −∞ < r < ∞,

where H(r) = − log[1− F (r)] is the cumulative hazard function, h(r) = H ′(r) =
f(r)/F̄ (r) denotes the hazard (failure rate) function and F̄ = 1 − F. The joint

pdf of R
(k)
m and R

(k)
n , m < n for −∞ < rm < rn < ∞, can be written in the form

f
R

(k)
m ,R

(k)
n

(rm, rn)(2.2)

=
kn

Γ(m)Γ(n − m)
[H(rm)]m−1 [H(rn) − H(rm)]n−m−1 [F̄ (rn)]kh(rm)h(rn).

Furthermore, the joint pdf of the random vector (R
(k)
1 , R

(k)
2 , ..., R

(k)
n ) is given by

(2.3)

f
R

(k)
1 ,R

(k)
2 ...,R

(k)
n

(r1, r2..., rn) = kn[F̄ (rn)]k
n
∏

i=1

h(ri), −∞ < r1 < r2 < ... < rn < ∞.

For more details of the previous three relations, see [21], [26], and [38].

2.2. Upper record-values process

Let
{

W
(k)
n , n > 1

}

denote the k-th upper record-values from the standard

exponential distribution (EXP(1)). The following two facts, which are due to
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Ahsanullah [1], characterize the exponential distribution.

Fact 1. For any positive integers m and n, with m < n, the rv’s W
(k)
m and

W
(k)
n − W

(k)
m are independent.

Fact 2. The spacings W
(k)
n −W

(k)
m follow gamma distribution with parameters

n − m and k, respectively.

The following definition, which is due to [14], is necessary to construct the record
value process and fractional k-th record-values.

Definition 2.2. Let k ∈ N be fixed and W (k) =
{

W (k)(t), t > 0
}

be a
stochastic process such that:

(i) W (k)(0) = 0 almost sure,

(ii) W (k)(t) has independent increments,

(iii) for every t > s > 0, W (k)(t) − W (k)(s) has gamma distribution with
parameters t − s and k, respectively.

Then
{

W (k)(t), t > 0
}

is called the exponential k-th upper record-values process.

Moreover, the rv’s, W (k)(t), t > 0, are said to be exponential fractional k-th upper
record-values.

Remark 2.1.

1. By fractional k-th record-values, we mean k-th record-values with fractional
indices.

2. We shall assume that the cdf F is continuous with pdf f and quantile
function

F−1(q) = inf{v : F (v) > q}, 0 6 q < 1.

The k-th record-values process and the fractional k-th record-values based
on F are formulated in the following definition:

Definition 2.3 (Bieniek and Szynal [14]). The stochastic process
Y (k) =

{

Y (k)(t), t > 0
}

, where

Y (k)(t) = F−1(1 − exp[−W (k)(t)]), t > 0,

is called the k-th upper record-values process based on F and the rv’s Y (k)(t),
t > 0, are said to be fractional k-th upper record-values from F.
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As in the ordinary record-values, the pdf fY (k)(t)(y) of the fractional k-th

upper record value Y (k)(t) is

(2.4) fY (k)(t)(y) =
kt

Γ(t)
[H(y)]t−1[F̄ (y)]k−1f(y), −∞ < y < ∞, t > 0,

and the joint pdf of Y (k)(tr) and Y (k)(ts), ts > tr > 0, can be written for,
−∞ < yr < ys < ∞, as

fY (k)(tr),Y (k)(ts)
(yr , ys)(2.5)

=
kts

Γ(tr)Γ(ts − tr)
[H(yr)]

tr−1 [H(ys) − H(yr)]
ts−tr−1 [F̄ (ys)]

kh(yr)h(ys).

Moreover, if 0 = t0 < t1 < ... < tn, then the joint pdf of the random vector
Y = (Y (k)(t1), Y

(k)(t2), ..., Y (k)(tn)) is given by (c.f. [14])

(2.6) fY(yt1
, yt2

, ..., ytn
) = ktn [F̄ (ytn

)]k
n
∏

i=1

(H(yti
) − H(yti−1

))ti−ti−1−1h(yti
)

Γ(ti − ti−1)
,

for, −∞ < yt1
< yt2

< ... < ytn
< ∞.

2.3. Lower record-values process

Let
{

Z
(k)
n , n > 1

}

denote the k-th lower record-values from the standard

negative exponential distribution (NEXP(1)), with cdf G∗(x) = ex, x 6 0.

Definition 2.4. Let k ∈ N be fixed and Z(k) = {Z(k)(t), t > 0} be a
stochastic process such that:

(i) Z(k)(0) = 0 almost sure,

(ii) Z(k)(t) has independent increments,

(iii) for any t > s > 0, Z(k)(t)−Z(k)(s) has a reverse gamma distribution with

parameters t−s and k (the reverse gamma pdf is f(x) = ks−t

Γ(t−s) |x|
t−s−1ex/k,

x ≤ 0).

Then {Z(k)(t), t > 0} is called the negative exponential k-th lower record-values
process. Moreover, the rv’s Z(k)(t), t > 0, are said to be negative exponential
fractional k-th lower record-values.

Definition 2.5 ( Bieniek and Szynal [14]). The stochastic process
X(k) =

{

X(k)(t), t > 0
}

, where

X(k)(t) = F−1(exp[Z(k)(t)]), t > 0,

is called the k-th lower record-values process based on the cdf F and the rv’s
X(k)(t), t > 0, are said to be fractional k-th lower record-values from F.
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The pdf fX(k)(t)(x) of the fractional k-th lower record-values X(k)(t) is

(2.7) fX(k)(t)(x) =
kt

Γ(t)
[− log F (x)]t−1[F (x)]k−1f(x), −∞ < x < ∞, t > 0,

and the joint pdf of X(k)(tr) and X(k)(ts), ts > tr > 0 can be written for,
−∞ < xs < xr < ∞, as

fX(k)(tr),X(k)(ts)
(xr , xs) =(2.8)

kts

Γ(tr)Γ(ts − tr)
[− log F (xr)]

tr−1

[

log
F (xr)

F (xs)

]ts−tr−1

[F (xs)]
k f(xr)

F (xr)

f(xs)

F (xs)
.

