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Abstract:
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n and parallel systems through comparisons with average systems in terms of mean
residual life, hazard rate and reversed hazard rate orders. We have also discussed
various stochastic orderings and ageing results for the residual lives of parallel and
series systems. The results established here are quite general, and several examples
have been used to illustrate all the results and their reliability implications.
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1. INTRODUCTION

Many coherent reliability systems, such as series, parallel, fail-safe and r-
out-of-n systems, have all become useful and essential reliability structures in
practice. For example, in the architecture of network circuits, series circuit con-
figurations are often used to manage voltage drops to add to equal voltage, and
for all the components in the circuit to share the same equal current and the
resistance to sum to equal total resistance. Similarly, parallel circuit configura-
tions are made use of so that all the components in the circuit can share the
same equal voltage, and with branch current adding to equal total current and
resistance diminishing to equal total resistance.

A fail-safe system is one that is designed so as to remain safe in the event
of a failure; it is not designed to prevent failure, but it is intended to mitigate
failure when it does occur. An elevator is a good example of a fail-safe system as
it is designed with special brakes that are held back by the tension of the cable,
so that if the cable does snap, the loss of tension would force the special brakes
to be applied, thus averting an accident. Another recent practical application of
fail-safe system (2-out-of-3 system, to be specific) is in the autonomous parking
system in a car which consists of three computers and a sensor to determine an
appropriate parking manoeuvre in a given situation. While the three computers
take the specific information from the sensor into account and plan the steering
and acceleration to successfully park, they would compare their results and only
if at least two of them are in agreement, the car would park with that manoeuvre
agreed by the majority of computers.

It is, therefore, quite important to understand the reliability and ageing
characteristics of such coherent reliability systems commonly used in practice.
Stochastic orders are useful tools for the purpose of comparative reliability evalu-
ation and relative ageing of systems; one may refer to the book length accounts by
Müller and Stoyan [26] and Shaked and Shanthikumar [33] for various stochastic
orders, ageing notions and their applications to a wide range of problems arising
from different fields. The earliest and pioneering work in this regard was car-
ried out nearly five decades ago by Pledger and Proschan [28] and Proschan and
Sethuraman [29]. There have been numerous subsequent developments in this
direction, too many to list here, as a matter of fact. But, interested readers may
refer to the following articles for some key results: Deshpande and Kochar [9],
Saunders [32], Boland et al. [7], Kochar and Korwar [17], Dykestra et al. [11],
Khaledi and Kochar [15], Kochar and Xu [18], Zhao and Balakrishnan [34], Zhao
et al. [29], Balakrishnan et al. [1], and Barmalzan et al. [5]. Detailed reviews of
all the developments in this regard have also been presented by Kochar [16] and
Balakrishnan and Zhao [3].

Even though there is a huge body of literature on various types of compar-
isons of different reliability systems, as witnessed in the reviews of Kochar [16] and
Balakrishnan and Zhao [4], most of the references cited therein and also all the
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papers mentioned above only deal with the case of independent and non-identical
components. Very few papers have dealt with the case when the components in
a system are dependent; see, for example, Rezapour and Alamatsaz [31], Li and
Fang [21], Ding and Zhang [10], Cai et al. [8], Fang et al. [12], and Barmalzan
et al. [6].

Many systems in practice will include a number of components that are
homogeneous, like battery packs, circuits, airbags, etc.; but, the assumption that
their lifetimes are independent may not be realistic and yet is one that is usually
made in order to make the corresponding models and subsequent derivations
simpler. As the components in a system will be functioning simultaneously, the
functioning of one is likely to impact the functioning of others. Moreover, these
components may all be manufactured by the same producer, and so may share
the same manufacturing environment. It is, therefore, quite reasonable to expect
some dependence between them!

In this work, we consider reliability systems with dependent components,
with the joint distribution being modeled by a general Archimedean copula, and
the lifetime of components following accelerated failure time and modified propor-
tional hazards distributions. We then establish several characterization results
for series, fail-safe, 2-out-of-n and parallel systems through comparisons with av-
erage systems in terms of hazard rate, reversed hazard rate and mean residual
life orders.

There are several different ways to model dependence [see Kotz et al. [19]],
and one convenient way is through the use of copulas [Nelsen [27]]. Here, in
this work, we use an Archimedean copula to represent the joint distribution of
the lifetimes of n components in the system, as it is a well-known family of
copulas with many prominent copulas, such as independence, Ali-Mikhail-Haq,
Gumbel-Hougaard, Clayton, and Frank copulas, all as special cases. It is for this
reason that we assume the Archimedean copula to model the joint distribution
of lifetimes of components.

The rest of this paper proceeds as follows. In Section 2, we briefly introduce
some basic stochastic orders, ageing notions and copulas that are most pertinent
for the discussions to follow in the subsequent sections; in addition, we provide
a description of the accelerated failure time and modified proportional hazards
families of distributions that are used to model the marginal distributions of
lifetimes of components. In Section 3, we establish various stochastic orderings
and ageing results for the residual lives of parallel systems. In Section 4, we
similarly establish stochastic orderings and ageing results for the residual lives of
series systems. In Section 5, we develop some characterization results for some
coherent systems when the components follow an accelerated failure time model
based on a comparison with an average system. Similarly, in Section 6, we present
some characterization results for some coherent systems when the components
follow a modified proportional hazards distribution based on a comparison with
an average system. Finally, in Section 7, we present some concluding remarks
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and also some problems that will be of interest for further research.

2. DEFINITIONS AND KEY NOTIONS

We describe in this section some basic concepts about stochastic orders,
copulas and two general families of lifetime distributions that are essential for
subsequent developments. We assume through out that all random variables
under consideration are lifetime variables and so are nonnegative, and we use
“increasing” to mean “nondecreasing” and “decreasing” to mean “nonincreasing”.
We assume all the expectations involved to exist, and for ease of notation, we use
a
sgn
= b to denote that both sides of an equality have the same sign.

2.1. Stochastic orders

Let X and Y be random variables with density functions fX and fY , distri-
bution functions FX and FY , survival functions F̄X = 1− FX and F̄Y = 1− FY ,
hazard rate functions hX = fX/F̄X and hY = fY /F̄Y , and reversed hazard rate
functions h̃X = fX/FX and h̃Y = fY /FY , respectively.

