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Abstract:

• A simple generalisation of the classical Hill estimator of a positive extreme value index
(EVI) has been recently introduced in the literature. Indeed, the Hill estimator can
be regarded as the logarithm of the mean of order p = 0 of a certain set of statistics.
Instead of such a geometric mean, we can more generally consider the mean of order
p (MOP) of those statistics, with p real, and even an optimal MOP (OMOP) class
of EVI-estimators. These estimators are scale invariant but not location invariant.
With PORT standing for peaks over random threshold, new classes of PORT-MOP
and PORT-OMOP EVI-estimators are now introduced. These classes are dependent
on an extra tuning parameter q, 0 ≤ q < 1, and they are both location and scale
invariant, a property also played by the EVI. The asymptotic normal behaviour of
those PORT classes is derived. These EVI-estimators are further studied for finite
samples, through a Monte-Carlo simulation study. An adequate choice of the tuning
parameters under play is put forward, and some concluding remarks are provided.

Key-Words:

• Bootstrap and/or heuristic threshold selection, Heavy tails, Location/scale invariant
semi-parametric estimation, Monte-Carlo simulation, Optimal levels, Statistics of ex-
tremes.

AMS Subject Classification:

• 62G32; 65C05.



2 M.I. Gomes, L. Henriques-Rodrigues, and B.G. Manjunath



Mean-of-order-p location-invariant extreme value index estimation 3

1. INTRODUCTION

Given a sample of size n of independent, identically distributed (IID) random
variables (RVs), Xn := (X1, . . . , Xn), with a common cumulative distribution
function (CDF) F , let us denote by X1:n ≤ · · · ≤ Xn:n the associated ascending
order statistics. As usual in a framework of extreme value theory (EVT), let us
further assume that there exist sequences of real constants {an > 0} and {bn ∈ R}
such that the maximum, linearly normalised, i.e. (Xn:n − bn) /an, converges in
distribution to a non-degenerate RV. Then, the limit distribution is necessarily
of the type of the general extreme value (EV) CDF, given by

(1.1) EVξ(x) =

{
exp(−(1 + ξx)−1/ξ), 1 + ξx > 0, if ξ 6= 0,
exp(− exp(−x)), x ∈ R, if ξ = 0.

The CDF F is said to belong to the max-domain of attraction of EVξ, and we
consider the common notation F ∈ DM (EVξ). The parameter ξ is the extreme
value index (EVI), the primary parameter of extreme events.

The EVI measures the heaviness of the survival function or right tail-
function

(1.2) F (x) := 1− F (x),

and the heavier the right tail, the larger ξ is. Let us further use the notation Ra
for the class of regularly varying functions at infinity, with an index of regular
variation equal to a ∈ R, i.e. positive measurable functions g(·) such that for all
x > 0, g(tx)/g(t) → xa, as t → ∞ (see Bingham et al., 1987, among others, for
details on the theory of regular variation). In this paper we work with Pareto-
type underlying models, i.e. with a positive EVI, a quite common assumption
in many areas of application, like bibliometrics, biostatistics, computer science,
insurance, finance, social sciences and telecommunications, among others. The
right-tail function F , in (1.2), belongs then to R−1/ξ. Indeed, and more generally,

(1.3) F ∈ DM (EVξ>0) =: DM+ ⇐⇒ F ∈ R−1/ξ,

a result due to Gnedenko (1943).

For the class of Pareto-type models in (1.3), the most well-known EVI-
estimators are the Hill (H) estimators (Hill, 1975), which are the averages of the
log-excesses,

Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n.

We can thus define the H-class of EVI-estimators as:

(1.4) H(k) := H(k; Xn) :=
1

k

k∑
i=1

Vik, 1 ≤ k < n.
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We can further write

H(k) =
k∑
i=1

ln

(
Xn−i+1:n

Xn−k:n

)1/k

= ln

(
k∏
i=1

Xn−i+1:n

Xn−k:n

)1/k

, 1 ≤ k < n.

The Hill estimator is thus the logarithm of the geometric mean (or mean of order
0) of

Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n.

Brilhante et al. (2013) considered as basic statistics, the mean of order p (MOP)
of Uik, 1 ≤ i ≤ k, for p ≥ 0. More generally, Gomes and Caeiro (2014) considered
those same statistics for any p ∈ R, i.e. the class of statistics

Mp(k) =



(
1
k

k∑
i=1

Upik

)1/p

, if p 6= 0,

(
k∏
i=1

Uik

)1/k

, if p = 0,

and the following associated class of MOP EVI-estimators:

(1.5) Hp(k) = Hp(k; Xn) ≡ MOP(k) :=


(

1−M−pp (k)
)
/p, if p < 1/ξ,

ln M0(k) = H(k), if p = 0,

with H0(k) ≡ H(k), given in (1.4). This class of MOP EVI-estimators depends
now on this tuning parameter p ∈ R, it is highly flexible, but, as often desired, it is
not location-invariant, depending strongly on possible shifts in the model under-
lying the data. To make the EVI-estimators Hp(k), in (1.5), location-invariant,
it is thus sensible to use the peaks over a random threshold (PORT) technique
now applied to the MOP EVI-estimation. The PORT methodology, introduced
in Araújo Santos et al. (2006) and further studied in Gomes et al. (2008a), is
based on a sample of excesses over a random threshold Xnq :n, nq := bnqc + 1,
where bxc denotes the integer part of x, i.e. it is based on the sample of size
n(q) = n− nq, defined by

(1.6) X(q)
n :=

(
Xn:n −Xnq :n, . . . , Xnq+1:n −Xnq :n

)
.

