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Abstract:

• We develop parametric and location-scale free tests of perfect judgment ranking based
on ordered ranked set samples. The tests are based on the differences between the
elements of the ordered ranked set samples and those of the original ranked set sam-
ples. We compare our proposed tests with the best existing tests of perfect judgment
ranking in the literature by using Monte Carlo simulation. Our simulation results
show that the proposed tests behave favorably in comparison with their leading com-
petitors, especially under the fraction of neighbor rankings model. In comparison to
the nonparametric competitors, the proposed tests have the advantage of not needing
randomization to attain a specific size.
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1. INTRODUCTION

When measuring variables of interest is expensive or time-consuming, but
ranking them in small groups without actual measurement is easy and convenient,
ranked set sampling (RSS) can be regarded as an efficient technique for collecting
more informative samples and therefore having more reliable inferences. This
sampling technique, which was firstly introduced by McIntyre (1952, 2005), can
be applied in both balanced and unbalanced strategies. In the balanced case, the
researcher first draws k random samples of size k and orders them based on his
personal judgment (not actual measurement). Then, for i = 1, . . . , k, he actually
measures the ith judgment ordered observation from the ith sample. Finally, he
repeats this procedure n times (cycles) in order to draw a sample of size kn
from a Balanced Ranked Set Sampling (BRSS) scheme. In Unbalanced Ranked
Set Sampling (UBRSS), the numbers of ith judgment ordered observations are
not necessarily the same anymore. A comprehensive review of works on RSS
including a comprehensive list of references can be found in Wolfe (2012).

Although many researchers have shown that a ranked set sample may allow
for more reliable inferences than a simple random sample of the same size, this
reliability decreases as errors in ranking observations based on personal judgment
occur. Frey et al. (2007) have exemplified how the ranking error can invalidate the
method of inference in both parametric and nonparametric cases. Therefore, it
seems to be vital to develop tests for assessing the assumption of perfect judgment
ranking for both parametric and nonparametric cases. Surprisingly, this has not
been done up to quite recently. Frey et al. (2007) and Li and Balakrishnan (2008)
independently proposed some nonparametric tests of perfect judgment ranking,
followed by Vock and Balakrishnan (2011), Zamanzade et al. (2012), Vock and
Balakrishnan (2013), Frey and Wang (2013), and Zamanzade et al. (2014).

This paper is organized as follows: In Section 2, we propose our tests of
perfect judgment ranking for one cycle, then, in the next section, we generalize
them to the multi-cycle case. In Section 4, we compare our proposed tests with
their leading competitors in the literature. Conclusions and some final remarks
are provided in Section 5.

2. INTRODUCTION OF TESTS STATISTICS

Let X[1], . . . , X[k] be a sample of size k from BRSS with one cycle, where X[i]

(i = 1, . . . , k) is the ith judgment ordered observation from the ith sample, which
is actually measured. It should be noted that the X[i]’s are independent from

each other and follow the distribution of an ith order statistic if the assumption
of perfect judgment ranking is completely satisfied. Furthermore, due to the
independence of the X[i]’s, P

(
X[i] < X[j]

)
< 1 for i < j and i, j ∈ {1, . . . , k},
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and this probability decreases as the judgment ranking becomes more and more
unreliable. So intuitively, it is expected that the two vectors

(
X[1], . . . , X[k]

)
and(

Z(1), . . . , Z(k)

)
are close to each other provided that the assumption of perfect

judgment ranking is completely satisfied, where
(
Z(1), . . . , Z(k)

)
is the vector of

Ordered Ranked Set Samples (ORSS) which is obtained by putting the values of(
X[1], . . . , X[k]

)
in order. Therefore if the underlying distribution of population

is completely known, then the following tests can be proposed for assessing the
assumption of perfect judgment ranking:

TA =

k∑
i=1

|di|
E|di|

;

TS =

k∑
i=1

d2i
Ed2i

;

where di = X[i]−Z(i), and E (.) is the expectation operator which is taken under
the assumption of perfect judgment ranking.

Intuitively, large values of TA, TS are a symptom of violation of the as-
sumption of perfect judgment ranking and therefore this assumption should be
rejected for large enough values of TA, TS.