Definition 2.1. Then, X is said to be larger than Y in

(i) usual stochastic order (denoted by X ≥st Y ) if F̄X(t) ≥ F̄Y (t), for all t ∈ R,
or equivalently, E[ϕ(X)] ≥ E[ϕ(Y )] for all increasing functions ϕ : R → R;

(ii) hazard rate order (denoted by X ≥hr Y ) if and only if hY (t) ≥ hX(t), for
all t ∈ R, or equivalently, F̄X(t)/F̄Y (t) is increasing in t ∈ R;

(iii) reversed hazard rate order (denoted by X ≥rh Y ) if and only if h̃X(t) ≥
h̃Y (t), for all t ∈ R, or equivalently, FX(t)/FY (t) is increasing in t ∈ R;

(iv) mean residual life order (denoted by X ≥mrl Y ) if E(Xt) ≥ E(Yt), for all
t ∈ R, where E(Xt) = E(X − t|X > t) and E(Yt) = E(Y − t|Y > t) are the
mean residual lives of X and Y , respectively.

Then, the following implications are well-known between these orders:

X ≥hr[rh] Y =⇒ X ≥st Y ;

see, for example, Müller and Stoyan [26] and Shaked and Shanthikumar [33] for
extensive discussions on various stochastic orderings, their inter-relationships,
and their properties and applications.



Orderings and ageing of reliability systems with dependent ... 5

2.2. Ageing notions

Ageing, in reliability analysis, describes the variation in the performance of
a unit over time. Several different measures and measure-based stochastic orders
have been discussed in the literature pertaining to ageing characteristics of life
distributions. Two most commonly used notions are through hazard and reversed
hazard rates.

Definition 2.2. A random variable X is said to be ageing faster than
Y in

(i) hazard rate (denoted by X ≥c Y ) if hY (t)/hX(t) is increasing in t ∈ R
(Kalashnikov and Rachev, [14]);

(ii) reversed hazard rate (denoted by X ≥b Y ) if h̃X(t)/h̃Y (t) is increasing in
t ∈ R (Rezaei et al., [30]).

For more details on the relative ageing by increasing hazard ratio and re-
versed hazard ratio functions, one may refer to Lai and Xie [20], Misra and Francis
[25] and Hazra and Misra [14].

2.3. Archimedean copulas

As mentioned earlier in Section 1, a plethora of stochastic orders and
stochastic comparisons of random variables have been discussed in the litera-
ture; but, most of them involve only comparisons of marginal distributions of the
underlying variables, without taking into account possible dependence between
variables, with some exceptions, of course! Here, we consider characterizations
of some reliability systems assuming the components to be dependent under an
Archimedean copula.

Archimedean copulas are widely used for modeling dependence between
variables due to their mathematical tractability as well as their ability to model
a wide range of dependence structures. For a decreasing continuous function
ϕ : [0,∞) −→ [0, 1] with ϕ(0) = 1, ϕ(+∞) = 0 and ψ = ϕ−1 being the pseudo-
inverse,

Cϕ(u1, · · · , un) = ϕ(ψ(u1) + · · ·+ ψ(un)), ui ∈ [0, 1],(2.1)

is said to be an Archimedean copula with generator ϕ if (−1)kϕ[k](x) ≥ 0 for
k = 0, · · · , n − 2 and (−1)n−2ϕ[n−2](x) is decreasing and convex, with ϕ[k](x)
denoting the k-the derivative of the generator ϕ(x) with respect to x.



6 G. Barmalzan, A.A. Hosseinzadeh and N. Balakrishnan

2.4. Accelerated failure time and modified proportional hazards
distributions

Let X1, · · · , Xn be random variables with Xi having hi(t), for i = 1, · · · , n,
as marginal hazard functions. Then, they are said to have an accelerated failure
time family of distributions if, for all t ≥ 0, hi(t) = h(λit), for i = 1, · · · , n,
where h(·) is some baseline hazard function and λi > 0 are scale parameters (also
called acceleration constants). Upon noting now that the cumulative hazard rate
functions of Xi are given by Hi(t) =

1
λi
H(λit), and then using the relationship

between cumulative hazard function and survival function of a distribution, we
arrive at the form of cumulative distribution function for this family as

Si(t) = e−Hi(t) = e
− 1

λi
H(λit) = {e−H(λit)}1/λi = {S(λit)}1/λi ,(2.2)

for t ≥ 0, and i = 1, · · · , n; see, for example, Marshall and Olkin (2007) for
details.

In the context of nonparametric rank tests, two families of distributions
with

G1(x) = (F (x))α, α > 0, Ḡ2(x) = (S(x))β, β > 0,(2.3)

known as “Lehmann families”, have been used extensively as nonparametric al-
ternatives for tests for stochastic orderings. Upon combining the two families in
(2.3), we can obtain an unified family of distributions with cumulative distribu-
tion function of the form

G(x) = 1− {1− (F (x))α}β, α, β > 0,(2.4)

where F (·) is some baseline distribution function. Now, we may introduce ac-
celeration constants λi (i = 1, · · · , n), as in (2.2), to arrive at a general form of
accelerated failure time distribution with its cumulative distribution function as

Fi(t) = 1− {1− (F (λit))
α}β , t > 0, α, β > 0,(2.5)

for i = 1, · · · , n. It is evident that the accelerated failure time model in (2.2) is
a special case of (2.5) when α = 1 and β = 1/λi.

Yet another flexible family of useful lifetime distributions, offered by Marshll
and Olkin [24], has a survival function of the form

S∗(t) =
αS(t)

1− ᾱS(t)
, t > 0, 0 < α < 1, ᾱ = 1− α,(2.6)

where S is some baseline survival function and α is referred to as a tilt parameter.
Here again, by introducing acceleration constants λi (i = 1, · · · , n), as in (2.2),
we arrive at a family of modified proportional hazards family of distributions
with its survival function as

Si(t) =
αS(λit)

1− ᾱS(λit)
, t > 0, λi > 0, 0 < α < 1, ᾱ = 1− α,(2.7)
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for i = 1, · · · , n. The name “modified proportional hazards model” stems from
the fact that the hazard functions of S and S∗ in (2.6) satisfy the relationship

hS∗(t) = hS(t)
1

1− ᾱS(t)
,(2.8)

which is indeed a modification of the proportional hazards assumption, with the
multiplicative term varying over t, rather than being a constant.