3. PREDICTION OF FUTURE UPPER RECORD-VALUES PRO-
CESS

In this section, two predictive pivotal quantities (the pivotal quantity is
a function of the sample X1, X2..., and on the distribution parameters, but its
distribution does not depend on the distribution parameters) are developed to
construct prediction intervals of future fractional upper record-values from a con-
tinuous distribution. The following theorem is formulated for the first pivotal
quantity, which enables us to predict any future fractional k-th upper record value
Y (k)(ts) based on one fractional k-th upper record value Y (k)(tr) with r < s.

Theorem 3.1. Let 0 = t0 < t1 < t2 < ... < tn be positive real numbers
and Y (k)(tr) be the rth fractional k-th upper record-values from a continuous
distribution with cdf F and pdf f. Then the pdf and the cdf of the pivotal
quantity P1 =

(

W (k)(ts) − W (k)(tr)
)

/W (k)(tr), with s > r, respectively, are

(3.1) f
P1

(p1) =
1

B(ts − tr, tr)
pts−tr−1

1
(1 + p1)

−ts , p1 > 0,

and

(3.2) F
P1

(p1) = I p1
1+p1

(ts − tr, tr) , p1 > 0,

where Iz(a, b) = 1
B(a,b)

∫ z
0 ua−1(1 − u)b−1du, 0 < z < 1, is the incomplete beta

function, B(a, b) =
∫ 1
0 ua−1(1 − u)b−1du and

(3.3) W (k)(ti) = − log F̄ (Y (k)(ti)), i = 1, 2, ..., n.

A 100(1− δ)% predictive confidence interval (PCI) for the future fractional k-th
upper record value Y (k)(ts), (L, UP1

), is

L = Y (k)(tr) and UP1
= F−1

(

1 −
(

F̄ (Y (k)(tr))
)1+p1 (δ)

)

.
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where, p1(δ) can be obtained by solving the non linear equation F
P1

(p1(δ)) =

1 − δ. Moreover, when Y (k)(ti) = W (k)(ti), i = 1, 2, ..., n (i.e., F is EXP(1)), the

expected interval width of the PCI is
p1 (δ)tr

k . Furthermore, W̃ (k)(ts) = ts
tr

W (k)(tr)
is an unbiased point predictor based on P1.

Proof: Since the transformation w = − log F̄ (y) is one to one and onto
(monotone increasing function), the pdf of the rv W (k)(t), fW (k)(t)(w), is given
by

fW (k)(t)(w) = |J |fY (k)(t)(y(w)), where |J | =
dy

dw
=

1

f(y)
e−w.

Therefore, by (2.4) we have fW (k)(t)(w) = kt

Γ(t)w
t−1e−kw, w > 0, which is the

pdf of fractional k-th upper record-values based on EXP(1). Thus, the joint pdf
of W (k)(tr) and W (k)(ts), ts > tr > 0 based on EXP(1) can be written by (2.5)
as

(3.4) fW (k)(tr),W (k)(ts)
(wr , ws) =

kts

Γ(tr)Γ(ts − tr)
wtr−1

r (ws − wr)
ts−tr−1e−kws ,

with 0 < wr < ws < ∞. By a standard method of transformation of rvs, the
joint pdf f

P1 ,W
(k)
r

(p1 , wr) of P1 and W (k)(tr) can be written in the form

(3.5)

f
P1 ,W

(k)
r

(p1 , wr) =
kts

Γ(tr)Γ(ts − tr)
wts−1

r pts−tr−1
1

e−k(1+p1 )wr , p1 > 0, wr > 0.

Thus, we have

fP1
(p1) =

∫

∞

0
f

P1 ,W
(k)
r

(p1 , wr)dwr

=
kts

Γ(tr)Γ(ts − tr)

∫

∞

0
wts−1

r pts−tr−1
1

e−k(1+p1 )wrdwr.

By the definition of gamma function, the above integration can be simplified in
the form (3.1). Moreover, the cdf of the pivotal quantity P1 is given by

FP1
(p1) =

∫ p1

0
fP1

(z)dz =

∫ p1

0

1

B(tr, ts − tr)
zts−tr−1(1 + z)−tsdz

=
1

B(ts − tr, tr)

∫ p1

0

(

z

1 + z

)ts (1

z

)tr+1

dz.

If we set w =
z

1 + z
in the above integration, it yields (3.2). If δ is such that

FP1
(p1(δ)) = P (P1 6 p1(δ)) = 1 − δ, we can write

1 − δ = P

(

0 <
W (k)(ts) − W (k)(tr)

W (k)(tr)
6 pδ

)

= P

(

0 <
W (k)(ts)

W (k)(tr)
− 1 6 p1(δ)

)

= P
(

W (k)(tr) < W (k)(ts) 6 (1 + p1(δ))W
(k)(tr)

)

= P
(

L < Y (k)(ts) 6 UP1

)

.
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The expected interval width of the PCI for W (k)(ts) is given by

E
[

(1 + p1(δ))W
(k)(tr) − W (k)(tr)

]

= E
[

p1(δ)W
(k)(tr)

]

=
p1(δ)tr

k
.

Finally, a point predictor based on P1 can be obtained from the relation W̃ (k)(ts) =
L + c1(UP1 −L), where the constant c1 is such that E[W̃ (k)(ts)] = E[W (k)(ts)] =
ts/k. Hence the theorem.

