
REVSTAT – Statistical Journal

Volume 0, Number 0, Month 0000, 000-000

On uniform and α-monotone discrete distributions

Authors: M.C. Jones
– Department of Mathematics and Statistics, The Open University,

U.K. (m.c.jones@open.ac.uk)

Received: Month 0000 Revised: Month 0000 Accepted: Month 0000

Abstract:

� In this partly expository article, I am concerned with some simple yet fundamental
aspects of discrete distributions that are either uniform or have α-monotone probabil-
ity mass functions. In the univariate case, building on work of F.W. Steutel published
in 1988, I look at Khintchine’s theorem for discrete monotone distributions in terms
of mixtures of discrete uniform distributions, along with similar results for discrete
α-monotone distributions. In the multivariate case, I develop a new general family of
multivariate discrete distributions with uniform marginal distributions associated with
copulas and consider families of multivariate discrete distributions with α-monotone
marginals associated with these.

Key-Words:

� Khintchine’s theorem; multivariate geometric distribution; multivariate discrete uni-
form distribution, multivariate Poisson distribution.

AMS Subject Classification:

� Primary 62E10; Secondary 62H05.



2 M. Chris Jones

1. INTRODUCTION

In this partly expository article, I am concerned with some simple yet fun-
damental aspects of distributions on N0 ≡ 0, 1, . . . , whose probability mass func-
tions (p.m.f.’s) p are uniform or more generally monotone nonincreasing or even
more generally α-monotone (see below), together with certain extensions of these
distributions to Nd0 ≡ N0×· · ·×N0, especially N2

0, and subsets thereof. As a prime
example of a univariate distribution with a non-uniform monotone nonincreasing
p.m.f. — a ‘monotone p.m.f.’ for short — think of the geometric distribution; the
Poisson distribution turns out to be an example of an α-monotone distribution.

The main topics to be considered in this article, by section, are:

§2 Khintchine’s theorem for monotone distributions on N0, re-interpreted in
terms of mixtures of discrete uniform distributions, and a consequent vari-
ance inequality for univariate discrete monotone distributions;

§3 a general family of multivariate discrete distributions with uniform marginal
distributions associated in an attractive yet novel way with copulas;

§4 univariate α-monotone distributions on N0 which, for 0 < α < 1, are a
‘stronger’ subset of monotone distributions, and which are of interest for
α > 1 also, when they can be non-monotone and include many familiar
distributions. Originally introduced by Steutel (1988), I pursue further
interpretation and properties;

§5 families of multivariate discrete distributions with α-monotone marginals
associated with the distributions of Sections 3 and 4. Their correlation
structures are explicit and relatively straightforward.

Potential Bayesian applications of Khintchine’s theorem for discrete dis-
tributions (§2) are to the provision of monotone prior distributions for discrete-
valued parameters and of nonparametric priors for α-monotone discrete distri-
butions (similar to e.g. Brunner & Lo, 1989, in the continuous case). Families
of multivariate discrete distributions with separation between marginal and de-
pendence parameters (§3 and especially §5) can, as in the continuous case, form
good test-beds for simulation studies; in particular, as a referee suggests, the
opportunity arises to simulate correlated discrete variables with a given correla-
tion matrix and univariate margins. Distributions with monotone and especially
α-monotone marginals can be used as models for appropriate data too, of course.
I look briefly at alternative multivariate geometric and Poisson distributions to
those in e.g. Davy & Rayner (1996) and Bermúdez & Karlis (2011), respectively,
while alternatives to existing multivariate binomial (e.g. Westfall & Young, 1989)
and multivariate negative binomial (e.g. Shi & Valdez, 2014) distributions are also
readily available but not developed explicitly.
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All mathematical manipulations made in this article have the major ben-
efit of being simple and direct. As I go along, it will often be useful to point
out analogies and connections with results for continuous data which have uni-
form or α-monotone probability density functions (p.d.f.’s) f on R+, and their
multivariate extensions.

2. DISCRETE KHINTCHINE’S THEOREM

Let f be a monotone p.d.f. on R+. Then, the renowned Khintchine’s The-
orem (Khintchine, 1938, Feller, 1971) says that X ∼ f can be written as a
uniform scale mixture, either as X = UY , where U and Y are independent,
U ∼ Uniform(0, 1) and Y ∼ G for some cumulative distribution function (c.d.f.)
G on R+, or equivalently as X|Y = y ∼ Uniform(0, y), Y ∼ G. If f is differen-
tiable, then typically G has a p.d.f. g such that g(x) = −xf ′(x). (The distribution
of Y is not absolutely continuous if f has support (0, b) say, when b < ∞ and
f(b) > 0; see Section 4.)

