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1 INTRODUCTION

The probability density function (pdf) of the log-logistic distribution with unit
scale parameter is given by

(1.1) f(x) =
αxα−1

(1 + xα)2
, x ≥ 0,

where α is a positive real number. A random variable X that follows the density
function in (1.1) is denoted as X ∼ log-logistic(α). The cumulative distribution
(cdf) and quantile functions of the log-logistic distribution, respectively, are

(1.2) F (x) =
xα

1 + xα
, x ≥ 0.

and

(1.3) F−1(x) =

(
x

1− x

)1/α

, 0 < x < 1.

The kth moments of the log-logistic distribution in (1.1) can be easily computed
as

(1.4) µ′k = B

(
1− k

α
, 1 +

k

α

)
,

where B(., .) is the beta function.
Note that the kth moment exists iff α > k. A more compact form of (1.4) can be
derived using the fact that Γ(z) Γ(1− z) = π csc (π z) (Abramowitz and Stegun,
1964) as follows

(1.5) µ′k = Γ(1− k/α) Γ(1 + k/α) =
kπ

α
csc

kπ

α
, α > k.

Therefore, E(X) = (π/α) csc (π/α) and V ar(X) = (π/α){2 csc (2π/α)−(π/α) csc2 (π/α)}.

The log-logistic distribution is a well-known distribution and it is used in
different fields of study such as survival analysis, hydrology and economy. For
some applications of the log-logistic distribution we refer the reader to Shoukri
et al.[23], Bennett [10], Collet [11] and Ashkar and Mahdi [7]. It is also known
that the log-logistic distribution provides good approximation to the normal and



4 Mohammad Ahsanullah and Ayman Alzaatreh

the log-normal distributions. The log-logistic distribution has been studied by
many researchers such as Shah and Dave [22], Tadikamalla and Johnson [24],
Ragab and Green [21], Voorn [25] and Ali and Khan [4]. Ragab and Green [21]
studied some properties of the order statistics from the log-logistic distribution.
Ali and Khan [4] obtained several recurrence relations for the moments of order
statistics. Voorn [25] characterized the log-logistic distribution based on extreme
related stability with random sample size. In this paper, we discuss the moments
of order statistics for the log-logistic distribution. We review some known results
and provide a more compact expression for calculating the covariance between
two order statistics. Also, we discuss the parameter estimation of the log-logistic
distribution based on order statistics.

2 SOME RESULTS FOR THE MOMENTS OF OR-
DER STATISTICS

Let X1, X2, ..., Xn be n independent copies of a random variable X that follows
log-logistic(α). Let X1,n ≤ X2,n ≤ ... ≤ Xn,n be the corresponding order statistics.
Then from (1.1) and (1.2), the pdf of the rth order statistics is given by

(2.1) fr:n(x) = Cr:n
αxαr−1

(1 + xα)n+1
, x ≥ 0,

where Cr:n = n!
(r−1)!(n−r)! .

The kth moments of Xr:n can be easily derived from (2.1) as

(2.2) α(k)
r:n = Cr:nB

(
n− r + 1− k

α
, r +

k

α

)
, α > k,

Similarly as in (1.5), one can show that

(2.3) α(k)
r:n =

(−1)rπ csc kπ
α

(r − 1)!(n− r)!

n∏
i=1

(
i− r − k

α

)
, α > k.

Note that when r = n = 1, α
(k)
1:1 = B

(
1− k

α , 1 + k
α

)
which agrees with (1.4).

From (2.2), the first and second moments of Xr:n are, respectively, given by

(2.4) α(1)
r:n =

(−1)rπ csc π
α

(r − 1)!(n− r)!

n∏
i=1

(
i− r − 1

α

)
, α > 1,
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and

(2.5) α(2)
r:n =

(−1)rπ csc 2π
α

(r − 1)!(n− r)!

n∏
i=1

(
i− r − 2

α

)
, α > 2.

It is interesting to note that (2.3) can be used easily to derive several re-
currence relations for the moments of order statistics. Some of these recurrence
relations already exist in the literature. Below, we provide some of these recur-
rence relations.

I. From (2.3), we can write

α(k)
r:n =

−1

r − 1

(−1)r−1π csc kπ
α

(r − 2)!(n− r)!

n−1∏
i=0

(
i− (r − 1)− k

α

)

=
r − 1 + k/α

r − 1

(−1)r−1π csc kπ
α

(r − 2)!(n− r)!

n−1∏
i=1

(
i− (r − 1)− k

α

)
=

[
1 +

k

α(r − 1)

]
α
(k)
r−1:n−1, 2 ≤ r ≤ n.(2.6)

Note that the recurrence relation in (2.6) was first appeared in Ragab and
Green (1984).