If the underlying distribution of the population belongs to a location-scale
family, then the above test statistics can be simplified as follows:

TA =
k∑
i=1

|di|
σEµ=0,σ=1|di|

;

TS =

k∑
i=1

d2i
σ2Eµ=0,σ=1d2i

;

where µ, σ are location and scale parameters, respectively.

Obviously, the above test statistics are location-free, and they will be scale-
free if an equivariant estimator is used for the estimation of σ.

3. EXTENSION OF THE PROPOSED TESTS TO THE MULTI-
CYCLE CASE

Although several methods have been proposed in the literature for extend-
ing tests of perfect judgment ranking from the one-cycle to the multi-cycle case,
Zamanzade et al. (2012)’s simulation study has shown that their permutation-
based technique provides good results under many scenarios. So we use their
method to extend our tests to the multi-cycle case.

Suppose that
(
X[i]j

)
i≤k,j≤n is a sample of size of kn, which is drawn by

an n-cycle BRSS scheme, where X[i]j is the ith judgment ordered observation
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from the jth cycle (i = 1, . . . , k; j = 1, . . . , n). Since all observations are mu-
tually independent and the observations in each column are also identically dis-
tributed, it is expected that the vector of ordered observations in each row should
be close to the unordered row vector if we permute observations in each col-
umn, provided that the assumption of perfect judgment ranking is fully satisfied.
In other words, under the assumption of perfect judgment ranking, the vector(
X[1]l1 , X[2]l2 , X[3]l3 , . . . , X[k]lk

)
and the ordered vector of this vector, which is de-

noted here by
(
Z(1)l1l2...lk , Z(2)l1l2...lk , Z(3)l1l2...lk , . . . , Z(k)l1l2...lk

)
, should be close

to each other for all (l1, l2, l3, . . . , lk) ∈ {1, 2, 3, . . . , n}k.

Based on the above arguments, TA, TS can be extended to the multi-cycle
case as follows:

TPA =

nk∑
i=1

TAi,

TPS =
nk∑
i=1

TSi,

where TAi, TSi are the values of TA and TS, respectively, for the ith sample out
of all nk samples of the form

(
X[1]l1 , X[2]l2 , X[3]l3 , . . . , X[k]lk

)
, (l1, l2, l3, . . . , lk) ∈

{1, 2, 3, . . . , n}k.
We reject the hypothesis of perfect judgment ranking for large enough values of
TPA and TPS.

The calculation of TPA or TPS based on all nk samples of the form men-
tioned above is too time-consuming for practical application except for very small
values of k and n. We therefore propose a less intuitive, but more efficient way of
computing these statistics. R-code for the computation of TPA and TPS using
the following method is available on request from the authors.

For n cycles, with Ei = Eµ=0,σ=1|di|, TPA can be written as

TPA =
∑

(l1,...,lk)∈{1,...,n}k

k∑
i=1

∣∣X[i]li − Z(i)l1l2,...,lk

∣∣
σEi

=
k∑
i=1

1

σEi

n∑
li=1

∑
(l1,...,li−1,li+1,...,lk)∈{1,...,n}k−1

∣∣X[i]li − Z(i)l1l2...lk

∣∣
=

k∑
i=1

1

σEi

n∑
li=1

k∑
j=1

n∑
h=1

m (i, li, j, h)
∣∣X[i]li −X[j]h

∣∣
wherem (i, li, j, h) is the number of vectors (l1, . . . , li−1, li+1, . . . , lk) ∈ {1, . . . , n}k−1
such that the ith order statistic from X[1]l1 , . . . , X[k]lk is the jth judgment ordered

observation from the hth cycle. (A similar representation applies to TPS.) Since
for each judgment order rank, only one cycle is used, this implies that lj = h, and

m (i, li, j, h) is actually the number of vectors (lq)q∈{1,...,k}\{i,j} ∈ {1, . . . , n}k−2
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such that the ith order statistic from X[1]l1 , . . . , X[k]lk is the jth judgment ordered

observation from the hth cycle.