After the introduction, in Section 2, of a few technical details in the field
of EVT and a brief reference to the most simple minimum-variance reduced-
bias (MVRB) EVI-estimators, the corrected-Hill (CH) EVI-estimators introduced
and studied in Caeiro et al. (2005), we refer a class of optimal MOP (OMOP)
EVI-estimators recently studied in Brilhante et al. (2014). We further introduce
the new classes of PORT-MOP and PORT-OMOP EVI-estimators. Section 3 is
essentially dedicated to consistency and asymptotic normal behaviour of these
new classes of EVI-estimators, with a brief reference to the known asymptotic
behaviour of the CH and MOP EVI-estimators. Section 4 is dedicated to the
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finite sample properties of the new classes of estimators, comparatively to the
behaviour of the aforementioned MVRB and even PORT-MVRB EVI-estimators,
done through a small-scale simulation study. In Section 5, we refer possible
methods for the adaptive choice of the tuning parameters (k, p, q), either based
on the bootstrap or on heuristic methodologies, and provide some concluding
remarks.

2. PRELIMINARY RESULTS IN THE AREA OF EVT

In the area of EVT and whenever working with large values, i.e. with the
right tail of the model F underlying the available sample, the model F is usu-
ally said to be heavy-tailed whenever (1.3) holds. Moreover, with the notation
F←(t) := inf{x : F (x) ≥ t} for the generalised inverse function of F , the condition
F ∈ D+

M is equivalent to say that the tail quantile function U(t) := F←(1− 1/t)
is of regular variation with index ξ (de Haan, 1984). We thus assume the validity
of any of the following first-order conditions:

(2.1) F ∈ D+
M ⇐⇒ F ∈ R−1/ξ ⇐⇒ U ∈ Rξ.

The second-order parameter ρ (≤ 0) rules the rate of convergence in the first-order
condition, in (2.1), and can be defined as the non-positive parameter appearing
in the limiting relation

(2.2) lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
= ψρ(x) :=


xρ−1
ρ , if ρ < 0,

lnx, if ρ = 0,

which is assumed to hold for every x > 0, and where |A| must then be of regular
variation with index ρ (Geluk and de Haan, 1987). For related details on the
topic, see Beirlant et al. (2004) and de Haan and Ferreira (2006).

Whenever dealing with bias reduction in the field of extremes, it is usual
to consider a slightly more restrict class than D+

M, the class of models

(2.3) U(t) = C tξ
{

1 +A(t)/ρ+ o(tρ)
}
, A(t) = ξβtρ,

as t → ∞, where C > 0, ξ > 0, ρ < 0 and β 6= 0 (Hall and Welsh, 1985). This
means that the slowly varying function L(t) in U(t) = tξL(t) is assumed to behave
asymptotically as a constant. To assume (2.3) is equivalent to choose A(t) = ξβtρ,
ρ < 0, in the more general second-order condition in (2.2). Models like the
log-Gamma (ρ = 0) are thus excluded from this class. The standard Pareto
(ρ = −∞) is also excluded. But most heavy-tailed models used in applications,
like the EVξ, in (1.1), the Fréchet, F (x) = exp(−x−1/ξ), x ≥ 0, both for ξ > 0,
and the well-known Student’s t CDFs, among others, belong to Hall-Welsh class.
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2.1. The CH class of EVI-estimators

Due to its simplicity and just as mentioned above, the most popular EVI-
estimators, consistent only for non-negative values of ξ, are Hill estimators in
(1.4). We further consider the simplest class of CH EVI-estimators, the one
introduced in Caeiro et al. (2005),

(2.4) CH(k) = CH(k; Xn) := H(k)

(
1− β̂(n/k)ρ̂

1− ρ̂

)
.

The estimators in (2.4) can be second-order MVRB EVI-estimators, for adequate
levels k and an adequate external estimation of the vector of second-order param-
eters, (β, ρ), in (2.3), algorithmically given in Gomes and Pestana (2007), among
others, i.e. the use of CH(k), and an adequate estimation of (β, ρ), enables us
to eliminate the dominant component of the bias of the Hill estimator, H(k),
keeping its asymptotic variance. Like that, and theoretically, CH(k) outperforms
H(k) for all k.

We again suggest the use of the class of β-estimators in Gomes and Martins
(2002) and the simplest class of ρ-estimators in Fraga Alves et al. (2003). In the
simulations, we have considered only models with |ρ| ≤ 1. Indeed, this is the
case where alternatives to the H-class of EVI-estimators are welcome due to the
high bias of H EVI-estimators for moderate up to large values of k, including
the optimal k in the sense of minimal root mean square error (RMSE). In such
cases, we suggest the use of the tuning parameter τ = 0 in the simplest class of
ρ-estimators in Fraga Alves et al. (2003), given by

(2.5) ρ̂τ (k) ≡ ρ̂τ (k; Xn) := min

(
0,

3(R
(τ)
n (k; Xn)− 1)

R
(τ)
n (k; Xn)− 3

)
,

and dependent on the statistics

R(τ)
n (k; Xn) :=

(
M

(1)
n (k; Xn)

)τ − (M (2)
n (k; Xn)/2

)τ/2(
M

(2)
n (k; Xn)/2

)τ/2 − (M (3)
n (k; Xn)/6

)τ/3 , τ ∈ R,

with the usual notation abτ = b ln a if τ = 0, and where

M (j)
n (k; Xn) :=

1

k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n}j , j = 1, 2, 3.

As already suggested in previous papers, we have here decided for the computa-
tion of ρ̂τ (k) at k = k1, given by k1 = bn1−εc, ε = 0.001, the threshold used in
Caeiro et al. (2005) and Gomes and Pestana (2007).