II. If r = 1 in (2.3), then

α
(k)
1:n =

−π csc kπ
α

(n− 1)(n− 2)!

(
n− 1− k

α

) n−1∏
i=1

(
i− 1− k

α

)
=

[
1− k

α(n− 1)

]
α
(k)
1:n−1, n ≥ 2.(2.7)

The recurrence relation in (2.7) first appeared in Ali and Khan (1987).

III. For m ∈ N, (2.3) implies

α(k−mα)
r:n =

(−1)rπ csc
(
k
α −m

)
π

(r − 1)!(n− r)!

n∏
i=1

(
i− r − k

α
+m

)

=
(r −m− 1)!(n− r +m)!

(r − 1)!(n− r)!
(−1)r−mπ csc kπ

α

(r −m− 1)!(n− r +m)!

n∏
i=1

(
i− (r −m)− k

α

)
=

(r −m− 1)!(n− r +m)!

(r − 1)!(n− r)!
α
(k)
r−m:n, m+ 1 ≤ r ≤ n.(2.8)

When m = 1, (2.8) reduces to the recurrence relation given by Ali and

Khan (1987) as α
(k−α)
r:n = n−r+1

r−1 α
(k)
r−1:n, 2 ≤ r ≤ n.
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IV. Another form of (2.8) can be derived as follows

α(k−mα)
r:n =

(−1)r+mπ csc kπ
α

(r − 1)!(n− r)!

n∏
i=1

(
i+m− r − k

α

)

=
(−1)r+mπ csc kπ

α

(r − 1)!(n− r)!

n+m∏
i=m+1

(
i− r − k

α

)

=
(−1)m

∏n+m
i=n+1

(
i− r − k

α

)∏m
i=1

(
i− r − k

α

) α(k)
r:n, m+ 1 ≤ r ≤ n.(2.9)

V. From (2.8) and (2.9), we get
(2.10)

α(k)
r:n =

(−1)m (r −m− 1)!(n− r +m)!
∏m
i=1

(
i− r − k

α

)
(r − 1)!(n− r)!

∏n+m
i=n+1

(
i− r − k

α

) α
(k)
r−m:n, m+1 ≤ r ≤ n.

3 COVARIANCE BETWEEN ORDER STATISTICS

To calculate the covariance between Xr:n and Xs:n, consider the joint pdf of Xr:n

and Xs:n, 1 ≤ r < s ≤ n as follows

(3.1) fr,s:n(x, y) = α2Cr,s:n
xαr−1yα−1(yα − xα)s−r−1

(1 + xα)s(1 + yα)n−r+1
, 0 ≤ x ≤ y <∞,

where Cr,s:n = n!
(r−1)!(s−r−1)!(n−s)! .

Therefore the product moments, αr,s:n = E(Xr:nYs:n), can be written as

(3.2) αr,s:n = α2Cr,s:n

∫ ∞
0

∫ y

0

xαryα(yα − xα)s−r−1

(1 + xα)s(1 + yα)n−r+1
dxdy.

On using the substitution u = xα and v = yα, (3.2) reduces to

(3.3) αr,s:n = Cr,s:n

∫ ∞
0

v
1
α

(1 + v)n−r+1

(∫ v

0

ur+
1
α
−1(v − u)s−r−1

(1 + u)s
du

)
︸ ︷︷ ︸

I

dv.

By using the substitution t = u
v , it is not difficult to show that I can be simplified

to

(3.4) I = vs+
1
α
−1B

(
r +

1

α
, s− r

)
2F1

(
s, r +

1

α
, s+

1

α
;−v

)
,

where pFq is the generalized hypergeometric function defined as

pFq(a1, . . . , ap; b1, . . . , bq;x) =

∞∑
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

xk

n!
.
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Using the Pfaff transformation, 2F1(a, b; c;x) = (1− x)−a 2F1(a, c− b; c; x
x−1), we

have

(3.5) 2F1

(
s, r +

1

α
, s+

1

α
;−v

)
= (1 + v)−r−

1
α 2F1

(
1

α
, r +

1

α
, s+

1

α
;

v

1 + v

)
.