In the following, we assume that there are no ties. Since (1) m (i, li, j, h)
is 0 if i = j and li 6= h and (2) X[i]li − X[j]h = 0 if i = j and li = h, j can be
assumed to be different from i:

TPA =

k∑
i=1

1

σEi

n∑
li=1

k∑
j=1

j 6=i

n∑
h=1

m (i, li, j, h)
∣∣X[i]li −X[j]h

∣∣ .
We therefore only need the values of m (i, li, j, h) for i 6= j. For i = 1, . . . , k, let
a (i, j, h) be the number of observations in the ith judgment-order stratum that
are smaller than X[j]h,

a (i, j, h) = #
{
l ∈ {1, . . . , n} : X[i]l < X[j]h

}
.

Then, by using the fact that exactly i− 1 observations from X[1]l1 , . . . , X[k]lk (of

which X[i]li may be one or not) have to be smaller than the ith order statistic
from X[1]l1 , . . . , X[k]lk ,

m (i, li, j, h) = #

{
(lq)q∈{1,...,k}\{i,j} ∈ {1, . . . , n}k−2 :

∑
q∈{1,...,k}\{i,j}

I(X[q]lq < X[j]h) = i− 1− I(X[i]li < X[j]h)

}

=
∑

Q⊂{1,...,k}\{i,j}
#Q=i−1−I(X[i]li

<X[j]h)

∏
q∈Q

a (q, j, h)
∏
q 6∈Q

(n− a (q, j, h))

where I(.) is the indicator function.

The a (i, j, h)’s can be calculated efficiently by going through all kn observed
values X[j]h in increasing order and using the fact that a (i, j∗, h∗) = 0 (for i =
1, . . . , k) if X[j∗]h∗ is the smallest value from the sample, as well as the following
recursions, where X[j]h and X[j′]h′ are assumed to be two successive values of the
ordered sample:

a(i, j′, h′) =

{
a(i, j, h) + 1 if i = j,

a(i, j, h) if i 6= j.

E.g., for k = n = 8, this approach for the computation of TPA and TPS re-
sulted in a reduction of the computation time by a factor of approximately 1200
compared to the original algorithm.
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4. POWER COMPARISON

In this section, we compare the power of our proposed tests with their
leading competitors in the literature under the assumption that the parent dis-
tribution is normal. The competing tests considered here are as follows:

• Nonparametric test based on W ∗ developed by Frey et al. (2007),
which rejects the hypothesis of perfect judgment ranking when W ∗ =∑k

i=1

∑n
j=1 iR[i]j is too small, where R[i]j is the rank of X[i]j among all

kn observations.

• Nonparametric test based on the null probability (NP) developed by Frey
et al. (2007), which rejects the hypothesis of perfect judgment ranking when
the null probability of observing set rank

{
R[i]j

}
is too small.

• Nonparametric test based on J developed by Vock and Balakrishnan
(2011), which rejects the hypothesis of perfect judgment ranking when J =∑n

h=1

∑n
l=1

∑k−1
i=1

∑k
j=i+1 I

(
X[i]l > X[j]h

)
is too large.

• Nonparametric test based on PA developed by Zamanzade et al. (2012),
which rejects the hypothesis of perfect judgment ranking when PA =∑nk

h=1

∑k
i=1

∣∣∣R∗[i]h − i∣∣∣ is too large, where R∗[i]h is the rank of the ith judg-

ment ordered observation in the hth permuted sample introduced in Section
3.

• Parametric test based on D developed by Zamanzade et al. (2014),
which rejects the hypothesis of perfect judgment ranking when D =∑n

h=1

∑n
l=1

∑k−1
i=1

∑k
j=i+1

(X[i]l−X[j]h)I(X[i]l>X[j]h)
Eµ=0,σ=1((X[i]l−X[j]h)I(X[i]l>X[j]h))

is too large,

where µ, σ are location and scale parameters, respectively.

• Most powerful rank test (MP) developed by Frey and Wang (2013). In
this test, it is assumed that the alternative hypothesis of perfect judgment
ranking is fully specified, i.e. the underlying distribution of the population,
the scenario of imperfect ranking, and the fraction of imperfect ranking
are all completely known. Then the null hypothesis is rejected when r =
PH1

(W1<W2<...<WN )

PH0
(W1<W2<...<WN ) is too large, where Wi has the same distribution as the

in-set rank of the observation with rank i among all the N = kn measured
values.