3. RESULTS FOR RESIDUAL LIVES OF PARALLEL SYSTEMS

Let Xn:n denote the lifetime of a parallel system consisting of n dependent
components whose joint distribution is given by an Archimedean copula. Then,
the survival function, density function, hazard rate function and reversed hazard
rate function of the residual life variable Xn:n(t) at x, given that the parallel
system has survived till time t, are given by

FXn:n(t)(x) =
ϕ (nψ [F (x+ t)])− ϕ (nψ [F (t)])

1− ϕ (nψ [F (t)])
, x, t ≥ 0,(3.1)

fXn:n(t)(x) =
nf(x+ t)ψ′ [F (x+ t)]ϕ′ (nψ [F (x+ t)])

1− ϕ (nψ [F (t)])
, x, t ≥ 0,(3.2)

hXn:n(t)(x) =
nf(x+ t)ψ′ [F (x+ t)]ϕ′ (nψ [F (x+ t)])

1− ϕ (nψ [F (x+ t)])
, x, t ≥ 0,(3.3)

h̃Xn:n(t)(x) =
nf(x+ t)ψ′ [F (x+ t)]ϕ′ (nψ [F (x+ t)])

ϕ (nψ [F (x+ t)])− ϕ (nψ [F (t)])
x, t ≥ 0,(3.4)

where ϕ is the generator and ψ = ϕ−1. One question that we may ask here
is, between two parallel systems with n and m components, which one is more
reliable. Of course, this can be formulated using any particular stochastic order,
as seen in the following theorems.

Theorem 3.1. If u ln′ [1− ϕ (u)] is decreasing in u ∈ R+, then for m ≥
n, we have Xm:m(t) ≥hr Xn:n(t).

Proof: With the hazard rate function of Xn:n(t) as given in (3.3), for
obtaining the desired result, it is sufficient to show that hXn:n(t)(x)−hXm:m(t)(x) ≤
0, for any x ∈ R+. We have

I(x) = hXn:n(t)(x)− hXm:m(t)(x)

=
f(x+ t)ψ′ (F (x+ t))

ψ (F (x+ t))

{
nψ (F (x+ t))ϕ′ (nψ (F (x+ t)))

1− ϕ (nψ (F (x+ t)))

− mψ (F (x+ t))ϕ′ (mψ (F (x+ t)))

1− ϕ (mψ (F (x+ t)))

}
sgn
= u ln′ [1− ϕ (u)]

∣∣
u=nψ(F (x+t))

− u ln′ [1− ϕ (u)]
∣∣
u=mψ(F (x+t))

.(3.5)



8 G. Barmalzan, A.A. Hosseinzadeh and N. Balakrishnan

Now, by using the decreasing property of u ln′ [1− ϕ (u)] with respect to u ∈ R+,
for m ≥ n, we readily observe from (3.5) that hXn:n(t)(x) ≥ hXm:m(t)(x), for
x ∈ R+. Thus, the theorem gets established.

Remark 3.1. Theorem 3.1 shows that, for some Archimedean copulas,
parallel systems with more redundancy is more reliable in the sense of hazard rate
order; that is, a parallel system with less (dependent) components will possess a
higher hazard rate than a parallel system with less components.

Example 3.1. It should be mentioned that the condition “u ln′ [1− ϕ (u)]
is decreasing” in Theorem 3.1 is quite general and holds for many Archimedean
copulas. We now demonstrate this with the following examples:

1. If ϕ1(u) = e−u
θ , for θ ∈ R+ (Gumbel copula, Nelsen [27]), we have

u ln′ [1− ϕ1 (u)] = − tϕ′1(u)

1− ϕ1 (u)
=
θuθe−u

θ

1− e−uθ
,

which is decreasing in u ∈ R+;

2. If ϕ2(u) = 1− (1− e−u)
θ, for θ ∈ [0, 1) (Li and Li [22]), we have

u ln′ [1− ϕ2 (u)] = − uϕ′2(u)

1− ϕ2 (u)
=

θue−u

1− e−u
,

which is decreasing in u ∈ R+;

3. If ϕ3(u) = 1√
u+1

(Li and Li [22]), we have

u ln′ [1− ϕ3 (u)] = − uϕ′3(u)

1− ϕ3 (u)
=

1

4 (
√
u+ 1)

,

which is decreasing in u ∈ R+;

4. If ϕ4(u) = 1
2e
u
(
eu − 1

2

)−1 (Ali-Mikhail-Haq copula, Nelsen [27]), we have

u ln′ [1− ϕ4 (u)] = − uϕ′4(u)

1− ϕ4 (u)
=

ueu

2(eu − 1
2)(e

u − 1)
,

which is decreasing in u ∈ R+.

Example 3.2. Consider the standard exponential distribution as base-
line distribution function. Assume that ϕ(u) = 1√

u+1
, t = 5, n = 5 and

m = 10. Figure 1 presents plots of the hazard rate functions of hX5:5(1/x−1) and
hX10:10(1/x−1), from which it can be observed that the value of hX10:10(5)(1/x−1)
is always smaller than that of hX5:5(5)(1/x − 1) on the interval (0, 1). Thus, the
results of Theorem 3.1 is validated in this case.
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Figure 1: Plots of hazard rate functions of hX5:5
(1/x−1) and hX10:10

(1/x−
1).

Theorem 3.2. If u ln′ [ϕ (mψ (F (t)))− ϕ (u)] is increasing with respect
to u ∈ R+, then for m ≥ n, we have Xn:n(t) ≥rh Xm:m(t).

Proof: With reversed hazard rate function of Xn:n(t) as given in (3.4),
for establishing the desired result, we need to show that h̃Xn:n(t)(x) ≤ h̃Xm:m(t)(x),
for any x ∈ R+. Because ϕ′(x) ≤ 0, we have

I(x) = h̃Xn:n(t)(x)− h̃Xm:m(t)(x)

=
f(x+ t)ψ′ (F (x+ t))

ψ (F (x+ t))

{
nψ (F (x+ t))ϕ′ (nψ (F (x+ t)))

ϕ (nψ [F (x+ t)])− ϕ (nψ [F (t)])

− mψ (F (x+ t))ϕ′ (mψ (F (x+ t)))

ϕ (mψ [F (x+ t)])− ϕ (mψ [F (t)])

}
≥ f(x+ t)ψ′ (F (x+ t))

ψ (F (x+ t))

{
nψ (F (x+ t))ϕ′ (nψ (F (x+ t)))

ϕ (nψ [F (x+ t)])− ϕ (mψ [F (t)])

− mψ (F (x+ t))ϕ′ (mψ (F (x+ t)))

ϕ (mψ [F (x+ t)])− ϕ (mψ [F (t)])

}
sgn
= u ln′ [ϕ (u)− ϕ (mψ (F (t)))] |u=mψ(F (x+t))

− u ln′ [ϕ (u)− ϕ (mψ (F (t)))] |u=nψ(F (x+t)) .(3.6)

Using the increasing property of u ln′ [ϕ (mψ (F (t)))− ϕ (u)] with respect to u ∈
R+, for m ≥ n, we readily observe from (3.6) that I(x) ≥ 0, for x ∈ R+. Thus,
the theorem gets established.