Theorem 3.2. Assume that 0 = t0 < t1 < t2 < ... < tn are positive
real numbers. Furthermore, let Y (k)(t1) and Y (k)(tr) be the first and the rth
fractional k-th upper record-values from a continuous distribution with cdf F
and pdf f. Then the pdf and the cdf of the pivotal quantity

(3.6) P2 =
W (k)(ts) − W (k)(tr)

W (k)(tr) − W (k)(t1)
, s > r > 1,

are given by

(3.7) fP2
(p2) =

1

B(ts − tr, tr − t1)
(1 + p2)

−(ts−t1)pts−tr−1
2 , p2 > 0,

and

(3.8) FP2
(p2) = I p2

1+p2

(ts − tr, tr − t1) , p2 > 0,

respectively, with W (k)(ti) = − log F̄ (Y (k)(ti)), i = 1, 2, ..., n. A 100(1− δ)% PCI
for the future k-th upper record value Y (k)(ts) is (L, UP2

), with

UP2
= F−1



1 − F̄ (Y (k)(t1))

(

F̄ (Y (k)(tr))

F̄ (Y (k)(t1))

)1+p2 (δ)


 ,

where, p2(δ) can be obtained by solving the non linear equation FP2
(p2(δ)) = 1−δ.

Moreover, an unbiased point predictor based on P2 is given by

Ŵ (k)(ts) = W (k)(tr) +

(

ts − tr
tr − t1

)

(

W (k)(tr) − W (k)(t1)
)

, s > r > 1,

which is the best linear unbiased predictor (BLUP) for W (k)(ts).

Proof: We see from the proof of Theorem 3.1 that the rv W (k)(ti),
i = 1, 2, ..., n, can be expressed as fractional k-th upper record-values based on
EXP(1). Therefore, the joint pdf of W (k)(t1), W (k)(tr) and W (k)(ts) is given by

f1,r,s
(w1, wr, ws) =

kts

Γ(t1)Γ(tr − t1)Γ(ts − tr)
wt1−1

1 (wr − w1)
tr−t1−1(ws − wr)

ts−tr−1e−kws ,
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for 0 < w1 < wr < ws < ∞, where for simplicity we write Wi instead of W (k)(ti).
On the other hand, by using the linear transformations U = W1, V = Wr − W1

and W = Ws − Wr, the joint pdf of the rv’s U, V and W is
(3.9)

f
U,V,W

(u, v, w) =
kts

Γ(t1)Γ(tr − t1)Γ(ts − tr)
ut1−1vtr−t1−1wts−tr−1 exp(−k(u+v+w)),

with u > 0, v > 0, w > 0. The joint pdf of U, V and P2 = W/V can be written
as

f
U,V,P2

(u, v, p2) =

kts

Γ(t1)Γ(tr − t1)Γ(ts − tr)
ut1−1vts−t1−1 pts−tr−1

2
exp (−k [u + (1 + p2) v]) ,

for u > 0, v > 0, p2 > 0. Thus, the pdf of the pivotal quantity P2 is

fp2
(p2) =

∫

∞

0

∫

∞

0
f

U,V,P2
(u, v, p2)dudv.

By evaluating the above integration, we get (3.7) and (3.8). Moreover, we have

1 − δ = FP2
(p2) = P (P2 6 p2(δ)) = P

(

0 <
Ws − Wr

Wr − W1
6 p2(δ)

)

= P (Wr < Ws 6 Wr + p2(δ)(Wr − W1)) = P
(

L < Y (k)(ts) 6 UP2

)

.

Furthermore, the expected interval width for the PCI of W (k)(ts) is given by

E [p2(δ)(Wr − W1)] =
p2(δ)

k
(tr − t1).

Finally, we can obtain the point predictor, Ŵ (k)(ts), as in Theorem 3.1. By the
same method of [2] (with a suitable modifications), it is not difficult to verify
that Ŵ (k)(ts) is the BLIP. Hence the theorem.

4. PREDICTION OF FUTURE LOWER RECORD- VALUES PRO-
CESS

In this section, the predictive pivotal quantities presented in Section 3, will
be modified to construct prediction intervals of future fractional lower record-
values from continuous distributions.

Theorem 4.1. Let 0 = t0 < t1 < t2 < ... < tn be positive real numbers
and X(k)(t1), X

(k)(t2), ..., X(k)(tr) be the first r fractional k-th lower record-
values from a continuous distribution whose pdf f and cdf F. Then the pdf and
the cdf of the pivotal quantity P ∗

1
=
(

Z(k)(ts) − Z(k)(tr)
)

/Z(k)(tr) are given by
(3.1) and (3.2), respectively, where

(4.1) Z(k)(ti) = log F (X(k)(ti)), i = 1, 2, ..., n.
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A 100(1 − δ)% PCI for the future fractional k-th lower record value X(k)(ts) is
(LP ∗

1
, U) where,

LP ∗

1
= F−1

(

(

F (X(k)(tr)
)1+p∗

1
(δ)
)

, U = X(k)(tr),

and p∗
1

can be obtained by solving the non linear equation F
P∗

1
(p∗

1
) = 1−δ. More-

over, when X(k)(ti) = Z(k)(ti), i = 1, 2, ..., n (i.e., F is NEXP(1)), the expected

interval width of the PCI is
p∗
1
(δ)tr
k .

Proof: Since the transformation Z = log F (y) is one to one and onto
(monotone increasing function), the pdf fZ(k)(t)(z) of the rv Z(k)(t) is given by

fZ(k)(t)(z) = |J |fX(k)(t)(x(z)), where |J | = dx
dz = 1

f(x)e
z. Therefore, by (2.7) we

have fZ(k)(t)(z) = kt

Γ(t)(−z)t−1ekz, z < 0, which is the pdf of fractional k-th lower

record-values based on NEXP(1). The remaining part of the proof is similar to the
corresponding part of the proof of Theorem 3.1, with only obvious changes.

Theorem 4.2. Let 0 = t0 < t1 < t2 < ... < tn be positive real numbers
and X(k)(t1) and X(k)(tr) be the first and the rth fractional k-th lower record-
values from a continuous distribution whose pdf f and cdf F. Then the pdf and
the cdf of the pivotal quantity

(4.2) P ∗

2
=

Z(k)(tr) − Z(k)(ts)

Z(k)(t1) − Z(k)(tr)
, s > r > 1,

are given by (3.7) and (3.8) respectively, with Z(k)(ti) = log F (X(k)(ti)),
i = 1, 2, ..., n. A 100(1 − δ)% PCI for the future k-th lower record value X(k)(ts)
is (LP ∗

2
, U) where,

LP ∗

2
= F−1



F (X(k)(tr))

(

F (X(k)(tr))

F (X(k)(t1))

)p∗
2
(δ)


 , U = X(k)(tr),

and p∗
2
(δ) can be obtained by solving the non linear equation FP ∗

2
(p∗

2
(δ)) = 1− δ.