Now, using (3.4), (3.5) and the substitution w = v
1+v , (3.3) reduces to

(3.6)

αr,s:n = Cr,s:nB

(
r +

1

α
, s− r

)∫ 1

0
ws+

2
α
−1(1−w)n−s−

1
α 2F1

(
1

α
, r +

1

α
, s+

1

α
;w

)
.

On using the identity [Gradshteyn and Ryzhik, [14], p.813]∫ 1

0
xρ−1(1− x)σ−1 2F1(α, β, γ;x)dx = B(ρ, σ)3F2(α, β, ρ; γ, ρ+ σ; 1),

the product moments of the log-logistic distribution can be written as

(3.7)

αr,s:n = Cr,s:nB

(
r +

1

α
, s− r

)
B

(
s+

2

α
, n− s− 1

α
+ 1

)
3F2

(
1

α
, r +

1

α
, s+

2

α
; s+

1

α
, n+

1

α
+ 1; 1

)
.

It is clear from (3.7) that αr,s:n exists for all α > 1.

It is noteworthy to mention that one can use some existing recurrence
relations in the literature to compute αr,s:n in a more efficient way. For example,
Joshi and Balakrishnan (1982) show that for any continuous distribution, the
following recurrence relation holds

αr,n:n =
n−r∑
i=1

(−1)n−r−i
(

n

n− i

)(
n− i− 1

r − 1

)
αn−i:n−iαi:i

−
r−1∑
`=0

(−1)n−`
(
n

`

)
α1,n−r+1:n−`, 1 ≤ r ≤ n− 1.(3.8)

Also, Ali and Khan (1987) show the following recurrence relation for the log-
logistic distribution,

αr,s:n = αr,s−1:n +

(
n

n− s+ 1

)(
1− 1

α(n− s)

)
αr,s:n−1

− n

n− s+ 1
αr,s−1:n−1, 1 ≤ r < s ≤ n− 1.(3.9)

The covariance βr,s:n = αr,s:n − αr:n αs:n, can be obtained from equations (2.4),
(2.5) and (3.7). Note that when r = s, the variances βr,r:n = α2

r:n − (αr:n)2.The
recurrence relations in (23) and (24) can be also used in these calculations.
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4 PARAMETER ESTIMATION FOR THE LOG-LOGISTIC
DISTRIBUTION

In this section, we discuss the parameter estimation for the log-logistic distribu-
tion based on order statistics.

4.1 Estimation of location and scale parameters

Let Y1, Y2,. . . ,Yn be a random sample of size n from the log-logistic(α, θ1, θ2),
where θ1 is the location parameter and θ2 > 0 is the scale parameter. I.e.

f(y) = α θ−12

(
y−θ1
θ2

)α−1 (
1 +

(
y−θ1
θ2

)α)−2
, y ≥ θ1. In this section, we com-

pute the best linear unbiased estimators (BLUEs) for θ1 and θ2 when the shape
parameter α is known. Let X = (Y − θ1)/θ2. When α is known, the mean, αr:n,
and the covariance, βr,s:n, of order statistics are completely known and free of
parameters. The estimators for θ1 and θ2 are derived based on weighted regres-
sion on the quantile-quantile plot of order statistics against their expected value.
The weights depend on the covariance matrix of the order statistics. The esti-
mations of location and scale parameters based on order statistics were originally
introduced by Lloyd [20]. Several authors including Arnold et al ([6], p.17) and
Ahsanullah et al. ([3], p.154) used Lloyds method to obtain best linear unbiased
estimator (BLUE) of the location and scale parameters for probability distribu-
tions. The BLUEs of θ1 and θ2 can be computed as follows [see Arnold et al.([6],
pp. 171-1-73) and Ahsanullah et al. ([3], p. 154)]

θ̂ = (A′Σ−1A)−1A′Σ−1 Y ,

where A′ denotes to the transpose of A, A = (1,µ), 1 = (1, 1, . . . , 1)′1×n, µ =

(α1:n, α2:n, . . . , αn:n)′, θ̂ = (θ̂1, θ̂2)
′,Σ = ((βr,s:n))n×n and Y = (Y1:n, Y2:n, . . . , Yn:n)′.

Alternatively,

θ̂1 = −µ′ ΓY and θ̂2 = 1′ ΓY ,

where Γ = Σ−1(1µ′−µ1′)Σ−1/∆ and ∆ = (1′Σ−11)(µ′Σ−1µ)−(1′Σ−1µ)2.
The coefficient matrix C = (A′Σ−1A)−1A′Σ−1 can be obtained using αr:n,

α
(2)
r:n, αr,s:n and βr,s:n from previous section. The covariance matrix of the esti-

mators can be computed in terms of θ2 as follows

(4.1) Cov(θ̂) = (A′Σ−1A)−1θ22.