Remark 3.2. Theorem 3.2 shows that, for some Archimedean copulas, a
parallel system with more (dependent) components will possess a higher reversed
hazard rate than a parallel system with less components.



10 G. Barmalzan, A.A. Hosseinzadeh and N. Balakrishnan

Theorem 3.3. If u ln′
[
− ϕ′(u)

1−ϕ(u)

]
is decreasing in u ∈ R+, then for m ≥

n, we have Xn:n(t) ≥c Xm:m(t).

Proof: With the hazard rate functions of Xn:n(t) and Xm:m(t) as given
in (3.3), we have

I(x) =
hXn:n(t)(x)

hXm:m(t)(x)

=
n

m
× ϕ′ (nψ {F (x+ t)])

1− ϕ (nψ [F (x+ t)])
×
{

ϕ′ (mψ [F (x+ t)])

1− ϕ (mψ [F (x+ t)])

}−1

.

Because ϕ(x) is decreasing, we obtain, for m ≥ n,

I ′(x)
sgn
=

{
ϕ′ (nψ(F (x+ t)))

1− ϕ (nψ(F (x+ t)))

}′
× ϕ′ (mψ(F (x+ t)))

1− ϕ (mψ(F (x+ t)))

− ϕ′ (nψ(F (x+ t)))

1− ϕ (nψ(F (x+ t)))
×
{

ϕ′ (mψ(F (x+ t)))

1− ϕ (mψ(F (x+ t)))

}′

sgn
= −nψ(F (x+ t))

{
ϕ′′(nψ(F (x+ t)))

ϕ′(nψ(F (x+ t)))
+

ϕ′(nψ(F (x+ t)))

1− ϕ(nψ(F (x+ t)))

}
+mψ(F (x+ t))

{
ϕ′′(mψ(F (x+ t)))

ϕ′(mψ(F (x+ t)))
+

ϕ′(mψ(F (x+ t)))

1− ϕ(mψ(F (x+ t)))

}
= u ln′

[
− ϕ′(u)

(1− ϕ(u))

] ∣∣∣∣∣
u=mψ(F (x+t))

− u ln′
[
− ϕ′(u)

(1− ϕ(u))

] ∣∣∣∣∣
u=nψ(F (x+t))

.

Due to the assumption that u ln′
[
− ϕ′(u)

1−ϕ(u)

]
is decreasing in u ∈ R+, we get the

required result from the above equation.

Remark 3.3. Theorem 3.3 shows that, for some Archimedean copulas,
a parallel system with less redundancy (with dependence between components)
ages faster in hazard rate than a parallel system with more redundancy. Some
illustrations of the result in Theorem 3.3 can be seen in Part (i) of Example 3.4
of Ding and Zhang [10].

Theorem 3.4. If u ln′
[
− ϕ′(u)
ϕ(u)−ϕ(mψ[F (t)])

]
is decreasing in u ∈ R+, then

for m ≥ n, we have Xm:m(t) ≥b Xn:n(t).

Proof: With the reversed hazard rate functions of Xm:m(t) and Xn:n(t)
as given in (3.4), we have

I(x) =
h̃Xn:n(t)(x)

h̃Xm:m(t)(x)

=
n

m
× ϕ′ (nψ [F (x+ t)])

ϕ (nψ [F (x+ t)])− ϕ (nψ [F (t)])

×
{

ϕ′ (mψ {F (x+ t)])

ϕ (mψ [F (x+ t)])− ϕ (mψ [F (t)])

}−1

.
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Because ϕ(x) is decreasing, we obtain, for m ≥ n,

I ′(x)
sgn
=

{
ϕ′ (nψ(F (x+ t)))

ϕ (nψ [F (x+ t)])− ϕ (nψ [F (t)])

}′
× ϕ′ (mψ(F (x+ t)))

ϕ (mψ [F (x+ t)])− ϕ (mψ [F (t)])

− ϕ′ (nψ(F (x+ t)))

ϕ (nψ [F (x+ t)])− ϕ (nψ [F (t)])
×
{

ϕ′ (mψ(F (x+ t)))

ϕ (mψ [F (x+ t)])− ϕ (mψ [F (t)])

}′

sgn
= −nψ(F (x+ t))

{
ϕ′′(nψ(F (x+ t)))

ϕ′(nψ(F (x+ t)))
− ϕ′(nψ(F (x+ t)))

ϕ (nψ [F (x+ t)])− ϕ (nψ [F (t)])

}
+mψ(F (x+ t))

{
ϕ′′(mψ(F (x+ t)))

ϕ′(mψ(F (x+ t)))
− ϕ′(mψ(F (x+ t)))

ϕ (mψ [F (x+ t)])− ϕ (mψ [F (t)])

}
≤ −nψ(F (x+ t))

{
ϕ′′(nψ(F (x+ t)))

ϕ′(nψ(F (x+ t)))
− ϕ′(nψ(F (x+ t)))

ϕ (nψ [F (x+ t)])− ϕ (mψ [F (t)])

}
+mψ(F (x+ t))

{
ϕ′′(mψ(F (x+ t)))

ϕ′(mψ(F (x+ t)))
− ϕ′(mψ(F (x+ t)))

ϕ (mψ [F (x+ t)])− ϕ (mψ [F (t)])

}
= u ln′

[
− ϕ′(u)

ϕ(u)− ϕ (mψ [F (t)])

] ∣∣∣∣∣
u=mψ(F (x+t))

− u ln′
[
− ϕ′(u)

ϕ(u)− ϕ (mψ [F (t)])

] ∣∣∣∣∣
u=nψ(F (x+t))

.

Due to assumption that u ln′
[
− ϕ′(u)
ϕ(u)−ϕ(mψ[F (t)])

]
is decreasing in u ∈ R+, from

the above equation, we find I(x) to be decreasing, as required.

Remark 3.4. Theorem 3.4 shows that, for some Archimedean copulas,
under the decreasing property of the function u ln′

[
− ϕ′(u)
ϕ(u)−ϕ(mψ[F (t)])

]
with re-

spect to u ∈ R+, a parallel system with more redundancy ages faster in terms of
the reversed hazard rate than a parallel system with less redundancy.