Proof: The joint pdf of the fractional k-th lower record-values Z(k)(t1),
Z(k)(tr) and Z(k)(ts) based on NEXP(1) is given by

f1,r,s
(z1, zr, zs) =

kts

Γ(t1)Γ(tr − t1)Γ(ts − tr)
(−z1)

t1−1(z1 − zr)
tr−t1−1(zr − zs)

ts−tr−1ekzs ,

−∞ < zs < zr < z1 6 0. Now, consider the linear transformations U∗ =
−Z1, V

∗ = Z1 − Zr, and W ∗ = Zr − Zs, the joint pdf of the rv’s U∗, V ∗ and
W ∗ is given by relation (3.9). Therefore, the rest of the proof is similar, with
only obvious changes, to the corresponding part of the proof of Theorem 3.2.
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Remark 4.1.

1. The preceding results can be proved by the independence between the com-
ponents in each of the vectors (W (k)(tr), W

(k)(ts) − W (k)(tr)),
(W (k)(t1), W

(k)(tr) − W (k)(t1), W
(k)(ts) − W (k)(tr)), (Z(k)(tr), Z(k)(ts) −

Z(k)(tr)) and (Z(k)(t1), Z
(k)(tr) − Z(k)(t1), Z

(k)(ts) − Z(k)(tr)).

2. The lower and the upper limits of the PCI for future fractional k-th upper
(lower) record values depend on the population cdf F.

3. The ordinary upper (lower) record-values are obtained as special cases from
the presented methods by setting ti = i, for all i = 1, 2, ..., n.

4. All the preceding results remain valid if we replace ti = i, i = 1, 2, ..., r, that
is, fractional k-th upper (lower) record-values can be predicted via ordinary
k-th upper (lower) record-values.

5. SIMULATION STUDIES

In this section, simulation studies are conducted to demonstrate the effi-
ciency of the presented results. For this purpose, three algorithms are established
in Appendix A.

Let us first check the validity of the first two algorithms, by generating ten
fractional upper records Y (1)(ti), i = 1, 2, ..., 10, (see Table 1) based on Weibull
distribution with shape and scale parameters α = 3 and β = 30, respectively. It
is easy to compute the theoretical expectation of each of these records, namely,

(5.1) E[Y (k)(ti)] = βk−
1
α

Γ (ti + 1/α)

Γ(ti)
, i = 1, 2, ..., 10.

The idea of this simple test is to compare the theoretical value E[Y (k)(ti)] with
the estimated value resulted from application of the algorithms, i.e., the average
value Ȳ (k)(ti). In order to compute the average value of each of these records,
we repeat the generation processes of these ten records, different values of times,
M = 103, 104, 105, 106, and for each of these replicates M, we compute the
average Ȳ (k)(ti), for each i. Table 1 summarizes these computations and shows
that the theoretical expectations for all records are close to the estimated values,
which are resulted via the application of the two algorithms.

All Computations are performed by using Mathematica version 10 with processor:
Intel(R) Core(TM) i7-2640 cpu @ 2.80GHz 2.80GHz, RAM 4.00GB, and system
type 64-bit operating system.
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Table 1: A comparison between Ȳ (1)(ti) and E[Y (1)(ti)].
i 1 2 3 4 5 6 7 8 9 10 Run
ti 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Time(s)

Ȳ (1)(ti), M = 103 26.7135 31.7547 35.6315 38.8247 41.5164 43.8532 46.0244 48.2064 50.0735 51.8080 0.515

Ȳ (1)(ti), M = 104 26.8238 31.8600 35.7033 38.8794 41.6359 44.0795 46.3186 48.3856 50.230251.9270 2.840

Ȳ (1)(ti), M = 105 26.7416 31.8409 35.7152 38.9153 41.6562 44.1004 46.2950 48.3030 50.155551.8929 25.896

Ȳ (1)(ti), M = 106 26.7875 31.8445 35.7116 38.9043 41.6630 44.0974 46.2920 48.2962 50.146151.8737 267.182

E[Y (1)(ti)] 26.7894 31.8425 35.7192 38.9186 41.6724 44.1078 46.3026 48.3085 50.1612 51.8869 0.265

5.1. Exact and numerical computations

The exact expected values of the upper limits for the future fractional k-th
upper record value, Y (k)(ts), from the exponential distribution with mean 1/λ,
based on the pivotal quantities P1 and P2 , respectively, are given by

E[UP1
] =

(1 + p1(δ))tr
λk

and E[UP2
] =

1

λk
[tr + p2(δ)(tr − t1)] .

Moreover, the exact mean square errors of U
P1

and U
P2

, respectively, are given
by

MSEU
P1

= E
[

U
P1

− Y (k)(ts+1)
]2

=
1

(λk)2
[

(1 + p1(δ))
2tr(1 + tr) + ts+1(1 + ts+1) − 2tr(1 + ts+1)(1 + p1(δ))

]

and

MSEU
P2

= E
[

U
P2

− Y (k)(ts+1)
]2

=

1

(λk)2
{p2(δ)(tr − t1) [p2(δ)(tr − t1 + 1) − 2(ts+1 − tr)] + (ts+1 − tr)(ts+1 − tr + 1)} .

The mean square predictive errors, based on P1 and P2 respectively, are

MSEP1 = E
[

Ỹ (k)(ts) − Y (k)(ts)
]2

=
ts(ts − tr)

(λk)2tr
, r > 1,

and

MSEP2 = E
[

Ŷ (k)(ts) − Y (k)(ts)
]2

=
(ts − tr)(ts − t1)

(λk)2(tr − t1)
, s > r > 1,

where, Ỹ (k)(ts) and Ŷ (k)(ts) denote the point predictors of Y (k)(ts) based on the
pivotal quantities P1 and P2, respectively.