Parameter estimation for the log-logistic distribution 9

In particular,

var(θ̂1) = θ22µ
′Σ−1µ/∆,

var(θ̂2) = θ221
′Σ−1 1/∆,

Cov(θ̂1, θ̂2) = −θ22µ′Σ−11/∆.

Equation (4.1) is used to compute the variance and covariance of θ̂1 and θ̂2 in
terms of θ2. The coefficients and covariances for computing the BLUE of θ̂ for
various values of the shape parameter α and sample sizes up to 10 are available
on https://sites.google.com/site/statisticsmanagementservices/.

4.2 Estimation of the shape parameter

In real life situations, we encounter unknown value for the shape parameter α. In
order to use the The BLUEs for θ1 and θ2, we first estimate the shape parameter
α.

Lemma 4.1. The log-logistic distribution is a member of the Pareto-
type distributions with tail index α.

Proof: Note that 1− F (x) = 1
1+xα = x−α`(x), where `(x) = 1− x−α +

x−2α + . . . is slowly varying function at infinity. To see this, for any λ > 0,
`(λx)
`(x) −→ 1 as x −→ ∞. Hence F (x) constitutes a Pareto-type distribution with

tail index α.

Several estimators for the heavy tail index α exist in the literature. For example,
a family of kernel estimators for α was proposed by Csorgo, Deheuvels and Mason
[12]. Bacro and Brito [8] and De Hann [13] proposed estimators for α which are
members of the family of kernel estimators. For more information, we refer the
reader to the paper by Beirlant et al. [9] and Gomes and Henriques-Rodrigues
[17]. The most popular estimator for α is the Hill estimator proposed by Hill [18]
as follows:
Let X1, X2, ..., Xn be n independent random sample from log-logistic(α, θ1, θ2).
Let X1,n ≤ X2,n ≤ ... ≤ Xn,n be the corresponding order statistics. The Hill
estimator for α based on upper k order statistics is given by

(4.2) α̂ =
1

Hk,n
, Hk,n =

1

k

k∑
j=1

log
Xn−j+1,n

Xn−k,n
.

Although the Hill estimator is scale invariant, it is not shift invariant. Aban and
Meerschaert [1] proposed a modification of Hill estimator in order to make it both
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shift and scale invariant as follows:

α̂−1 =
1

k

k∑
j=1

log
Xn−j+1,n − ŝ
Xn−k,n − ŝ

,

where the sift ŝ satisfies the equation

α̂(Xn−k,n − ŝ)−1 =
α̂+ 1

k

k∑
j=1

(Xn−j+1,n − ŝ)−1, ŝ < Xn−k,n.

In general, the modified Hill estimator results in large variation of the sam-
pling distribution in compared with the Hill estimator. In our case, based on
various simulated random samples with different sample sizes from X ∼ log-
logistic(α, θ1, θ2), the modified Hill estimator produces poor estimate for the pa-
rameter α. Therefore, we decided to shift the random sample by the sample
minimum, X1,n, and then use the Hill estimator to estimate α. This is justified
since the lower end of the distribution is finite. For an interesting discussion of
this topic see Araujo-Santos et al. [5] and Gomes et al. [15]. The results showed
good estimate to the shape parameter α (see Table 1).

4.3 Monte Carlo simulation study

In this subsection, we generate different random samples with various sizes, n =
100, 500, 1, 000 and 10, 000. The simulation study is repeated 1,000 times for four
groups of parameters:

I : α = 0.5, θ1 = 1, θ2 = 1,

II : α = 1.5, θ1 = 0, θ2 = 1,

III : α = 2.5, θ1 = 2, θ2 = 3,

IV : α = 4, θ1 = 2, θ2 = 0.5.