4. RESULTS FOR RESIDUAL LIVES OF SERIES SYSTEMS

Let X1:n denote the lifetime of a series system consisting of n dependent
components whose joint distribution is given by an Archimedean copula. Then,
the distribution function, density function, hazard rate function and reversed
hazard rate function of residual life variable X1:n(t) at x, given that the series
system has survived till time t, are given by

F̄X1:n(t)(x) =
ϕ
(
nψ
(
F̄ (x+ t)

))
ϕ
(
nψ
(
F̄ (t)

)) , x, t > 0,(4.1)

fX1:n(t)(x) =
nf(x+ t)ψ′ (F̄ (x+ t)

)
ϕ′
(
nψ
(
F̄ (x+ t)

))
ϕ
(
nψ
(
F̄ (t)

)) , x, t > 0,(4.2)



12 G. Barmalzan, A.A. Hosseinzadeh and N. Balakrishnan

hX1:n(t)(x) =
nf(x+ t)ψ′ (F̄ (x+ t)

)
ϕ′
(
nψ
(
F̄ (x+ t)

))
ϕ
(
nψ
(
F̄ (x+ t)

)) , x, t > 0,(4.3)

h̃X1:n(t)(x) =
nf(x+ t)ψ′ (F̄ (x+ t)

)
ϕ′
(
nψ
(
F̄ (x+ t)

))
ϕ
(
nψ
(
F̄ (t)

))
− ϕ

(
nψ
(
F̄ (x+ t)

)) , x, t > 0,(4.4)

respectively, where ϕ is the generator and ψ = ϕ−1. Now, we examine between
two series systems with n and m components, which one is more reliable.

Theorem 4.1. If u ln′ ϕ (u) is decreasing in u ∈ R+, then for m ≥ n, we
have X1:n(t) ≥hr X1:m(t).

Proof: With the hazard rate functions of X1:n(t) and X1:m(t) as given
in (4.3), we have

I(x) = hX1:n(t)(x)− hX1:m(t)(x)

=
f(x+ t)ψ′ (F̄ (x+ t)

)
ψ
(
F̄ (x+ t)

)
×

{
nψ
(
F̄ (x+ t)

)
ϕ′
(
nψ
(
F̄ (x+ t)

))
ϕ
(
nψ
(
F̄ (x+ t)

)) −
mψ

(
F̄ (x+ t)

)
ϕ′
(
mψ

(
F̄ (x+ t)

))
ϕ
(
mψ

(
F̄ (x+ t)

)) }
sgn
= u ln′ ϕ (u) |u=mψ(F̄ (x+t)) −u ln

′ ϕ (u) |u=nψ(F̄ (x+t)) .

By using the decreasing property of u ln′ ϕ (u), for m ≥ n, we readily observe that
I(x) ≤ 0. Thus, the theorem gets established.

Remark 4.1. Theorem 4.1 shows that, for some Archimedean copulas,
a series system with less (dependent) components is more reliable in the sense of
hazard rate order; that is, a series system with less (dependent) components will
possess a lower hazard function than a series system with more components.

Example 4.1. The condition “u ln′ ϕ (u) is decreasing” in Theorem 4.1
is quite general and can be verified for many well-known Archimedean copulas.
For example, we consider the following:

1. If ϕ1(u) = e−u
θ , for θ ∈ R+ (Gumbel copula, Nelsen [27]), we have

u ln′ [ϕ1 (u)] = −θuθ,

which is decreasing in u ∈ R+;

2. If ϕ2(u) = (θu+ 1)−
1
θ (Clayton copula, Nelsen [27]), we have

u ln′ [ϕ2 (u)] = − u

θu+ 1
,

which is decreasing in u ∈ R+.
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Figure 2: Plots of hazard rate functions of hX1:4
(1/x−1) and hX1:10

(1/x−
1).

Example 4.2. Consider the standard exponential distribution as base-
line distribution function. Assume that ϕ(u) = (θu + 1)−

1
θ , θ = 2, t = 2, n = 4

and m = 10. Figure 2 presents plots of the hazard rate functions of hX1:4(1/x−1)
and hX1:10(1/x−1), from which it can be observed that the value of hX1:14(1/x−1)
is always smaller than that of hX1:10(1/x − 1) on the interval (0, 1). Thus, the
result of Theorem 4.1 is validated in this case.

Theorem 4.2. If u ln′
[
ϕ
(
nψ
(
F̄ (t)

))
− ϕ (u)

]
is decreasing in u ∈ R+,

then for m ≥ n, we have X1:n(t) ≥rh X1:m(t).

Proof: With the reversed hazard rate functions of X1:n(t) and X1:m(t)
as given in (4.4), for m ≥ n, we have

I(x) = h̃X1:n(t)(x)− h̃X1:m(t)(x)

=
f(x+ t)ψ′ (F̄ (x+ t)

)
ψ
(
F̄ (x+ t)

) {
nψ
(
F̄ (x+ t)

)
ϕ′
(
nψ
(
F̄ (x+ t)

))
ϕ
(
nψ
(
F̄ (t)

))
− ϕ

(
nψ
(
F̄ (x+ t)

))
−

nψ
(
F̄ (x+ t)

)
ϕ′
(
mψ

(
F̄ (x+ t)

))
ϕ
(
mψ

(
F̄ (t)

))
− ϕ

(
mψ

(
F̄ (x+ t)

))}
≥

f(x+ t)ψ′ (F̄ (x+ t)
)

ψ
(
F̄ (x+ t)

) {
nψ
(
F̄ (x+ t)

)
ϕ′
(
nψ
(
F̄ (x+ t)

))
ϕ
(
nψ
(
F̄ (t)

))
− ϕ

(
nψ
(
F̄ (x+ t)

))
−

nψ
(
F̄ (x+ t)

)
ϕ′
(
mψ

(
F̄ (x+ t)

))
ϕ
(
nψ
(
F̄ (t)

))
− ϕ

(
mψ

(
F̄ (x+ t)

))}
sgn
= u ln′

[
ϕ
(
nψ
(
F̄ (t)

))
− ϕ (u)

]
|u=nψ(F̄ (x+t))

− u ln′
[
ϕ
(
nψ
(
F̄ (t)

))
− ϕ (u)

]
|u=mψ(F̄ (x+t)) .(4.5)

Using the decreasing property of u ln′
[
ϕ
(
nψ
(
F̄ (t)

))
− ϕ (u)

]
in u ∈ R+, for

m ≥ n, we readily observe from (4.5) that I(x) ≥ 0. Thus, the theorem gets
established.
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Remark 4.2. Theorem 4.2 shows that, for some Archimedean copulas,
a series system with less (dependent) components will possess lower reversed
hazard rate than a series system with more components.