Implicit in Steutel’s (1988) paper on “discrete α-monotonicity” — of which,
more in Section 4 — is a corresponding result to Khintchine’s theorem in the
discrete case. (See also the earlier work of Medgyessy, 1972.) It is framed in
terms of binomial thinning, as first proposed by Steutel and van Harn (1979).
For values of θ ∈ [0, 1], the random variable Nm,θ is the binomially thinned
version of the count m ∈ N0 if

Nm,θ ≡ θ ◦m ≡
m∑
j=1

Bj

where the sum is understood to be zero ifm = 0. Here, B1, ..., Bm are independent
Bernoulli(θ) random variables. (Note that if θ = 1, Nm,θ = m and if θ = 0,
Nm,θ = 0.) A useful equivalent way of expressing Nm,θ = θ ◦m is as

Nm,θ = θ ◦m ∼ Binomial(m, θ)

where Binomial(0, θ) is understood to be the degenerate distribution at zero.

The above is binomial thinning for fixed θ and m, extensions to which
are to mix over distributions for their random variable versions, Θ and/or M .
So, consider the distribution of N = Θ ◦M ∼ p on N0 where Θ ∼ h on (0, 1),
independently of M ∼ q on N0. This distribution can be expressed as

N |M = m ∼ BinMix(m), M ∼ q,

with the binomial mixture distribution ‘BinMix’ defined as follows: Nm ≡ Θ◦m ∼
BinMix(m) if

(2.1) Nm|Θ = θ ∼ Binomial(m, θ), Θ ∼ h.
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Steutel’s (1988) observation is that taking Θ ∼ Uniform(0, 1) is equivalent
to p being a monotone p.m.f. on N0. I now note that in that case, where h(θ) =
I(0 < θ < 1) and I(·) denotes the indicator function,

Nm = Θ ◦m ∼ Uniform{0, ...,m},

that is, the binomial mixture distribution reduces to the uniform distribution on
{0, ...,m}. To see this, note that, for each x ∈ {0, ...,m},∫ 1

0

(
m

x

)
θx(1− θ)m−x dθ =

(
m

x

)
B(x+ 1,m− x+ 1) =

1

m+ 1

(here, B(·, ·) is the beta function). This is, of course, a very special case of the
beta-binomial distribution (see Johnson, Kemp and Kotz, 2005, Section 6.9.2).

The discrete analogue of Khintchine’s theorem can therefore be given most
simply — and not unexpectedly given its continuous analogue — as a discrete
uniform mixture, as in Result 2.1.

Result 2.1 A p.m.f. p on N0 is monotone if and only if N ∼ p can be written as

N |M = m ∼ Uniform{0, ...,m}, M ∼ q,

where q is any p.m.f. on N0. In fact, the p.m.f.s p and q are related by

(2.2) p(n) =
∞∑
m=n

q(m)

m+ 1
, q(m) = (m+ 1) {p(m)− p(m+ 1)} .

Also, the corresponding c.d.f.s P and Q are related by

Q(n) = P (n)− (n+ 1)p(n+ 1).

Example 2.1

(a) Let N ∼ Geometric(p), 0 < p < 1, which has strictly decreasing p.m.f. In
this case,

q(m) = (m+ 1) p2(1− p)m,

that is, M ∼ NegativeBinomial(2, p), which is the distribution of the sum
of two independent Geometric(p) random variables.

(b) Let N ∼ Poisson(µ) with 0 < µ ≤ 1. Then, p is monotone on N0, and
Result 2.1 applies with

q(m) = (m+ 1− µ) p(m).

One of a number of ways of interpreting q is that it is the distribution of
M0 +B where B ∼ Bernoulli(µ), independent of M0 ∼ Poisson(µ).
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(c) Now let M ∼ Poisson(λ), λ > 0. Then, N has the strictly decreasing p.m.f.

p(n) =
e−λ

λ

∞∑
j=n+1

λj

j!
=

1

λ
Γ(λ;n+ 1)

where Γ(·; ·) is the incomplete gamma function ratio. From (2.3) below,
E(N) = λ/2 and V(N) = λ(6 + λ)/12, so p is overdispersed as well as
decreasing.