We assume that the parent distribution is normal with unknown mean
µ and unknown variance σ2. We don’t need to estimate the parameter µ be-
cause the proposed tests are location free. The parameter σ is estimated by σ̂ =√

1
k−1

∑k
i=1

(
X[i] − X̄

)2
for n = 1 due to Stokes (1980) and by σ̂ =√(

1
nk + 1

nk2(n−1)

)∑k
i=1

∑n
j=1

(
X[i]j − X̄[i].

)2
+ 1

k

∑k
i=1

(
X̄[i]. − X̄

)2
for n > 1 as
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proposed by MacEachern et al. (2002) and Perron and Sinha (2004), where X̄[i]. is
the mean of the observations with judgment rank i. Obviously, these estimators
of σ are equivariant and the resulting test statistics (denoted by T̂PA, T̂PS and
D̂) are scale invariant. Therefore, the critical values and powers of tests based

on T̂PA, T̂PS and D̂ don’t depend on the unknown parameters µ and σ. The
expected values E

(
d2i
)

and E |di| and critical values of the tests based on T̂PA

and T̂PS under the assumption of normality are available on request from the
authors.

In our simulation study, the comparisons are done at a significance level
of α = 0.05. However, due to the discreteness of the distribution of the non-
parametric test statistics, it is not possible to attain an exact size of α = 0.05
without randomizing. Therefore, we have used the randomized versions of those
tests to make all comparisons at size α = 0.05. For example, for n = 1 and k = 5,
under the assumption of perfect ranking, J ≥ 4 with null probability 0.03345,
and J ≥ 3 with null probability 0.12687. Thus in order to attain the significance
level α = 0.05 in a randomized test based on J , H0 is rejected with probability
one if J ≥ 4 and with probability 0.05−0.03345

0.12687−0.03345 = 0.177 if J = 3.

We have used two different scenarios of imperfect ranking, which have been
used by many researchers in the literature. The first scenario is the bivariate
normal model, due to Dell and Clutter (1972), in which the variable of interest
X is ordered by using a concomitant variable Y , where (X,Y ) has a bivariate
normal distribution with correlation coefficient λ.

The second scenario is that of a fraction of neighbor rankings, developed
by Vock and Balakrishnan (2011), in which the ith judgment ordered observation
is either ranked perfectly with probability λ, or is confused with the (i+ 1)th or
(i− 1)th ordered observation, both with probability λ

2 , therefore the distribution

of the ith judgment ordered observation under this scenario is F[i] = λ
2F(i−1) +

(1− λ)F(i) + λ
2F(i+1), where F(0) = F(1), F(k+1) = F(k). This imperfect ranking

model could arise when the ranking process is done by using personal judgment
of an expert ranker, so he may confuse the true order statistic with an adjacent
one.

For power comparisons, we have extended Tables 3 and 6 of Frey and Wang
(2013) to all tests introduced above and larger values of (n, k) by using Monte
Carlo simulation with 100,000 repetitions. The simulation results are presented
in Tables 1–2. It should be noted that in the following tables the powers of the
tests based on MP, NP, W ∗, J for (n, k) = (8, 2), (4, 3), (2, 4), (1, 5) are directly
reported from Tables 3 and 6 of Frey and Wang (2013). Furthermore, we haven’t
estimated the power of the MP test for (n, k) = (4, 5), (5, 4), since this test is only
applicable for small sample sizes and small set sizes because of its computational
limitations.

Table 1 gives power results for the bivariate normal model. It is apparent
from this table that although the NP test is the most powerful among the non-
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k n λ T̂PS T̂PA D̂ MP NP W ∗ J PA
(new) (new) (Z. et (Frey (Frey (Frey (V. (Z.

al., and et al., et al., and et al.,
2014) Wang, 2007) 2007) Balakr., 2012)

2013) 2011)

2 8 0.9 .1047 .1042 .1060 .1019 .1018 .1000 .1000 .1000
0.8 .1880 .1815 .1815 .1722 .1720 .1676 .1676 .1676
0.7 .2715 .2715 .2710 .2566 .2563 .2490 .2490 .2490
0.6 .3679 .3642 .3671 .3496 .3493 .3394 .3394 .3394
0.5 .4656 .4694 .4678 .4458 .4456 .4337 .4337 .4337