Theorem 4.3. If u ln′
[
−ϕ′(u)
ϕ(u)

]
is decreasing (increasing) in u ∈ R+,

then for m ≥ n, we have X1:m(t) ≥c (≤c)X1:n(t).

Proof: With the hazard rate functions of X1:m(t) and X1:n(t) as given
in (4.3), we have

I(x) =
hX1:n(t)(x)

hX1:m(t)(x)

=
n

m
×
ϕ′
(
nψ
[
F̄ (x+ t)

])
ϕ
(
nψ
[
F̄ (x+ t)

]) ×

{
ϕ′
(
mψ

[
F̄ (x+ t)

])
ϕ
(
mψ

[
F̄ (x+ t)

]) }−1

.

By differentiating this function, we find

I ′(x)
sgn
=

{
ϕ′
(
nψ(F̄ (x+ t))

)
ϕ
(
nψ(F̄ (x+ t))

) }′

×
ϕ′
(
mψ(F̄ (x+ t))

)
ϕ
(
mψ(F̄ (x+ t))

)
−
ϕ′
(
nψ(F̄ (x+ t))

)
ϕ
(
nψ(F̄ (x+ t))

) ×

{
ϕ′
(
mψ(F̄ (x+ t))

)
ϕ
(
mψ(F̄ (x+ t))

) }′

sgn
= nψ(F̄ (x+ t))

{
ϕ′′(nψ(F̄ (x+ t)))

ϕ′(nψ(F̄ (x+ t)))
− ϕ′(nψ(F̄ (x+ t)))

ϕ(nψ(F̄ (x+ t)))

}
− mψ(F̄ (x+ t))

{
ϕ′′(mψ(F̄ (x+ t)))

ϕ′(mψ(F̄ (x+ t)))
− ϕ′(mψ(F̄ (x+ t)))

ϕ(mψ(F̄ (x+ t)))

}
= u ln′

[
−ϕ

′(u)

ϕ(u)

] ∣∣∣∣∣
u=nψ(F̄ (x+t))

− u ln′
[
−ϕ

′(u)

ϕ(u)

] ∣∣∣∣∣
u=mψ(F̄ (x+t))

≥ (≤) 0,

according to whether u ln′
[
−ϕ′(u)
ϕ(u)

]
is decreasing (or increasing) in u ∈ R+, for

m ≥ n. Thus, the theorem gets established.

Remark 4.3. Theorem 4.3 shows that, for some Archimedean copulas,
under the decreasing (increasing) property of the function u ln′

[
−ϕ′(u)
ϕ(u)

]
, a series

system with less (dependent) components ages faster (ages slower) in terms of
hazard rate than a series system with more components. Some illustrations of
the result in Theorem 4.3 can be seen in Part (ii) of Example 3.4 of Ding and
Zhang [10].
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Theorem 4.4. If u ln′
[
− ϕ′(u)

ϕ(nψ[F̄ (t)])−ϕ(u)

]
is decreasing in u ∈ R+, then

for m ≥ n, we have X1:n(t) ≥b X1:m(t).

Proof: With the reversed hazard rate functions of X1:m(t) and X1:n(t)
as given in (4.4), we have

I(x) =
h̃X1:n(t)(x)

h̃X1:m(t)(x)

=
n

m
×

ϕ′
(
nψ
[
F̄ (x+ t)

])
ϕ
(
nψ
[
F̄ (t)

])
− ϕ

(
nψ
[
F̄ (x+ t)

])
×

{
ϕ′
(
mψ

[
F̄ (x+ t)

])
ϕ
(
mψ

[
F̄ (t)

])
− ϕ

(
mψ

[
F̄ (x+ t)

])}−1

.

As ϕ(x) is decreasing, for m ≥ n, we obtain

I ′(x)
sgn
=

{
ϕ′
(
nψ(F̄ (x+ t))

)
ϕ
(
nψ
[
F̄ (t)

])
− ϕ

(
nψ(F̄ (x+ t))

)}′

×
ϕ′
(
mψ(F̄ (x+ t))

)
ϕ
(
mψ

[
F̄ (t)

])
− ϕ

(
mψ(F̄ (x+ t))

)
−

ϕ′
(
nψ(F̄ (x+ t))

)
ϕ
(
nψ
[
F̄ (t)

])
− ϕ

(
nψ(F̄ (x+ t))

) ×{ ϕ′
(
mψ(F̄ (x+ t))

)
ϕ
(
mψ

[
F̄ (t)

])
− ϕ

(
mψ(F̄ (x+ t))

)}′

sgn
= nψ(F̄ (x+ t))

{
ϕ′′(nψ(F̄ (x+ t)))

ϕ′(nψ(F̄ (x+ t)))
+

ϕ′(nψ(F̄ (x+ t)))

ϕ
(
nψ
[
F̄ (t)

])
− ϕ(nψ(F̄ (x+ t)))

}

−mψ(F̄ (x+ t))

{
ϕ′′(mψ(F̄ (x+ t)))

ϕ′(mψ(F̄ (x+ t)))
+

ϕ′(mψ(F̄ (x+ t)))

ϕ
(
mψ

[
F̄ (t)

])
− ϕ(mψ(F̄ (x+ t)))

}

≥ nψ(F̄ (x+ t))

{
ϕ′′(nψ(F̄ (x+ t)))

ϕ′(nψ(F̄ (x+ t)))
+

ϕ′(nψ(F̄ (x+ t)))

ϕ
(
nψ
[
F̄ (t)

])
− ϕ(nψ(F̄ (x+ t)))

}

−mψ(F̄ (x+ t))

{
ϕ′′(mψ(F̄ (x+ t)))

ϕ′(mψ(F̄ (x+ t)))
+

ϕ′(mψ(F̄ (x+ t)))

ϕ
(
nψ
[
F̄ (t)

])
− ϕ(mψ(F̄ (x+ t)))

}

= u ln′

[
− ϕ′(u)

ϕ
(
nψ
[
F̄ (t)

])
− ϕ(u)

] ∣∣∣∣∣
u=nψ(F̄ (x+t))

− u ln′

[
− ϕ′(u)

ϕ
(
nψ
[
F̄ (t)

])
− ϕ(u)

] ∣∣∣∣∣
u=mψ(F̄ (x+t))

.

Due to the assumption that u ln′
[
− ϕ′(u)

ϕ(nψ[F̄ (t)])−ϕ(u)

]
is decreasing in u ∈ R+, we

have I ′(x) > 0. Thus, the theorem gets established.