(d) The distribution of part (c) is a special case of taking q(m) = (m+1) r(m+
1)/µr where r is an arbitrary p.m.f. on N0 with finite mean µr. Then,
p(n) = R(n)/µr where R(n) = P (R > n) and R ∼ r, so p is clearly
monotone.

(e) There is no distribution satisfying p = q. If there were, p must satisfy
p(m+ 1)/p(m) = m/(m+ 1), m = 0, 1, ..., and this was shown by Leo Katz
in the 1940s not to correspond to a valid distribution (see Johnson et al.,
2005, Section 2.3.1).

Either directly or as a consequence of more general results for mixed bino-
mial thinning, it is easy to show that

(2.3) E(N) = E(M)/2, V(N) =
[
4V(M) + 2E(M) + {E(M)}2

]
/12.

Since V(M) ≥ 0 and E(M) = 2E(N), the following variance-mean inequality
arises.

Result 2.2 If N follows a monotone p.m.f. on N0, then

V(N) ≥ E(N) {1 + E(N)}/3,

and any monotone distribution is overdispersed if E(N) > 2.

This inequality and observation arose in Jones and Marchand (2019) from
a different perspective. The inequality is the discrete analogue of the inequality
V(X) ≥ {E(X)}2/3 of Johnson and Rogers (1951) in the continuous monotone
case.

3. MULTIVARIATE DISCRETE UNIFORM DISTRIBUTIONS

Write c and C for the p.d.f. and cumulative distribution function (c.d.f.)
of an absolutely continuous copula on (0, 1)d (e.g. Nelsen, 2006, Joe, 1997, 2014).
This section and the next can be seen as an investigation of a role for such
multivariate continuous uniform distributions in providing the dependence prop-
erties of certain multivariate discrete distributions, starting in this section with
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multivariate discrete distributions with discrete uniform marginal distributions,
referred to from here on as multivariate discrete uniform distributions. Note that
this is quite different from the use of a copula in conjunction with the discon-
tinuous c.d.f.’s and quantile functions of discrete marginals, a common practice
but with a number of “dangers and limitations”, as discussed by Genest and
Nešlehová (2007). That said, a multivariate discrete uniform distribution does
not fulfil the same role for multivariate discrete distributions as a copula does for
multivariate continuous distributions because univariate discrete c.d.f.’s, when
considered as functions of their random variable, are not distributed as discrete
uniforms i.e., if X has distribution F , and F is discrete, then F (X) is not uniform.
In contrast, F (X) is (continuous) uniform when F is continuous.

The fact that a binomial distribution mixed over a continuous uniform
distribution for its probability parameter is itself a discrete uniform distribution
suggests that a multivariate discrete uniform distribution can be defined as the
distribution of (N1, ..., Nd) on {0, ...,m1} × · · · × {0, ...,md} such that

Ni|Θi = θi ∼ Binomial(mi, θi) independently for i = 1, ..., d,

Θ(d) ≡ {Θ1, ...,Θd} ∼ c(θ1, ..., θd).

The joint p.m.f. of (N1, ..., Nd) is

pU (n1, ..., nd | m1, ...,md) =

{
d∏
i=1

(
mi

ni

)}
(3.1)

×
∫ 1

0
· · ·
∫ 1

0

{
d∏
i=1

θnii (1− θi)mi−ni
}
c(θ1, ..., θd) dθ1 ... dθd.

Its univariate marginal distributions are discrete uniform by construction because
those of the copula are continuous uniform.

Moments of this construction are readily available and, in particular, corre-
lations are determined by those of the copula as follows. Since Cov(Ni, Nj |Θ(d) =
θ(d)) = 0, it is the case that

Cov(Ni, Nj) = Cov{E(Ni|Θ(d) = θ(d)),E(Nj |Θ(d) = θ(d))}
= mimjCov(Θi,Θj).(3.2)

Also, since V(Ni) = mi(mi + 2)/12, V(Nj) = mj(mj + 2)/12, it is the case that

Corr(Ni, Nj) =
mimjCorr(Θi,Θj)/12√
mi(mi + 2)mj(mj + 2)/12

=

√
mi

mi + 2

√
mj

mj + 2
Corr(Θi,Θj).(3.3)

So, while the correlation of Ni and Nj has the same sign as that of Θi and Θj , it
reduces to one-third that of the copula in the binary case, and increases, tending
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to a factor of 1, as the marginal supports grow larger. Note that Corr(Θi,Θj) is
Spearman’s rho.