3 4 0.9 .1265 .1384 .1302 .1317 .1316 .1294 .1289 .1271
0.8 .2400 .2465 .2487 .2401 .2400 .2346 .2336 .2344
0.7 .3599 .3729 .3628 .3596 .3594 .3509 .3496 .3515
0.6 .4678 .4858 .4947 .4777 .4776 .4669 .4655 .4625
0.5 .5891 .6002 .5959 .5867 .5866 .5748 .5783 .5734

4 2 0.9 .1405 .1425 .1509 .1491 .1420 .1403 .1372 .1398
0.8 .2599 .2556 .2663 .2555 .2553 .2511 .2448 .2477
0.7 .3678 .3894 .3882 .3720 .3718 .3653 .3568 .3613
0.6 .4776 .4811 .4984 .4819 .4818 .4737 .4640 .4697
0.5 .5763 .5808 .6006 .5808 .5806 .5718 .5617 .5650

5 1 0.9 .1367 .1365 .1485 .1366 .1363 .1358 .1283 .1254
0.8 .2413 .2355 .2582 .2335 .2332 .2316 .2174 .2113
0.7 .3428 .3335 .3658 .3287 .3287 .3260 .3071 .2960
0.6 .4345 .4242 .4615 .4182 .4182 .4147 .3929 .3779
0.5 .5213 .5103 .5456 .5003 .5003 .4962 .4731 .4532

5 4 0.9 .2697 .2681 .2843 – .2969 .2866 .2845 .2846
0.8 .5471 .5437 .5538 – .5811 .5649 .5625 .5632
0.7 .7590 .7577 .7541 – .7820 .7665 .7651 .7648
0.6 .8841 .8841 .8733 – .8934 .8818 .8819 .8816
0.5 .9494 .9395 .9380 – .9506 .9436 .9434 .9436

4 5 0.9 .2247 .2286 .2181 – .2261 .2224 .2231 .2182
0.8 .4508 .4664 .4387 – .4618 .4520 .4523 .4462
0.7 .6446 .6633 .6354 – .6634 .6526 .6536 .6469
0.6 .7880 .8058 .7831 – .8022 .7910 .7927 .7884
0.5 .8943 .8945 .8785 – .8944 .8846 .8873 .8846

Partially reprinted from Computational Statistics and Data Analysis, Vol. 60, J. Frey
and L. Wang, Most powerful rank tests for perfect rankings, Table 3, p. 163, Copyright
2012, with permission from Elsevier.

Table 1: Power estimates of different level 0.05 tests, under the concomi-
tant model with correlation coefficient λ.

parametric tests, the powers of the test based on W ∗ are quite close to it. On
the other hand, the proposed tests and the test based on D̂ have the best powers
in this scenario, and the differences between their powers are not considerable.

Powers of the tests for the scenario of neighbor rankings are presented in
Table 2. This table shows that the test based on PA and the NP test are the best
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k n λ T̂PS T̂PA D̂ MP NP W ∗ J PA
(new) (new) (Z. et (Frey (Frey (Frey (V. (Z.

al., and et al., et al., and et al.,
2014) Wang, 2007) 2007) Balakr., 2012)

2013) 2011)

2 8 0.2 .1943 .1868 .1862 .1775 .1706 .1590 .1590 .1590
0.4 .3791 .3796 .3731 .3499 .3444 .3243 .3243 .3243
0.6 .5689 .5694 .5666 .5369 .5345 .5134 .5134 .5134
0.8 .7328 .7358 .7350 .7066 .7062 .6897 .6897 .6897
1 .8486 .8587 .8573 .8377 .8377 .8275 .8275 .8275

3 4 0.2 .1349 .1369 .1249 .1285 .1248 .1189 .1201 .1212
0.4 .2483 .2524 .2164 .2371 .2266 .2122 .2173 .2206
0.6 .3985 .4057 .3287 .3679 .3475 .3230 .3345 .3450
0.8 .5157 .5324 .4484 .5085 .4771 .4432 .4622 .4789
1 .6481 .6684 .5571 .6453 .6048 .5640 .5899 .6092