Remark 5.1. Clearly,

MSEP2 − MSEP1 =
t1(ts − tr)

2

(λk)2tr(tr − t1)
> 0.

That is, MSEP2 > MSEP1 , for all s > r > 1.
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The estimated root mean square errors for the upper limits of the PCI,
respectively are defined by

ˆRMSE
Pj

=

[

1

M − 1

M
∑

i=1

(

UPj
(i) − Y (k)(ti+1)

)2
]1/2

, j = 1, 2.

Throughout this paper the following abbreviations are used:
Ȳ (k)(ts) : The mean of fractional k−th record-value, Y (k)(ts), is defined by

Ȳ (k)(ts) = 1
M

∑M
i=1 Y

(k)
i (ts), where M denote the number of replicants.

PCI : The predictive confidence interval of future fractional upper record.
CP

i
% : The percent of coverage probability based on Pi, i = 1, 2, at δ = 0.10.

(L̄, ŪPi
) : The average lower (upper) limits for the PCI of future fractional

upper record.
(L̄P ∗

i
, U) : The average lower (upper) limits for the PCI of future fractional

lower record.
BLUP : Best linear unbiased predictor for future fractional upper record.
E[U

Pi
] : The expected value of the upper limit of the PCI based on Pi, i = 1, 2.

RMSE
Pi

: The exact root mean square error for the upper limit of the PCI
based on Pi, i = 1, 2.

ˆRMSE
Pi

: The estimated root mean square error for the upper limit of the PCI
based on Pi, i = 1, 2.

The rest of this section contains illustrations of the purposed methods through
two simulation studies. The first study for EXP(0.1) is based on M = 105

replicates of n = 25 k-th upper records (including 13 ordinary records and 12
fractional records) corresponding to ti = 1, 1.5, 2, 2.5, ..., 13, k = 2. In this study
the first r = 15 upper records Y (2)(1), Y (2)(1.5), · · · , Y (2)(8) are assumed to be
known and the next future 9 upper records, Y (2)(8.5), Y (2)(9), · · · , Y (2)(12.5) are
to be predicted. The results which are shown in Table 2, include 90% coverage
probability, two point predictors as well as two prediction intervals and the ex-
pected values of the upper limits. Moreover the exact root mean square errors for
the point predictors, exact and estimated root mean square errors for the upper
limits are given between parentheses. It is worth to mention here that the PCI’s
as well as the point predictors does not depend on the scale parameter β.
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Table 2: Prediction of future ordinary and fractional upper records from
EXP(0.1) based on M = 105 replicates.

tr ts CP
1
% CP

2
% L̄ Ȳ

(2)(ts) Ỹ
(2)(ts) Ŷ

(2)(ts) ŪP1
E[UP1

] ŪP2
E[UP2

]

8.0 8.5 89.914 89.958 40.026 42.525 42.527 42.531 47.651 47.620 47.798 47.756
(3.644) (3.660) (6.283) (6.255) (6.449) (6.418)

9.0 89.998 89.993 40.026 45.031 45.029 45.037 53.375 53.341 53.688 53.632
(5.303) (5.345) (9.698) (9.688) (10.108) (10.082)

9.5 90.064 90.092 40.026 47.527 47.531 47.542 58.501 58.464 58.983 58.917
(6.673) (6.748) (12.820) (12.816) (13.467) (13.440)

10.0 90.014 90.032 40.026 50.037 50.032 50.047 63.368 63.327 64.025 63.947
(7.906) (8.018) (15.751) (15.740) (16.638) (16.597)

10.5 89.989 90.022 40.026 52.531 52.534 52.553 68.091 68.047 68.925 68.837
(9.057) (9.210) (18.544) (18.535) (19.676) (19.628)

11.0 89.967 90.024 40.026 55.040 55.035 55.058 72.722 72.675 73.737 73.638
(10.155) (10.351) (21.246) (21.242) (22.626) (22.574)

11.5 90.036 90.097 40.026 57.541 57.537 57.564 77.290 77.240 78.489 78.380
(11.215) (11.456) (23.887) (23.887) (25.518) (25.461)

12.0 89.998 90.132 40.026 60.055 60.039 60.069 81.812 81.760 83.197 83.078
(12.247) (12.536) (26.499) (26.484) (28.380) (28.303)

12.5 89.983 90.063 40.026 62.550 62.540 62.575 86.301 86.245 87.873 87.744
(13.258) (13.595) (29.053) (29.046) (31.193) (31.112)

9.5 10.0 89.993 90.020 47.527 50.037 50.028 50.031 55.006 54.975 55.106 55.066
(3.627) (3.638) (6.100) (6.083) (6.211) (6.190)

10.5 90.003 90.144 47.527 52.531 52.529 52.536 60.562 60.528 60.774 60.723
(5.257) (5.286) (9.275) (9.270) (9.547) (9.530)

11.0 90.041 90.123 47.527 55.040 55.031 55.040 65.514 65.478 65.840 65.781
(6.589) (6.642) (12.145) (12.152) (12.579) (12.565)

11.5 90.034 90.145 47.527 57.541 57.532 57.545 70.202 70.163 70.646 70.577
(7.780) (7.859) (14.814) (14.827) (15.410) (15.396)

12.0 90.069 90.078 47.527 60.055 60.034 60.049 74.741 74.699 75.305 75.228
(8.885) (8.993) (17.366) (17.370) (18.124) (18.096)

12.5 89.965 90.104 47.527 62.550 62.535 62.554 79.185 79.140 79.871 79.786
(9.934) (10.073) (19.810) (19.820) (20.739) (20.706)

11.0 11.5 89.975 89.967 55.040 57.541 57.542 57.545 62.417 62.371 62.490 62.437
(3.615) (3.623) (5.981) (5.964) (6.062) (6.039)