For the estimation of the scale second-order parameter β, in (2.3), and
again on the basis of a sample Xn, we consider

(2.6) β̂ρ̂(k) ≡ β̂ρ̂(k; Xn) :=

(
k

n

)ρ̂ dρ̂(k) D0(k)−Dρ̂(k)

dρ̂(k) Dρ̂(k)−D2ρ̂(k)
,
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dependent on the estimator ρ̂ = ρ̂0(k1; Xn), with ρ̂τ (k) defined in (2.5), and
where, for any α ≤ 0,

dα(k) :=
1

k

k∑
i=1

(
i

k

)−α
and

Dα(k) :=
1

k

k∑
i=1

(
i

k

)−α
Ui, Ui := i

(
ln
Xn−i+1:n

Xn−i:n

)
,

with Ui, 1 ≤ i ≤ k, the scaled log-spacings associated with Xn. Details on
the distributional behaviour of the estimator in (2.6) can be found in Gomes and
Martins (2002) and more recently in Gomes et al. (2008b) and Caeiro et al. (2009).
Interesting alternative classes of estimators of the ‘shape’ and ‘scale’ second-order
parameters have recently been introduced. References to those classes can be
found in recent overviews on reduced-bias estimation (Chapter 6 of Reiss and
Thomas, 2007; Beirlant et al., 2012; Gomes and Guillou, 2014).

2.2. The OMOP class of EVI-estimators

Working in the class of models in (2.3) for technical simplicity, Brilhante
et al. (2014) noticed that there is an optimal value p ≡ pM = ϕρ/ξ, with

(2.7) ϕρ = 1− ρ/2−
√
ρ2 − 4ρ+ 2

/
2 ∈

(
0, 1−

√
2/2
)
,

which maximises the asymptotic efficiency of the class of estimators in (1.5). They
then considered the MOP EVI-estimator associated with the optimal p ≡ pM
estimated through p̂M, based on any initial consistent estimator of ξ and ρ, i.e.
an optimal MOP (OMOP) class of EVI-estimators. Here, we estimate the optimal
k-value for the H EVI-estimation, k0|0 := arg mink RMSE

(
H0(k)

)
, computing, as

given in Hall (1982),

k̂0|0 ≡ k̂0|H0
=
(

(1− ρ̂)n−ρ̂/
(
β̂
√
−2ρ̂

))2/(1−2ρ̂)
,

the associated observed value of the EVI-estimator H00 := H(k̂0|0), and, with ϕρ
given in (2.7), the OMOP EVI-estimators

(2.8) H∗(k) ≡ H∗(k; Xn) := Hp̂M(k; Xn), 1 ≤ k < n, p̂M = ϕρ̂/H00.

Neither the H nor the CH nor the MOP EVI–estimators are invariant for changes
in location, but they can easily be made location-invariant with the technique in-
troduced in Araújo Santos et al. (2006), briefly discribed in the following Section.
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2.3. The PORT methodology

The EVI-estimators in (1.4), (1.5), (2.4) and (2.8) are scale-invariant, but
not location-invariant, as often desired, due to the fact that the EVI itself enjoys
such a property, i.e. it is location and scale invariant. Indeed, note that a general
first-order condition to have F ∈ DM (EVξ), given in de Haan (1984), can be
written as

(2.9) F ∈ DM (EVξ) ⇐⇒ lim
t→∞

U(tx)− U(t)

a(t)
= ψξ(x),

for an adequate function a(·), with an absolute value necessarily in Rξ, and where
ψρ(·) is the Box-Cox function, already defined in (2.2). If a shift s is induced in
data associated with the RV X, i.e. if we consider Y = X + s, the relationship
between the tail quantile functions of Y and X is given by UY (t) = s + UX (t).
Consequently, UY (tx) − UY (t) = UX (tx) − UX (t) and from (2.9), the EVI, ξ, is
the same for X and Y = X + s, for any shift s ∈ R.

Just as mentioned above, the class of PORT-Hill estimators is based on
the sample of excesses in (1.6). In this article, we shall work with PORT-MOP
and PORT-OMOP EVI-estimators, generally denoted E. They have the same
functional form of the associated EVI-estimators in (1.5) and (2.8) but with the

original sample Xn replaced everywhere by the sample of excesses X
(q)
n , in (1.6).

Consequently, they are given by the functional equations,

(2.10) E(q)(k) := E
(
k; X(q)

n

)
, with E ≡ Hp and E ≡ H∗.

These estimators are now invariant for both changes of location and scale, and
depend on the extra tuning parameter q, which only influences the asymptotic
bias, making them highly flexible and even able to compare favourably with the
MVRB EVI-estimators in (2.4), for a large variety of underlying models in the
domain of attraction for maxima of the EVξ CDF, in (1.1). In the simulation
procedure, we further include the PORT-MVRB EVI-estimators,

(2.11) CH(q)(k) = CH
(
k; X(q)

n

)
,

studied by simulation in Gomes et al. (2011a, 2013), with X
(q)
n and CH

(
k; Xn

)
respectively given in (1.6) and (2.4).

3. ASYMPTOTIC BEHAVIOUR OF EVI-ESTIMATORS

Consistency of the Hill EVI-estimators, H ≡ H0, written both in (1.4) and
(1.5), is achieved in the whole D+

M whenever we work with intermediate values
of k, i.e.

(3.1) k = kn →∞, 1 ≤ k < n, and kn = o(n), as n→∞.
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3.1. Asymptotic normal behaviour of MOP and OMOP EVI-
estimators

Let us consider the notation N (µ, σ2) for a normal RV with mean value
µ and variance σ2. Under the aforementioned second-order framework, in (2.2),
and as a generalization of the results in de Haan and Peng (1998), Brilhante et
al. (2013) derived, for the MOP EVI-estimators in (1.5) and 0 ≤ p ≤ 1/(2ξ), the
asymptotic distributional representation,

√
k
(

Hp(k)− ξ
)

d
= N

(
0, ξ

2(1−pξ)2
1−2pξ

)
+

(1− pξ)
√
kA(n/k)

1− ρ− pξ
(
1 + op(1)

)
,

more generally valid for p ∈ R (Gomes and Caeiro, 2014). For the OMOP EVI-
estimators, in (2.8), Brilhante et al. (2014) got the obvious validity of a similar
asymptotic distributional representation, but with pξ replaced by ϕρ, in (2.7),
i.e.