Remark 4.4. Theorem 4.4 shows that, for some Archimedean copulas,
a series system with less (dependent) components ages faster in terms of reversed
hazard rate than a series system with more components.
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Example 4.3. We note that the condition “u ln′
[
− ϕ′(u)

ϕ(mψ[F̄ (t)])−ϕ(u)

]
is

decreasing” in Theorem 4.4 holds in many cases. For example, consider ϕ(u(x, t)) =
e−u and 0 < a(t) ≤ 1 and also ϕ(u(x, t)) < a(t) for all t ∈ [0,∞). We then have

u ln′
[
− ϕ′(u)

a− ϕ(u)

]
= u

{
ϕ′′(u)

ϕ′(u)
− ϕ′(u)

a− ϕ(u)

}
=

−au
a− e−u

to be decreasing in u ∈ R+.

5. SYSTEMS WITH DEPENDENT ACCELERATION FAILURE
TIME COMPONENTS

One of the common reliability structures in practice is a r-out-of-n system.
This system, consisting of n components, works iff at least r components work.
It includes parallel, fail-safe and series systems all as special cases when r = 1,
r = n − 1 and r = n, respectively. In this section, we develop some character-
ization results for these systems when the components are dependent with an
Archimedean copula and the component lifetimes follow an accelerated failure
time distribution in (2.5) based on a comparison with the “average system”. The
results established here complete and extend some results of Cai et al. [8].

Using the copula representation for the joint distribution of X1, · · · , Xn in
(2.1), we have in this case

F̄1:n(x) = ϕ

(
n∑
k=1

ψ((1− Fα(λkx))
β)

)
, x > 0,(5.1)

F̄2:n(x) =

n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ((1− Fα(λkx))
β)


− (n− 1)ϕ

(
n∑
k=1

ψ((1− Fα(λkx))
β)

)
, x > 0,(5.2)

Ḡ(x) =
1

n

n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ((1− Fα(λkx))
β)

 , x > 0.(5.3)

The expressions in (5.1) and (5.2) correspond to the survival functions of
the series system (i.e., r = n) and of the fail-safe system (r = n−1), respectively.
The expression in (5.3) corresponds to the survival function of an “average series
system”, whose lifetime is denoted by Y . This average series system can be
explained by a randomization process as follows: From a series system comprising



Orderings and ageing of reliability systems with dependent ... 17

n components, one randomly selected component may be removed to obtain a
series system with (n − 1) remaining components; out of the n such (n − 1)-
component series systems, we then randomly select one of them, and that is
what the average series system is here. The expression of the survival function
given in (5.3) then becomes clear.

Theorem 5.1. We have:

(i) X1:n ≤mrl X2:n iff X1:n ≤mrl Y ;

(ii) X1:n ≤hr X2:n iff X1:n ≤hr Y ;

(iii) X1:n ≤rh X2:n iff X1:n ≤rh Y .

Proof: (i) By definition, X1:n ≤mrl X2:n iff ∀t > 0, we have∫∞
0 F̄2:n(x+ t) dx

F̄2:n(t)
≥
∫∞
0 F̄1:n(x+ t) dx

F̄1:n(t)
.(5.4)

Upon using (5.1) and (5.2) in (5.4) and Theorem 2.A.6 of Shaked and Shanthiku-
mar [33] and some simplifications, ∀t > 0,

ϕ

(
n∑
i=1

ψ((1− Fα(λkt))
β)

)

×
∫ ∞

0

 n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ((1− Fα(λkx+ λkt))
β)

 dx
≥

n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ((1− Fα(λkx+ λkt))
β)


×
∫ ∞

0

[
ϕ

(
n∑
k=1

ψ((1− Fα(λkx+ λkt))
β)

)]
dx.(5.5)

Similarly, from (5.1) and (5.3), we see that Y ≥mrl X1:n iff ∀t > 0,∫∞
0

1
n

∑n
l=1 ϕ

(∑n
k=1,k ̸=l ψ((1− Fα(λkx+ λkt))

β)
)
dx

1
n

∑n
l=1 ϕ

(∑n
k=1,k ̸=l ψ((1− Fα(λkt))β)

)
≥
∫∞
0 ϕ

(∑n
i=1 ψ((1− Fα(λkx+ λkt))

β)
)
dx

ϕ (
∑n

k=1 ψ((1− Fα(λkt))β))
.(5.6)

The equivalence of the inequalities in (5.5) and (5.6) yields Part (i) immediately.
(ii) By definition, X1:n ≤hr X2:n iff ∀x, t > 0, we have

F̄2:n(x+ t)

F̄2:n(t)
≥ F̄1:n(x+ t)

F̄1:n(t)
.(5.7)
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Upon using (5.1) and (5.2) in (5.7) and simplification, ∀x, t > 0,

n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ((1− Fα(λkx+ λkt))
β)


×

[
ϕ

(
n∑
k=1

ψ((1− Fα(λkt))
β)

)]

≥
n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ((1− Fα(λkt))
β)


×

[
ϕ

(
n∑
k=1

ψ((1− Fα(λkx+ λkt))
β)

)]
.(5.8)

Similarly, from (5.1) and (5.3), we see that Y ≥hr X1:n iff ∀x, t > 0,

1
n

∑n
l=1 ϕ

(∑n
k=1,k ̸=l ψ((1− Fα(λkx+ λkt))

β)
)

1
n

∑n
l=1 ϕ

(∑n
k=1,k ̸=l ψ((1− Fα(λkt))β)

)
≥
ϕ
(∑n

k=1 ψ((1− Fα(λkx+ λkt))
β)
)

ϕ (
∑n

k=1 ψ((1− Fα(λkt))β))
.(5.9)

The equivalence of the inequalities in (5.8) and (5.9) yields Part (ii) immediately.
(iii) This can be proved in a manner similar to Part (ii).

Next, from the copula representation for the joint distribution ofX1, · · · , Xn

in (2.1), we have, in this case, for x > 0,

Fn:n(x) = ϕ

(
n∑
k=1

ψ(1− (1− Fα(λkx))
β)

)
,(5.10)

Fn−1:n(x) =
n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ(1− (1− Fα(λkx))
β)


− (n− 1)ϕ

(
n∑
k=1

ψ(1− (1− Fα(λkx))
β)

)
,(5.11)

and let Z have its distribution function as

H(x) =
1

n

n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ(1− (1− Fα(λkx))
β)

 , x > 0.(5.12)

The expression in (5.10) corresponds to the survival function of a parallel
system (i.e., r = 1), while the expression in (5.11) corresponds to the survival
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function of a 2-out-of-n system. The expression in (5.12) corresponds to the
survival function of an “average parallel system”, whose lifetime is denoted here
by Z. This average parallel system can once again be explained by a random-
ization process as follows: From a parallel system consisting of n components,
one randomly selected component may be removed to obtain a parallel system
with (n−1) remaining components; out of the n such (n−1)-component parallel
systems, we randomly select one of them, and that is what the average paral-
lel system is here. The expression of the survival function given in (5.12) then
becomes clear.