4 2 0.2 .1064 .1065 .0965 .0976 .0956 .0932 .0928 .0975
0.4 .1755 .1774 .1508 .1581 .1514 .1447 .1456 .1516
0.6 .2532 .2593 .2112 .2307 .2159 .2034 .2070 .2223
0.8 .3416 .3514 .2774 .3136 .2875 .2678 .2757 .2987
1 .4321 .4495 .3474 .4041 .3643 .3367 .3500 .3822

5 1 0.2 .0854 .0865 .0804 .0785 .0772 .0766 .0757 .0763
0.4 .1275 .1282 .1156 .1109 .1066 .1051 .1040 .1064
0.6 .1729 .1759 .1511 .1473 .1381 .1354 .1346 .1387
0.8 .2210 .2255 .1887 .1878 .1713 .1673 .1673 .1733
1 .2736 .2818 .2311 .2218 .2061 .2007 .2016 .2119

5 4 0.2 .1454 .1468 .1155 – .1277 .1166 .1199 .1226
0.4 .2733 .2799 .1983 – .2326 .2041 .2163 .2259
0.6 .4220 .4248 .2885 – .3620 .3098 .3365 .3563
0.8 .5664 .5791 .3877 – .4959 .4266 .4668 .4954
1 .7003 .7196 .4908 – .6262 .5441 .5963 .6324

4 5 0.2 .1584 .1544 .1275 – .1408 .1309 .1347 .1334
0.4 .3072 .3051 .2260 – .2661 .2381 .2515 .2562
0.6 .4673 .4757 .3396 – .4209 .3741 .4009 .4126
0.8 .6299 .6441 .4625 – .5750 .5123 .5537 .5716
1 .7669 .7868 .5844 – .7137 .6446 .6937 .7167

Partially reprinted from Computational Statistics and Data Analysis, Vol. 60, J. Frey
and L. Wang, Most powerful rank tests for perfect rankings, Table 6, p. 165, Copyright
2012, with permission from Elsevier.

Table 2: Power estimates of different level 0.05 tests, under a fraction λ
of neighbor rankings under assumption of normality.

nonparametric tests. The test based on T̂PA is the most powerful test for this
imperfect ranking scenario, while the powers of the test based on T̂PS are quite
close. It is worth mentioning that in this scenario, the power difference among
the proposed tests and the other tests are considerable in most cases.
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The simulation study was also performed for two more imperfect ranking
models (fraction of inverse rankings and fraction of random rankings; see, e.g.,
Zamanzade et al., 2014) as well as under the assumption of an exponential instead
of a normal distribution. We do not report these simulation results due to space
restrictions. However, they are available on request from the authors.

Remark 4.1. It is important to notice that the proposed tests have the
advantage that randomization is not needed to obtain the tests of a specific size.
For the nonparametric tests and the MP test, randomization is used in the simula-
tions for a more meaningful power comparison, but when using a non-randomized
version of these tests in practice, the power will be lower. For example, in the
bivariate normal model, for n = 1, k = 5, and λ = 0.5, the estimated powers
(based on 100000 repetitions) of non-randomized nonparametric tests using NP,
W ∗, J , and PA at a nominal level of α = 0.05 are 0.460, 0.460, 0.435, and 0.316,
respectively, which are lower that their reported values in Table 1, where the
randomized tests are used.

Remark 4.2. It is worth mentioning that although the MP test has
reasonably good powers in most cases, the application of this test is too restricted
in practice. It should be noted that this test can only be used in practice if the
underlying distribution of the population, the scenario of imperfect ranking and
the fraction of imperfect rankings (λ) are all completely known. Since these
conditions, especially the last one, are hardly conceivable to be satisfied, this test
cannot be used in many parametrical situations in practice.

5. CONCLUSION

In this paper, we developed two parametric and location-scale free tests of
perfect judgment ranking based on ordered ranked set samples. Our tests are
based on the idea that if the assumption of perfect ranking is satisfied, then the
difference between ranked set samples and ordered ranked set samples should
be small. Then we generalized our proposed tests to the multi-cycle case of
BRSS. Finally, we compared our tests with their best known competitors in the
literature. Our power comparisons indicate that the proposed tests have good
performance in comparison with their leading competitors, especially under the
fraction of neighbor rankings model.

It is worth mentioning that although we confine ourselves to the balanced
ranked set samples, the proposed tests can straightforwardly be generalized to
the unbalanced case.
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