√
k
(

H∗(k)− ξ
)

d
= N

(
0,

ξ2(1−ϕρ)2
1−2ϕρ

)
+

(1− ϕρ)
√
kA(n/k)

1− ϕρ − ρ
(
1 + op(1)

)
.

The asymptotic variance increases when p moves away from p = 0, but the bias
decreases and, at optimal levels in the sense of minimal RMSE, the OMOP EVI-
estimators outperform the H EVI-estimators.

Under the same conditions as before, but with CH(k) given in (2.4) and
assuming that (2.3) holds, an adequate estimation of the second-order parameters,
(β, ρ), enables to guarantee that

√
k
(
CH(k) − ξ

)
can be asymptotically normal

with variance also equal to ξ2 but with a null mean value. Indeed, from the
results in Caeiro et al. (2005), we know that it is possible to get

√
k
(

CH(k)− ξ
)

d
= N

(
0, ξ2

)
+ op

(√
kA(n/k)

)
.

On the basis of the results in the aforementioned papers, and generally
denoting by E(k) any of the EVI-estimators in (1.5) and (2.8), we can state the
following theorem.

Theorem 3.1. (de Haan and Peng, 1998; Caeiro et al., 2005; Brilhante
et al., 2013, 2014) Under the validity of the first-order condition, in (2.1), and for
intermediate sequences k = kn, i.e. if (3.1) holds, the classes of EVI-estimators
Hp(k), in (1.5), for p < 1/ξ, and the EVI-estimators in (2.4) and (2.8) are con-
sistent for the estimation of ξ. If we assume the validity of the second-order
condition in (2.2) and additionally assume that we are working with values of k
such that λA := limn→∞

√
k A(n/k) is finite, we can then guarantee that for

p < 1/(2ξ) whenever dealing with Hp(k),

√
k (E(k)− ξ) d−→

n→∞
N
(
λAb•, σ

2
•
)
,
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where

bHp =
1− pξ

1− ρ− pξ
, b

H∗ =
1− ϕρ

1− ρ− ϕρ
,

σ2
Hp

=
ξ2(1− pξ)2

1− 2pξ
, σ2

H∗ =
ξ2(1− ϕρ)2

1− 2ϕρ
.

If we further assume to be working in Hall-Welsh class of models in (2.3), and
estimate β and ρ consistently through β̂ and ρ̂, with ρ̂ − ρ = op(1/ lnn), we get
the aforementioned normal behaviour also for E = CH, in (2.4), but now with
bCH = 0 and σ2

CH
= σ2

H
= ξ2.

Remark 3.1. Note again that σ2
H
< σ2

Hp
for all ξ > 0 and 0 6= p < 1/ξ.

The other way round, bH ≥ bHp for all ξ. And as can be seen in Brilhante et
al. (2013; 2014), at the optimal p, Hp(k) can asymptotically outperform H(k) at
optimal levels in the sense of minimal RMSE, in the whole (ξ, ρ)-plane. As far as
we know, such a property is so far achieved only by this class of EVI-estimators.
Se also Paulauskas and Vaiciulis (2013).

3.2. Asymptotic behaviour of PORT-MOP EVI-estimators

Note first that if there is a possible shift s in the model, i.e. if the CDF
F (x) ≡ Fs(x) = F (x; s) depends on (x, s) through the difference x − s, the pa-
rameter ξ does not change, as mentioned above in Section 2.3, but the parameter
ρ, as well as the A-function, in (2.2), depend on such a shift s, i.e. ρ = ρs, A = As,
and

(As(t), ρs) :=



(
− ξs/U0(t),−ξ

)
, if ξ + ρ0 < 0 ∧ s 6= 0,(

A0(t)− ξs/U0(t), ρ0
)
, if ξ + ρ0 = 0 ∧ s 6= 0,(

A0(t), ρ0
)
, otherwise.

Further details on the influence of such a shift in
(
β, ρ,A(·)

)
and on the estima-

tion of ‘shape’ and ‘scale’ second-order parameters can be found in Henriques-
Rodrigues et al. (2014, 2015).

To study the asymptotic properties of the PORT-MOP (and PORT-
OMOP) EVI-estimators for p 6= 0, it is convenient to study first the behaviour of
the statistics,

(3.2) Wp(k; q) :=
1

k

k∑
i=1

(
Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n

)p
, p 6= 0,

for X = X0 _ F0. Indeed,

(3.3) Hp

(
k; X(q)

n

)
=

1−W−1p (k; q)

p
if p 6= 0.
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Remark 3.2. Note that with

Qr(k; q) =
1

k

k∑
i=1

(
i

k

)r Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n
,

the statistics studied in Caeiro et al. (2014), we get, with Wp(k; q) given in (3.2),
W1(k; q) = Q0(k; q).

Remark 3.3. It is also worth noting that, as already detected in Fraga
Alves et al. (2009), for invariant versions of the mixed moment, and in Caeiro
et al. (2014), for invariant versions of the Pareto probability weighted moment
EVI-estimators, due to the fact that

Xbnqc+1:n − U0(1/(1− q)) = Op

(
1/
√
n
)
,

Xnq :n can be replaced by the q-quantile

(3.4) χq := U0(1/(1− q)).

The asymptotic behaviour of the statistics Wp(k; q), in (3.2), comes then
straightforwardly from the behaviour of the non-shifted statistics, as stated in
the following proposition.