For each parameter combination, we generate random samples, Yi, i = 1, . . . , n
from log-logistic(α, θ1, θ2). We assume the random sample Xi = Yi − Y1,n follows
log-logistic(α, 0, θ2). Then we estimate α using the Hill estimator in equation
(4.2). Gomes and Guillou [16] have given an interesting discussion about the
choice of k. It is known that the bias of the estimator of the index parameter
increases as k increases and the variance of the index estimator increases if k is
small. The choice of k is a question between the choice of bias and variance. We
have taken k = 10% of the sample size with n > 100. The simulation results in
Table (1) show that as the parameter α increases, the absolute bias and standard
deviation increase. Overall, the Hill estimator performs well in estimating the
shape parameter α. Figures 1−4 represent the Boxplots for the observed sampling
distributions of the Hill estimate for different sample sizes. These Figures indicate
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Group I Group II Group III Group IV

Sample Size Summary Statistics α̂ α̂ α̂ α̂

100 Median 0.4881 1.4539 2.3275 3.3510
Mean 0.5158 1.5371 2.4615 3.5460
Standard Deviation 0.1716 0.5094 0.8067 1.1494

500 Median 0.4771 1.4287 2.3320 3.4810
Mean 0.4827 1.4450 2.3600 3.5150
Standard Deviation 0.0690 0.2063 0.3350 0.4995

1000 Median 0.4758 1.4256 2.3390 3.5260
Mean 0.4786 1.4342 2.3540 3.5460
Standard Deviation 0.0473 0.1418 0.2330 0.3584

10000 Median 0.4750 1.4246 2.3580 3.6438
Mean 0.4754 1.4258 2.3616 3.6460
Standard Deviation 0.0147 0.0441 0.0733 0.1211

Table 1: Mean, median and standard deviation for α̂ using the Hill estimate

that the observed distributions are approximately normal and centered roughly
at α−1.
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Figure 1: Boxplots for the observed sampling distributions of α̂−1

Dashed line represents the true parameter α−1

4.4 Numerical Example

In this subsection, we illustrate the use of Hill estimator and the BLUE’s for
estimating the three-parameter log-logistic distribution. We simulate a random
sample with n = 30 observations from log-logistic distribution with parameters
α = 4, θ1 = 2 and θ2 = 3. The simulated data is given below

5.80310, 6.88820, 6.00730, 7.01140, 4.87250, 4.00560, 4.49970, 5.02880, 5.83690,
11.40110, 3.30511, 3.95312, 5.87513, 2.55114, 4.68615, 4.88916, 4.67717, 4.71818,
4.05190, 8.31920, 4.86421, 4.50422, 8.89623, 5.74124, 5.48125, 4.68226, 5.70127,
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5.13528, 4.20729, 4.95430

Using similar approach as in subsection 4.3, the estimated value of α based on
the Hill estimator is α̂ = 3.350. Based on this value and the sample size of
n = 30, the coefficient matrix, C = (A′Σ−1A)−1A′Σ−1, and the covariance,

Cov(θ̂) = (A′Σ−1A)−1θ22, can be calculated using αr:n, α
(2)
r:n, αr,s:n in equations

(9), (10) and (22) respectively. These coefficients for computing the BLUE’s for
θ1 and θ2 and the covariance matrix are provided below.

Cθ1 =



0.6077
0.25102
−0.08301
0.66281
−0.17817
−0.09813
0.27104
−0.02089

0.0082
0.07347
−0.18869
0.48597
−0.09435
−0.48662
−0.0126
0.51641
−0.302
0.43571
−0.66808

0.0207
0.11805
−0.16527
0.00062
−0.01915
−0.07406
0.00442
−0.00919
−0.04542
−0.00744
−0.00303



Cθ2 =



−0.63961
−0.23399
0.09682
−0.64294
0.15847
−0.01285
0.12400
0.00067
−0.00583
−0.01679
0.15861
−0.09637
0.00875
0.44036
0.02531
−0.46079
0.23208
−0.21193
0.70721
−0.02347
−0.04269
0.18111
−0.01123
0.07461
0.08937
−0.00810
0.05792
0.03363
0.01434
0.00333



Cov(θ̂) =

(
0.01636 −0.01755
−0.01755 0.02777

)
.

Therefore, the BLUE’s for θ1 and θ2 and the estimated covariances are evaluated
to be
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θ̂1 = 1.98287, θ̂2 = 3.09528,

V ar(θ̂1) = 0.15676, V ar(θ̂2) = 0.26606

and
Cov(θ̂1, θ̂2) = −0.16812.

5 CONCLUDING REMARKS

In this paper, the moments and product moments of the order statistics in a
sample of size n drawn from the log-logistic distribution are discussed. We also
provided in the same section more compact formulas for the means, variances and
covariances of order statistics. Best linear unbiased estimators (BLUEs) for the
location and scale parameters for the log-logistic distribution with known shape
parameter based on order statistics are studied. The Hill estimator is proposed
for estimating the shape parameter.
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