12.0 89.942 90.001 55.040 60.055 60.044 60.049 67.856 67.807 68.010 67.946
(5.222) (5.244) (8.990) (8.976) (9.187) (9.161)

12.5 90.016 90.042 55.040 62.550 62.546 62.554 72.687 72.634 72.923 72.851
(6.528) (6.567) (11.707) (11.685) (12.022) (11.979)

In the second simulation study we assume that the first five ordinary k-
upper record-values, Y (3)(1), · · · , Y (3)(5), have been observed from Weibull dis-
tribution with cdf,

F (y) = 1 − exp

[

−

(

y

β

)α]

, y > 0, α > 0, β > 0,

for α = 2.5, β = 40 and we have to predict the next three ordinary k-upper
record-values and three fractional k−th upper record-values,

Y (3)(5.5), Y (3)(6), Y (3)(6.5), Y (3)(7), Y (3)(7.5), Y (3)(8).

The prediction results are obtained in the following two situations:
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(a) The parameters are assumed to be known.

(b) The parameters are unknown and should be estimated.

The maximum likelihood estimators (MLE’s) of the parameters based on the first
observed r < n ordinary k-upper record-values can be obtained by maximizing
(2.6) (after replacing n with r). Namely,

(5.2) α̂ =
r

∑r−1
i=1 ln(Y (k)(r)/Y (k)(i))

and β̂ =

(

k

r

) 1
α̂

Y (k)(r).

But the MLE’s are biased and Wang and Ye [47] obtained the corrected unbiased
estimators, which are

(5.3) α̃ =
r − 2

∑r−1
i=1 ln(Y (k)(r)/Y (k)(i))

and β̃ =
Γ(r)

Γ(r + 1/α̃)

(

1 +
ln r

rα̃

)r−1

β̂.

Moreover, an unbiased point predictor, Ỹ (k)(ts) based on P1 is obtained, and is
given by

(5.4) Ỹ (k)(ts) =
Γ(tr)Γ(ts + 1/α)

Γ(ts)Γ(tr + 1/α)
Y (k)(tr).

For each value of tr and ts in Table 3, the prediction results obtained based on
the exact values of parameters are given in the first two lines, while when the
parameters are estimated from (5.3), the prediction results are shown in the last
two lines of the same value of tr and ts.
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Table 3: Prediction of future ordinary and fractional k-th upper record-
values with k = 3 from Weibull(2.5, 40) based on M = 105

replicates. The root mean square errors are between parenthe-
ses.

tr = r ts CP
1
% CP

2
% L Ȳ

(3)(ts) Ỹ
(3)(ts) UP1

UP2
E[UP1

]

5.0 5.5 89.969 89.894 47.9290 49.9014 49.9012 53.6961 53.9554 53.6622
(2.7719) (4.4844) (4.7718)

85.578 87.335 47.9290 49.9014 49.8351 53.6967 54.2708
(2.9267) (5.4088) (5.9271)

6.0 90.045 89.978 47.9290 51.7529 51.7633 57.6233 58.1218 57.5869
(3.8825) (6.5626) (7.1876)

83.096 85.544 47.9290 51.7529 51.6495 57.6239 58.7394
(4.3132) (8.5196) (9.6642)

6.5 90.026 89.940 47.9290 53.5099 53.5303 60.8786 61.5855 60.8402
(4.7093) (8.2831) (9.1853)

81.141 84.075 47.9290 53.5099 53.3848 60.8792 62.5114
(5.4889) (11.2884) (12.9732)

7.0 89.959 89.991 47.9290 55.2068 55.2142 63.7723 64.6657 63.7320
(5.4164) (9.7591) (10.9042)

79.384 82.639 47.9290 55.2068 55.0509 63.7729 65.9118
(6.5917) (13.8610) (16.0448)

7.5 89.954 89.986 47.9290 56.8109 56.8245 66.4209 67.4835 66.3789
(6.0246) (11.0487) (12.4157)

78.043 81.511 47.9290 56.8109 56.6559 66.4216 69.0622
(7.6409) (16.2993) (18.9581)

8.0 90.013 90.081 47.9290 58.3474 58.3693 68.8847 70.1027 68.8412
(6.5493) (12.1988) (13.7668)

76.884 80.553 47.9290 58.3474 58.2064 68.8854 72.0256
(8.6456) (18.6427) (21.7588)

6.0 6.5 90.137 90.106 51.7529 53.5099 53.5196 56.8502 57.0023 56.8256
(2.4750) (3.9648) (4.1292)

86.360 87.745 51.7529 53.5099 53.4529 56.8507 57.1463
(2.5871) (4.5650) (4.8598)

7.0 90.007 89.930 51.7529 55.2068 55.2031 60.3395 60.6362 60.3135
(3.4957) (5.7578) (6.1244)

84.132 86.076 51.7529 55.2068 55.0810 60.3401 60.9186
(3.8025) (7.0049) (7.6738)

7.5 90.001 89.976 51.7529 56.8109 56.8131 63.2519 63.6779 63.2247
(4.2573) (7.2441) (7.7866)

82.368 84.637 51.7529 56.8109 56.6457 63.2526 64.1030
(4.8119) (9.1503) (10.1386)

8.0 90.016 89.958 51.7529 58.3474 58.3576 65.8570 66.4008 65.8286
(4.8783) (8.5096) (9.2079)

80.930 83.479 51.7529 58.3474 58.1539 65.8577 66.9755
(5.7231) (11.1011) (12.3802)

7.0 7.5 90.086 90.102 55.2068 56.8109 56.8169 59.8084 59.9066 59.7786
(2.2653) (3.5675) (3.6735)

86.856 87.946 55.2068 56.8109 56.7554 59.8090 59.9720
(2.3490) (3.9979) (4.1891)

8.0 90.164 90.231 55.2068 58.3474 58.3615 62.9703 63.1637 62.9389
(3.1695) (5.1441) (5.3853)

84.952 86.511 55.2068 58.3474 58.2460 62.9709 63.2955
(3.4058) (6.0285) (6.4710)
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6. DATA ANALYSIS

In the inverse sampling plan, one takes observations until a fixed number
r of records is reached (cf. [28]). According to Hofmann and Nagaraja [28], the
amount of Fisher information (FI) for both fixed sample and inverse sampling
plan based on all upper records and their record times is greater than the amount
of FI based on only upper records. Therefore, in this section, we shall estimate
the parameters from the likelihood function for record-breaking (record-values
and their inter-record times).