Theorem 3.2. Under the second order framework in (2.2), and for in-
termediate k, i.e. whenever (3.1) holds, we can guarantee, under general broad
conditions, the asymptotic normality of Wp(k; q), in (3.2). Indeed, we can write,
for pξ < 1/2,

(3.5) Wp(k; q)
d
=

1

1− pξ
+
σp(ξ)N (0, 1)√

k
+
pA0(n/k)(1 + op(1))

(1− pξ)(1− pξ − ρ0)

+
pξχq(1 + op(1))

(1− pξ)(1− (p− 1)ξ)U0(n/k)
,

where

(3.6) σ2p(ξ) :=
(pξ)2

(1− pξ)2(1− 2pξ)
.

Proof: It is well-known that U0(Xi:n)
d
= Yi:n, where Y is a standard unit

Pareto RV, with CDF FY (y) = 1 − 1/y, y > 1. Moreover, Yn−i+1:n/Yn−k:n
d
=

Yk−i+1:k, 1 ≤ i ≤ k. Under the second order framework in (2.2), and thinking
on the fact that we are now working with s = 0 due to the location invariance
property of the statistics in (3.2), we can write

Xn−i+1:n

Xn−k:n

d
=

U0

(Yn−i+1:n

Yn−k:n
Yn−k:n

)
U0(Yn−k:n)

d
= Y ξ

k−i+1:k

(
1 +

Y ρk−i+1:k−1
ρ A0(Yn−k:n)(1 + op(1))

)
.
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Next, with the notation χq = U0(1/(1− q)), already introduced in (3.4),

Xn−i+1:n − χq
Xn−k:n − χq

=
Xn−i+1:n

Xn−k:n

(
1− χq/Xn−i+1:n

1− χq/Xn−k:n

)
=
Xn−i+1:n

Xn−k:n

(
1 +

χq
Xn−k:n

(
1− Xn−k:n

Xn−i+1:n

)
(1 + op(1))

)
.

Consequently,

Wp(k; q) :=
1

k

k∑
i=1

(
Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n

)p

=
1

k

k∑
i=1

(
Xn−i+1:n

Xn−k:n

(
1 +

χq
Xn−k:n

(
1− Xn−k:n

Xn−i+1:n

)
(1 + op(1))

))p
,

and we can write

Wp(k; q)
d
=

1

k

k∑
i=1

Y pξ
i:k +

pξχq
U0(n/k)

1

k

k∑
i=1

Y pξ
i:k

Y −ξi:k − 1

−ξ
(1 + op(1))

+
p

k

k∑
i=1

Y pξ
i:k

Y ρ
i:k − 1

ρ
A0(n/k)(1 + op(1)).

Since, for pξ < 1

1

k

k∑
i=1

Y pξ
i:k

P−→ 1

1− pξ

and if we further assume that ρ < 0,

1

k

k∑
i=1

Y pξ
i:k

(
Y ρ
i:k − 1

ρ

)
P−→ 1

(1− pξ)(1− pξ − ρ)
,

equation (3.5) follows. Moreover, σ2p(ξ), given in (3.6), is merely the variance of∑k
i=1 Y

pξ
i:k/k =

∑k
i=1 Y

pξ
i /k.

We next state the main theoretical result in this article, related to the shift
invariant versions of the EVI-estimators in (1.5) and (2.8), i.e. the shift-invariant
EVI-estimators, generally denoted E(q)(k) in (2.10). Again, the asymptotic vari-
ance is kept at the same level of the unshifted EVI-estimators, but the dominant
component of bias changes only in a few cases.

Theorem 3.3. Under the second order framework in (2.2), with
pξ < 1/2, and for intermediate k, i.e. if (3.1) holds, the asymptotic bias of the
PORT-MOP and PORT-OMOP EVI-estimators, in (2.10), is going to be ruled
by

B(t) =


ξχq/U0(t), if ξ + ρ0 < 0 ∧ χq 6= 0,

A0(t) + ξχq/U0(t), if ξ + ρ0 = 0 ∧ χq 6= 0,

A0(t), otherwise,
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with χq defined in (3.4). If we assume that
√
k A0(n/k) → λA and/or√

k/U0(n/k) → λU , finite, as n → ∞, and with E denoting either Hp or H∗,
as given in (2.10),

√
k
(

E(q)(k)− ξ
)

d−→
n→∞

N
(
b
E|q, σ

2
E

)
,

where

b
E|q =



ξ(1−pξ)χq
1−(p−1)ξ λU , if ξ + ρ0 < 0 ∧ χq 6= 0,

1−pξ
1−(p−1)ξ λA +

ξ(1−pξ)χq
1−(p−1)ξ λU , if ξ + ρ0 = 0 ∧ χq 6= 0,

1−pξ
1−pξ−ρ0 λA , otherwise.

Proof: For p 6= 0, (3.3) and the use of Taylor’s expansion (1 + x)−1 =
1− x+ o(x), as x→ 0, enables us to get

H(q)
p (k)

d
= ξ +

σp(ξ)(1− pξ)2N (0, 1)(1 + op(1))

|p|
√
k

+
(1− pξ)A0(n/k)(1 + op(1))

(1− pξ − ρ0)
+
ξ(1− pξ)χq(1 + op(1))

(1− (p− 1)ξ)U0(n/k)
.

Consequently, the result in the theorem follows.