Theorem 5.2. In the special case when n = 2, we have:

(i) Xn−1:n ≤mrl Xn:n iff Z ≤mrl Xn:n;

(ii) Xn−1:n ≤hr Xn:n iff Z ≤hr Xn:n;

(iii) Xn−1:n ≤rh Xn:n iff Z ≤rh Xn:n.

Proof: This can be established in a manner analogous to Theorem 5.1,
and we therefore do not present it here for the sake of brevity.

We now present a complete characterization result for the special case when
n = 2.

Theorem 5.3. We have:

(i) X1:2 ≤mrl Y ⇐⇒ X1:2 ≤mrl X2:2 ⇐⇒ Z ≤mrl X2:2;

(ii) X1:2 ≤hr Y ⇐⇒ X1:2 ≤hr X2:2 ⇐⇒ Z ≤hr X2:2;

(iii) X1:2 ≤rh Y ⇐⇒ X1:2 ≤rh X2:2 ⇐⇒ Z ≤rh X2:2.

Proof: In Theorem 3.1, we have characterization between X1:n and X2:n

based on characterization between X1:n and Y . For the case when n = 2, it
is simply a characterization between X1:2 and X2:2 based on characterization
between X1:2 and Y . Similarly, in Theorem 3.2, we have characterization between
Xn−1:n and Xn:n based on characterization between Z and Xn:n, which in the
case when n = 2, is simply a characterization between X1:2 and X2:2 based on
characterization between Z and X2:2. As the left hand sides of both results are
the same variables, the characterization results on the right hand sides must be
equivalent. Thus, the characterization of X1:2 and Y must be equivalent to the
characterization of Z and X2:2.
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6. SYSTEMS WITH DEPENDENT MODIFIED PROPORTIONAL
HAZARDS COMPONENTS

In this section, we assume that the n components in a reliability sys-
tem are dependent with their component lifetimes following a modified propor-
tional hazards model in (2.7) and their joint distribution being represented by an
Archimedean copula in (2.1). We then establish some characterization results for
series, fail-safe, 2-out-of-n and parallel systems in this general setup using mean
residual life, hazard rate and reversed hazard orders based on a comparison with
the “average system”. The results established here complete and extend some
results of Cai et al. [8].

In this case, from (2.1), we have

F̄1:n(x) = ϕ

(
n∑
k=1

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

))
, x > 0(6.1)

F̄2:n(x) =
n∑
l=1

ϕ

 n∑
l=1,k ̸=l

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

)
− (n− 1)ϕ

(
n∑
k=1

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

))
, x > 0,(6.2)

Ḡ(x) =
1

n

n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

) , x > 0,(6.3)

where ϕ is the generator and ψ = ϕ−1. The expressions in (6.1)-(6.3) correspond
to the survival functions of series, fail-safe and average series systems in this case,
respectively. We use Y to denote the lifetime of the average series system whose
survival function is given in (6.3)

Theorem 6.1. We have:

(i) X1:n ≤mrl X2:n iff X1:n ≤mrl Y ;

(ii) X1:n ≤hr X2:n iff X1:n ≤hr Y ;

(iii) X1:n ≤rh X2:n iff X1:n ≤rh Y .

Proof: This can be established in a manner analogous to Theorem 5.1,
and we therefore do not present it here for the sake of brevity.
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Next, from the copula representation for the joint distribution ofX1, · · · , Xn

in (2.1), we find in this case

Fn:n(x) = ϕ

(
n∑
k=1

ψ

(
1− F̄ (λkx)

1− ᾱF̄ (λkx)

))
, x > 0,(6.4)

Fn−1:n(x) =
n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ

(
1− F̄ (λkx)

1− ᾱF̄ (λkx)

)
− (n− 1)ϕ

(
n∑
k=1

ψ

(
1− F̄ (λkx)

1− ᾱF̄ (λkx)

))
, x > 0,(6.5)

and let Z be a random variable with its distribution function as

H(x) =
1

n

n∑
l=1

ϕ

 n∑
k=1,k ̸=l

ψ

(
1− F̄ (λkx)

1− ᾱF̄ (λkx)

) , x > 0.(6.6)

The expressions in (6.4)-(6.6) correspond to the distribution functions of
parallel, 2-out-of-n and average parallel systems in this case.

Theorem 6.2. We have:

(i) Xn−1:n ≤mrl Xn:n iff Z ≤mrl Xn:n;

(ii) Xn−1:n ≤hr Xn:n iff Z ≤hr Xn:n;

(iii) Xn−1:n ≤rh Xn:n iff Z ≤rh Xn:n.

Proof: This can be proved in a manner analogous to Theorem 6.1, and
we therefore do not present the proof here for the sake of brevity.

Theorem 6.3. In the special case when n = 2, we have:

(i) X1:2 ≤mrl Y ⇐⇒ X1:2 ≤mrl X2:2 ⇐⇒ Z ≤mrl X2:2;

(ii) X1:2 ≤hr Y ⇐⇒ X1:2 ≤hr X2:2 ⇐⇒ Z ≤hr X2:2;

(iii) X1:2 ≤rh Y ⇐⇒ X1:2 ≤rh X2:2 ⇐⇒ Z ≤rh X2:2.

Proof: This can be proved in a way similar to Theorem 5.3, and we
therefore do not describe it here.
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7. CONCLUDING REMARKS

In this work, we have considered reliability systems with dependent com-
ponents having accelerated failure time and modified proportional hazards dis-
tributions and having a joint distribution represented by a general Archimedean
copula. We have focused especially on series, fail-safe, 2-out-of-n and parallel
systems, and have then established some characterization results for these sys-
tems through comparisons with average systems in terms of mean residual life,
hazard rate and reversed hazard rate orders. It will naturally be of interest to
extend these results to the case of general (n − r + 1)-out-of-n systems and se-
quential (n− r + 1)-out-of-n systems as discussed by Barmalzan et al. [6] under
the general setting considered here; one may see Misra and Francis [25] for some
results in this regard under a restricted setting. We are currently working on
these problems and hope to report the findings in a future paper.
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