For the inverse sampling plan, the joint likelihood of the upper record-values
Y1, Y2, ..., Ym and the inter-record times τ1, τ2, ..., τm is given by

(6.1) L(y, τ ; Θ) = f(y1, ..., ym, τ1, ..., τm; Θ) =
m
∏

i=1

f(yi; Θ)(F (yi; Θ))τi−1,

where, y is the vector of observed upper records, τi, i = 1, 2, ..., m − 1, are the
number of trials following the observation yi that are needed to obtain the next
upper record value yi+1 with τm = 1 and Θ is an unknown vector of parameters
(e.g.[40], [28] and [35]). Similar result for lower record-breaking is given in [45],
[29] and [27], that is

(6.2) L∗(x, τ∗; Θ) = f(x1, ..., xm, τ∗

1 , ..., τ∗

m; Θ) =
m
∏

i=1

f(xi; Θ)(1 − F (xi; Θ))τ∗

i −1,

where x is the vector of observed lower records, τ∗

i , i = 1, 2, ..., m−1, is the number
of trials needed, following xi to obtain the next lower record xi+1, τ∗

m = 1 and
F (.) is cdf of the population from which the sample is drawn. In the rest of this
section, three examples to real data are analyzed.

Example 6.1 (Maximum annual temperature). The following data from
Long Beach, California, represents the maximum annual temperature in Fahren-
heit from 1990 to 2012:

86.7, 81.7, 84.3, 86.4, 84.9, 85.1, 89.7, 82.3, 84.2, 85.8, 81.5, 82.4,

84.3, 84.1, 90.5, 89.4, 87.5, 88.4, 90.3, 84.1, 88.4, 83.0, 86.6.

The upper records and inter-record times for the above data are y1 = 86.7, y2 =
89.7, y3 = 90.5 and τ1 = 6, τ2 = 8, τ3 = 1. First we fit the complete data to some
probability distributions. The preliminary fitting indicates that Weibull, extreme
value, Frechet distributions are appropriate models for this data. Moreover, the
maximum likelihood estimates (MLE’s) of parameters are obtained based on (6.1)
and then a comparison is performed according to Akaike information criterion
(AIC) to select the best model. The results are summarized in Table 4.
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Table 4: Comparison between three different distributions via the log
Likelihood and AIC.

Model Parameters L = Log L AIC

Frechet(α, β) α̂ = 52.7598, β̂ = 85.2217 -11.347 26.694

EV D(α, β) α̂ = 85.1787, β̂ = 1.67541 -11.331 26.662

Weibull(α, β) α̂ = 26.6179, β̂ = 86.4405 -11.052 26.103

According to AIC Weibull distribution is better than extreme value distri-
bution (EV D) and Frechet distributions. Based on the first three records the
upper limits for the next two records and the next two half fractional records are
obtained in Table 5.

Table 5: Point predictor and 95% PCI for the next two half record-values
and the two record-values for annual maximum temperatures
based on the first 3 records.

tr ts L Ỹ (1)(ts) UP1 E[UP1 ] UP2 E[UP2 ]

3 3.5 90.500 91.111 92.884 91.873 93.395 91.946
4 90.500 91.633 93.960 92.936 94.720 93.533

4.5 90.500 92.089 94.735 93.704 95.652 94.594
5 90.500 92.494 95.358 94.320 96.385 95.406

Example 6.2 (Maximum annual earthquakes). The data consists of 151
magnitude of the annual maximum earthquakes in the United States during the
period from 1769 to 1989 (some data are missing). The data are from Mathe-
matica Documentation Center. The upper records and inter-record times for the
annual maximum earthquakes are:

xi = 6.0, 6.5, 7.2, 7.4, 7.6, 7.9, 8.0, 8.3, 8.4

τi = 3, 3, 1, 15, 10, 28, 39, 26, 1

We proceed as in Example 6.1. According to AIC, and the Log likelihood function,
Gumbel distribution is more suitable than several other distributions (including
Weibull, EVD, Frechet distributions) for modeling the previous data. The cdf of
Gumbel distribution is of the form

F (y) = 1 − exp
[

−e(y−α)/β
]

, −∞ < y < ∞, −∞ < α < ∞, β > 0.

The data are analyzed in the following two cases:

1. In the first case, we suppose that the first 8 record-values have been ob-
served. The prediction results in the first 3 rows of Table 6 are obtained via
the MLE’s α̂ = 6.59296 and β̂ = 1.00387, which are computed from (6.1).
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2. In the second case, all the first 9 record-values are assumed to be observed.
An application to (6.1) again yields, α̂ = 6.58459 and β̂ = 1.07983, which
are very close to the MLE’s computed from the complete data. The pre-
diction results according to these estimates are shown in the last two rows
of Table 6.

In such cases a point predictor based on P1 is given by

Ỹ (1)(ts) = Y (1)(tr) + E
[

Y (1)(ts)
]

− E
[

Y (1)(tr)
]

, ts > tr,

where, E
[

Y (1)(ts)
]

and E
[

Y (1)(tr)
]

are computed numerically.

Table 6: Point predictor and 95% upper limits for the next half record
value and the next record value for the annual maximum earth-
quakes.

tr ts L Ỹ (1)(ts) UP1 UP2

8 9 8.300 8.425 8.676 8.694
9.5 8.300 8.537 8.776 8.799
10 8.300 8.637 8.863 8.890

9 9.5 8.400 8.520 8.637 8.641
10 8.400 8.628 8.759 8.767

Example 6.3 (One hour mean concentration of sulphur dioxide).