4. FINITE SAMPLE PROPERTIES OF THE EVI-ESTIMATORS

We have implemented multi-sample Monte-Carlo simulation experiments of
size 5000× 20, i.e. 20 independent replicates with 5000 runs each, for the classes
of MOP and PORT-MOP EVI-estimators associated with p = p` = 2`/(5ξ), ` =
0, 1, 2, and also for the OMOP and PORT-OMOP EVI-estimators. The values
q = 0 and q = 0.25 were considered. We further proceeded to the comparison with
the MVRB and the PORT MVRB EVI-estimators, for the same values of q as
mentioned above. Sample sizes from n = 100 until n = 5000 were simulated from
a set of underlying models that include the ones shown here as an illustration, the
EV model, with CDF F (x) = EVξ(x), with EVξ(x) given in (1.1), ξ = 0.1, 0.25,
and the Student-tν , with ν = 4, 2 degrees-of-freedom (ξ = 1/ν = 0.25, 0.5).
For details on multi-sample simulation, see Gomes and Oliveira (2001), among
others. For the EV parents, results are presented essentially for q = 0, the value
of q associated with the best performance of the PORT methodology for these
models. For Student parents we consider q = 0.25. This is due to the fact that
for the Student model the left endpoint is infinite and we cannot thus consider
q = 0 (see Araújo Santos et al., 2006, and Gomes et al., 2008a, for further details
related to the topic).
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Remark 4.1. Note that, as already stated in the aforementioned arti-
cles dealing with a PORT framework, if there are only positive observed values in
the sample, we gain nothing with the use of the PORT methodology. The other
way round, if there are negative elements in the sample, as happens with EV and
Student models and, in practice, with log-returns in financial data, among other
types of data, the gain is quite high, as we shall see in the following. This is the
main reason for the choice of the aforementioned parents.

4.1. Mean values and mean square error patterns as k-functionals

For each value of n and for each of the above-mentioned models, we have
first simulated the mean value (E) and the RMSE of the estimators under con-
sideration, as functions of the number of top order statistics k involved in the
estimation. Apart from the MOP, Hp, in (1.5), p = 0

(
H0 ≡ H

)
and p = p` =

2`/(5ξ), ` = 1 (for which asymptotic normality holds), and ` = 2 (where only
consistency was proved), the OMOP (H∗), in (2.8), and the MVRB (CH) EVI-
estimators, in (2.4), we have also included their PORT versions, respectively given
in (2.10) and (2.11), for the above mentioned values of q.

The results are illustrated in Figure 1, for an EVξ underlying parent, with
ξ = 0.25 and q = 0. In this case, and for all k, there is a clear reduction in
RMSE, as well as in bias, with the obtention of estimates closer to the target
value ξ, particularly when we consider Hp2 and the associated PORT-version.
However, at optimal levels, even the PORT-H∗ and PORT-Hp1 versions beat the
MVRB EVI-estimators. Indeed, the PORT-Hp1 can even beat the PORT-MVRB
EVI-estimators, as happens in this illustration.
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Figure 1: Mean values (left) and root mean square errors (right) of H,
H∗ (OMOP), CH, and Hp, p = p` = 2`/(5ξ), ` = 1, 2 (MOP),
together with their PORT versions, associated with q = 0 and
generally denoted •|0, for EV0.25 underlying parents and sample
size n = 1000
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Similar patterns have been obtained for all other simulated models, with
the PORT-MVRB outperforming the PORT-MOP only in a few cases and for
large sample sizes n.

4.2. Mean values and relative efficiency indicators at optimal levels

Table 1 is also related to the EVξ model, with ξ = 0.25. We there present,
for different sample sizes n, the simulated mean values at optimal levels (levels
where RMSEs are minima as functions of k) of the EVI-estimators under consid-
eration in this study. Information on standard errors, computed on the basis of
the 20 replicates with 5000 runs each, are available from the authors, upon re-
quest. Among the estimators considered, and distinguishing 3 regions, a first one
with (H, CH, H∗, Hp1), a second one with the associated PORT versions, (H|0,
CH|0, H∗|0, Hp1 |0), and a third one with (Hp2 , Hp2 |0), for which an asymptotic
normal behaviour is not available, the one providing the smallest squared bias
is underlined and written in bold whenever there is an out-performance of the
behaviour achieved in the previous region.

Table 1: Simulated mean values of the semi-parametric EVI-estimators
under consideration, at their simulated optimal levels for under-
lying EV0.25 parents.
n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.4202 0.3915 0.3646 0.3482 0.3348 0.3212

CH 0.3816 0.3716 0.3533 0.3416 0.3295 0.3174

H∗ 0.3398 0.3351 0.3303 0.3226 0.3167 0.3082

Hp1 0.3059 0.3077 0.3034 0.3013 0.2998 0.2940

H|0 0.3663 0.3464 0.3261 0.3154 0.3053 0.2957

CH|0 0.3510 0.3369 0.3210 0.3114 0.3033 0.2945

H∗|0 0.3292 0.3208 0.3106 0.3046 0.2980 0.2904

Hp1 |0 0.3052 0.3001 0.2963 0.2928 0.2895 0.2848

Hp2 0.2723 0.2698 0.2669 0.2651 0.2638 0.2620

Hp2 |0 0.2669 0.2650 0.2625 0.2614 0.2603 0.2590

We have further computed the Hill estimator, given in (1.5) when p = 0,
at the simulated value of k0|0 = arg mink RMSE

(
H0(k)

)
, the simulated optimal

k in the sense of minimum RMSE, not relevant in practice, but providing an
indication of the best possible performance of Hill’s estimator. Such an estimator
is denoted by H̃00. For any of the estimators under study, generally denoted E(k),
we have also computed E0, the estimator E(k) computed at the simulated value
of k0|E := arg mink RMSE

(
E(k)

)
. The simulated indicators are

(4.1) REFFE|0 :=
RMSE

(
H̃00

)
RMSE (E0)

.
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Remark 4.2. Note that, as usual, an indicator higher than one means
a better performance than the Hill estimator. Consequently, the higher these
indicators are, the better the associated EVI-estimators perform, comparatively
to H̃00.

Again as an illustration of the results obtained, we present Table 2. In the
first row, we provide RMSE0, the RMSE of H̃00, so that we can easily recover the
RMSE of all other estimators. The following rows provide the REFF-indicators
for the different EVI-estimators under study. A similar mark (underlined and
bold) is used for the highest REFF indicator, again considering the aforemen-
tioned three regions.

Table 2: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying EV0.25 parents.
n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.246 0.200 0.157 0.133 0.113 0.092

CH 1.3256 1.2374 1.1711 1.1304 1.1008 1.0716

H∗ 1.4391 1.3384 1.2491 1.2021 1.1653 1.1333

Hp1 1.9307 1.7443 1.5646 1.4633 1.3785 1.2999

H|0 1.4875 1.4991 1.5169 1.5309 1.5405 1.5542

CH|0 1.9212 1.8505 1.7790 1.7366 1.6958 1.6633

H∗|0 1.8966 1.8156 1.7511 1.7217 1.6995 1.6868

Hp1 |0 2.3988 2.2171 2.0478 1.9564 1.8828 1.8230

Hp2 6.4033 5.6755 4.9396 4.4849 4.0943 3.6784

Hp2 |0 7.5643 6.7594 5.9369 5.4315 4.9769 4.4991

For a better visualization of the results presented in Table 1 and Table 2, we
further present Figure 2. Due to the high REFF-indicators of Hp2 and associated
PORT estimators, we present them in a different scale, at the top of Figure 2,
right, the one related to the REFF-indicators.
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Figure 2: Mean values (left) and REFF-indicators (right) at optimal levels
of the different estimators under study, for an underlying EV0.25

parent and sample sizes n = 100(100)500 and 500(500)5000

Tables 3–4, 5–6 and 7–8 are similar to Tables 1–2, respectively for EV0.1,
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Student-t4 and Student-t2 underlying parents.

Table 3: Simulated mean values of the semi-parametric EVI-estimators
under consideration, at their simulated optimal levels for under-
lying EV0.1 parents.
n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.2918 0.2644 0.2403 0.2225 0.2089 0.1952

CH 0.2714 0.2544 0.2341 0.2214 0.2076 0.1946

H∗ 0.1895 0.1745 0.1605 0.1516 0.1442 0.1464

Hp1 0.1601 0.1496 0.1396 0.1330 0.1274 0.1315

H|0 0.2404 0.2191 0.2009 0.1895 0.1801 0.1688

CH|0 0.2346 0.2176 0.1989 0.1887 0.1793 0.1689

H∗|0 0.1611 0.1499 0.1435 0.1441 0.1458 0.14440

Hp1 |0 0.1400 0.1317 0.1278 0.1290 0.1271 0.1291

Hp2 0.1159 0.1149 0.1133 0.1127 0.1114 0.1105

Hp2 |0 0.1131 0.1124 0.1110 0.1104 0.1098 0.1090

Table 4: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying EV0.1 parents.
n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.2524 0.2109 0.1732 0.1511 0.1329 0.1136

CH 1.1778 1.1141 1.0684 1.0450 1.0293 1.0186

H∗ 2.0954 1.9436 1.7846 1.6708 1.5618 1.4483

Hp1 3.0221 2.7527 2.4758 2.2837 2.1044 1.9174

H|0 1.4292 1.4185 1.4153 1.4093 1.4006 1.3967

CH|0 1.5680 1.5140 1.4760 1.4509 1.4290 1.4134

H∗|0 2.5865 2.3621 2.1291 1.9935 1.8775 1.7709

Hp1 |0 3.5906 3.2188 2.8408 2.6229 2.4277 2.2369

Hp2 12.1731 10.5862 9.1739 8.3307 7.6068 6.8415

Hp2 |0 13.3178 11.6827 10.1972 9.2846 8.5188 7.6951

Table 5: Simulated mean values of the semi-parametric EVI-estimators
under consideration, at their simulated optimal levels for under-
lying Student-t4 parents (ξ = 0.25).

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.3607 0.3392 0.3167 0.3055 0.2959 0.2862

CH 0.3109 0.3104 0.3005 0.2939 0.2879 0.2805

H∗ 0.3236 0.3135 0.3028 0.2959 0.2891 0.2818

Hp1 0.2964 0.2914 0.2881 0.2844 0.2810 0.2765

H|0.25 0.3078 0.2935 0.2806 0.2728 0.2672 0.2613

CH|0.25 0.2869 0.2783 0.2686 0.2641 0.2599 0.2561

H∗|0.25 0.2923 0.2861 0.2764 0.2699 0.2658 0.2607

Hp1 |025 0.2797 0.2762 0.2709 0.2671 0.2640 0.2599

Hp2 0.2662 0.2646 0.2616 0.2604 0.2589 0.2575

Hp2 |0.25 0.2613 0.2591 0.2570 0.2558 0.2550 0.2539

Remark 4.3. As intuitively expected, Hp|• are decreasing in p, ap-
proaching the true value of ξ, or all simulated models.
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Table 6: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying Student-t4 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.1830 0.1431 0.1059 0.0854 0.0696 0.0535

CH 1.4349 1.3982 1.3615 1.3223 1.2834 1.2358

H∗ 1.2984 1.2280 1.1625 1.1297 1.1046 1.0822

Hp1 1.7501 1.5845 1.4200 1.3285 1.2554 1.1819

H|0.25 1.6242 1.6823 1.7745 1.8702 1.9850 2.1777

CH|0.25 2.4005 2.5115 2.7219 2.8846 3.1153 3.5054

H∗|0.25 1.9459 1.9360 1.9712 2.0386 2.1329 2.3108

Hp1 |025 2.4223 2.3048 2.2245 2.2166 2.2410 2.3346

Hp2 5.3556 4.7308 4.0399 3.5993 3.2243 2.7827

Hp2 |0.25 6.6674 6.0186 5.2884 4.8145 4.3920 3.8883

Table 7: Simulated mean values of the semi-parametric EVI-estimators
under consideration, at their simulated optimal levels for under-
lying Student-t2 parents (ξ = 0.5).