The following data represents the monthly maxima of 1 h mean concentra-
tion of sulphur dioxide in parts per hundred million (pphm) from Long Beach,
California, during 1956 to 1974 for the month of October:

26, 14, 27, 15, 16, 16, 11, 10, 14, 12,

15, 40, 29, 13, 20, 41, 31, 28, 11.

Roberts[44] shows that the Weibull model is a reasonably good for fitting this
data. An application of extreme value Q−Q plot by [16] supports Weibull model.
The upper records and inter-record times for the above data are: x1 = 26, x2 =
27, x3 = 40, x4 = 41, and τ1 = 2, τ2 = 9, τ3 = 4, τ4 = 1. The MLE’s of Weibull
parameters based on the likelihood function (6.1) are α̂ = 2.3596 and β̂ = 24.5108.
Based on the pivotal quantities P1 and P2 , 90% PCI’s for the next two records,
respectively, are (41, 52.328), (41, 52.103) and (41, 59.452), (41, 59.382), which
are shorter than the intervals obtained by [47] ((41.1590, 60.2449) and (41.9011,
75.5765)). Moreover, an unbiased point predictors for the next two record-values
are obtained from (5.4), that is, Ỹ (1)(5) = 45.344 and Ỹ (1)(6) = 49.187.
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7. CONCLUSION

In this article, we have proposed two predictive pivotal quantities for con-
structing prediction intervals of future ordinary (fractional) upper (lower) records
from any continuous distribution. More details have been given for the exponen-
tial distribution. Prediction intervals constructed using this approach have been
demonstrated, by using a simulation study and by applying it to real data. Ex-
ample 6.3 shows that this method gives a shorter intervals than that given by
Wang and Ye [47]. Moreover, the second case in the simulation study as well as
the three real data examples show that, when the cdf of the data is unknown
as always in practice, the given method is applicable with acceptable degree of
accuracy. Also, it is noted that the coverage probability is closed to theoretical
value 1− δ = 0.90 and average upper (lower) limits of PCI are closed to expected
values of upper (lower) limits based on both P1 and P2. Comparisons based on
exact and estimated root mean square errors, indicate that the pivotal quantity
P1 is relatively better than P2. Moreover, the root mean square errors, increase
with increasing of the difference ts − tr. Finally, three real data sets have been
completely analyzed.

A. ALGORITHMS

Based on the results of Rider [43], Rahman [41], Cramer [18] and Burkschat
et al. [15], we can generate ordinary k-th upper (lower) record-values from any
continuous cdf F with pdf f, by the following algorithm.

A.1. Algorithm 1

Step 1. Choose the values of n, k and determine the cdf F,

Step 2. generate a random sample of size n from beta distribution, Beta(k, 1),
say B1,B2, ...,Bn,

Step 3. compute the k-th upper record value Y
(k)
r , based on F by the formula,

Y (k)
r = F−1



1 −
r
∏

j=1

Bj



 , r = 1, 2, ..., n,

Step 4. compute the k-th lower record value X
(k)
r , based on F from the rela-

tion

X(k)
r = F−1





r
∏

j=1

Bj



 , r = 1, 2, ..., n.
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The second algorithm relays on Theorem 1 and Definition 2 of Bieniek and Szynal
[14]. The algorithm is formulated in a special case, whenever there is only a single
fractional k-th upper record value between two successive ordinary k-th upper
record-values.

A.2. Algorithm 2

Step 1. Determine n, k and use Algorithm 1 to generate n ordinary k-th

upper record values, W
(k)
i , i = 1, 2, ..., n, based on EXP(1),

Step 2. choose the real numbers 0 = t0 < t1 < ... < tn, such that, i−1 < ti <
i, ∀ i = 1, ..., n,

Step 3. compute the fractional k-th upper record values based on EXP(1) by
Theorem 1 of Bieniek and Szynal (2004), that is,

(A.1) W (k)(ti) = (1 − B∗

i )W
(k)
[ti]

+ B∗

i W
(k)
[ti+1], i = 1, 2, ..., n,

where [ti] denotes the greatest integer part of ti, B∗

i is a random observation

from beta distribution Beta(t∗i , 1 − t∗i ), independent of W
(k)
[ti]

, i = 1, 2, ..., n,

and t∗i denotes the fractional part of the numerical value of ti,

Step 5. the fractional k-th upper record values based on F, are then given by

(A.2) Y (k)(ti) = F−1
(

1 − e−W (k)(ti)
)

, i = 1, 2, ...., n.

The general case can be accomplished by Theorems 2 and 3 of [14].

A.3. Algorithm 3

Step 1. Determine the number n of fractional upper records to be generated,
the number of repetitions M, the real numbers 0 = t0 < t1 < ... < tn with
i − 1 < ti < i, ∀ i = 1, ..., n and the distribution with its parameter(s),

Step 2. generate and store M arrays, each array include n of fractional k-th
upper record-values,

Step 3. determine the number of observed ordinary (fractional) k-th upper
record-values r and the number of future ordinary (fractional) k-th upper
record value s, to be predicted,

Step 4. find the numerical values of pi(δ) by solving the nonlinear equations
F

Pi
(pi) = 1 − δ, i = 1, 2,
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Step 5. find the MLE’s of the parameters based on the first r ordinary (frac-
tional) k-th upper record-values,

Step 6. compute the upper and lower limits for the PCI based on the pivotal
quantities P1 and P2 by Theorems 3.1 and 3.2, and the point predictor(s)
with (i) the true values of parameters, and (ii) the MLE’s of parameters,

Step 7. check whether, the observed value of Y (k)(ts) did belong to the PCI,

Step 8. repeat Steps 5, 6 and 7, M times,

Step 9. compute the percentage of coverage probability, that is the percent
that the true value of the future fractional record lies inside the PCI, the
average of the lower and upper limits,

Step 10. compute the root mean square errors and expected values of upper
limits based on P1 and P2.
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