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.6015 0.5769 0.5560 0.5439 0.5355 0.5257

CH 0.4644 0.5059 0.5117 0.5073 0.5041 0.5019

H∗ 0.5823 0.5671 0.5510 0.5404 0.5324 0.5233

Hp1 0.5553 0.5486 0.5393 0.5325 0.5261 0.5182

H|0.25 0.5203 0.5139 0.5063 0.5037 0.5020 0.5009

CH|0.25 0.4885 0.4940 0.4974 0.4988 0.4995 0.4997

H∗|0.25 0.5194 0.5142 0.5070 0.5035 0.5018 0.5009

Hp1 |025 0.5186 0.5130 0.5078 0.5048 0.5023 0.5011

Hp2 0.5206 0.5168 0.5137 0.5111 0.5086 0.5053

Hp2 |0.25 0.5120 0.5096 0.5072 0.5051 0.5036 0.5018

Table 8: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying Student-t2 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.2028 0.1528 0.1078 0.0835 0.0652 0.0470

CH 0.9803 1.4180 1.7059 1.9437 2.2267 2.6414

H∗ 1.1363 1.1047 1.0811 1.0695 1.0666 1.0644

Hp1 1.4333 1.3224 1.2344 1.1957 1.1841 1.1844

H|0.25 1.8476 1.9699 2.2126 2.4120 2.6709 3.0481

CH|0.25 2.4870 2.6495 2.9310 3.1988 3.5307 4.0413

H∗|0.25 1.9814 2.0820 2.3071 2.5030 2.7652 3.1490

Hp1 |025 2.2140 2.2306 2.3726 2.5269 2.7644 3.1234

Hp2 3.7572 3.2811 2.7464 2.4304 2.2496 2.1766

Hp2 |0.25 4.5942 4.1347 3.6354 3.3598 3.2719 3.3502

Remark 4.4. For adequate values of q and p, the PORT-MOP EVI–
estimators are able to outperform the MVRB and even the PORT-MVRB, in
some cases.
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5. AN ADAPTIVE CHOICE OF (k, p, q) AND CONCLUDING RE-
MARKS

Apart from heuristic choices based on sample path stability, similar to the
ones in Neves et al. (2015), we suggest the use of the double-bootstrap method-
ology, briefly described in the following Section.

5.1. Bootstrap adaptive PORT-MOP EVI-estimation

A reasonably sophisticated and time-consuming algorithm, that has proved
to work properly in many situations, is the double-bootstrap algorithm. The
basic framework for such algorithm is related to the fact that for any class of
EVI-estimators, generally denoted E(k),

(5.1) k0|E(n) = arg min
k

RMSE
(
E(k)

)
= kA|E(n)

(
1 + o(1)

)
,

with kA|E(n) := arg mink ARMSE
(
E(k)

)
and ARMSE standing for asymptotic

root mean square error. The bootstrap methodology can then enable us to consis-
tently estimate the optimal sample fraction, k0|E(n)/n, with k0|E(n) given in (5.1),
on the basis of a consistent estimator of kA|E(n), in a way similar to the one used
in Draisma et al. (1999), Danielson et al. (2001) and Gomes and Oliveira (2001),
for the classical adaptive Hill EVI-estimation, performed through H(k) ≡ H0(k),
in (1.4), in Brilhante et al. (2013), for the MOP EVI-estimation throught Hp(k),
in (1.5), in Gomes et al. (2011b, 2012), for second-order reduced-bias estimation,
and in Gomes et al. (2015) for the CH and PORT-CH EVI-estimation.

The bootstrap methodology is applied to sub-samples of size m1 = o(n)
and m2 = m2

1/n, is practically independent on m1 for an adequate PORT EVI-
estimation and it is essentially based on the relationship between the optimal
sample fraction of the EVI-estimator under consideration, and the one of the
auxiliary statistics

Tk,n ≡ T (k|E) := E([k/2])− E(k), k = 2, . . . , n− 1,

which converge in probability to the known value zero, for any intermediate k, and
have an asymptotic behaviour strongly related with the asymptotic behaviour of
E(k). For details, see Gomes et al. (2015), where an algorithm for the optimal
choice of (k, q) is provided for the PORT-MVRB EVI-estimators, in (2.11). In-
deed, for the adaptive choice of (k, p, q) based on minimal bootstrap RMSE, an
algorithm of the type of the one in Gomes et al. (2015) can be conceived with the
inclusion of the MOP and PORT-MOP together with the Hill, the PORT-Hill,
the MVRB and the PORT-MVRB. This is however a topic out of the scope of
this article.
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5.2. Overall comments

A few concluding remarks:

• For both mean values and RMSEs at optimal levels, and for all simulated
models, if we restrict ourselves to the region of values of p where we can
guarantee asymptotic normality, i.e. p < 1/(2ξ), the best results were ob-
tained for the value of p closer to 1/(2ξ), i.e. p = 2/(5ξ). The OMOP is
not at all competitive with the MOP, regarding both bias and MSE.

• For the simulated models, the MOP can clearly beat the MVRB, being
beaten by the MVRB only for Student-t2 parents. A similar comment
applies to the behaviour of the PORT-MOP comparatively to the PORT-
MVRB EVI-estimators.

• The improvement achieved with the use of the PORT-MOP EVI-estimation
can be highly significant, as illustrated. Indeed, the PORT-MOP can, for
an adequate (p, q) beat the MVRB EVI-estimators for all k, being often
able to beat the optimal PORT-MVRB. This is surely due to the small
increase in the variance and the high reduction of bias of the PORT-MOP
comparatively with the PORT-MVRB, a topic not yet investigated, due to
the deep involvement of a third-order framework.
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