The existence of this simple relationship between discrete and continuous
uniform correlations is a reason for preferring the current construction to dis-
cretisations of the copula, although the two can be very similar, as the following
simple example shows.

Example 3.1

Consider the bivariate Farlie–Gumbel–Morgenstern (FGM) copula given by

C(u, v) = uv{1 + φ(1− u)(1− v)}, c(u, v) = 1 + φ(1− 2u)(1− 2v),

on 0 < u, v < 1 with −1 ≤ φ ≤ 1. Entering this into (3.1) when d = 2 gives

pFGM (n1, n2) =
1

(m1 + 1)(m2 + 1)

{
1 + φ

(2n1 −m1)(2n2 −m2)

(m1 + 2)(m2 + 2)

}
;

its correlation, from (3.3) and e.g. Example 2.4 of Joe (1997), is√
m1

m1 + 2

√
m2

m2 + 2

φ

3
.

A natural discretisation of any C in the bivariate case is

p′(n1, n2) = C

(
n1 + 1

m1 + 1
,
n2 + 1

m2 + 1

)
+ C

(
n1

m1 + 1
,

n2

m2 + 1

)
− C

(
n1 + 1

m1 + 1
,

n2

m2 + 1

)
− C

(
n1

m1 + 1
,
n2 + 1

m2 + 1

)
which turns out in the FGM case to equate to

(3.4) p′FGM (n1, n2) =
1

(m1 + 1)(m2 + 1)

{
1 + φ

(2n1 −m1)(2n2 −m2)

(m1 + 1)(m2 + 1)

}
;

this differs just a little from pFGM . The correlation associated with this model,
calculated directly from (3.4), is similar to that of pFGM , but a little larger; it is√

m1(m1 + 2)

(m1 + 1)2

√
m2(m2 + 2)

(m2 + 1)2

φ

3
.

Formula (3.1) is a particular way of constructing multivariate distributions
with uniform univariate marginals. If a multivariate discrete uniform distribution
is specified by other means, there is not necessarily a copula leading to it via
construction (3.1). Even when there is, as with copula discretisation, there is not
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generally a unique copula leading to that distribution. The following simple, if
extreme, example makes this clear.

Example 3.2

Let d = 2 and m1 = m2 = 1. In this case, the elements of the joint p.m.f.
of (N1, N2) depend only on pU (0, 0) ≤ 1/2, since pU (0, 1) = {1− 2pU (0, 0)}/2,
pU (1, 0) = {1− 2pU (0, 0)}/2 and pU (1, 1) = pU (0, 0). Write EC for expectation
under the copula. Then, from (3.1), we have

pU (0, 0) = EC{(1−Θ1)(1−Θ2)} = EC(Θ1Θ2),

pU (0, 1) = EC{(1−Θ1)Θ2} = 1
2 − EC(Θ1Θ2),

pU (1, 0) = EC{Θ1(1−Θ2)} = 1
2 − EC(Θ1Θ2),

pU (1, 1) = EC(Θ1Θ2).

Therefore, any copula with EC(Θ1Θ2) = pU (0, 0) will give rise to this bivariate
binary uniform distribution. (In fact, the uniform marginals of the copula are
not required for this argument: the copula can be replaced by any distribution on
(0, 1)× (0, 1) with marginal means equal to 1/2 and E(Θ1Θ2) = pU (0, 0).) How-
ever, the product moment requirement translates to Corr(Θ1,Θ2) = 12pU (0, 0)−
3, which restricts the existence of such a mixing distribution to when 1/6 ≤
pU (0, 0) ≤ 1/3.

4. DISCRETE α-MONOTONICITY

I now return to the univariate domain. To set the scene, I first describe the
situation in the continuous case. There, α-monotonicity was introduced by Olshen
and Savage (1970) (see also Dharmadhikari and Joag-Dev, 1988, and Bertin,
Cuculescu and Theodorescu, 1997): the distribution of a continuous random
variable X is said to be α-monotone if and only if the distribution of Xα is
monotone, α > 0. Then, X can be written in the form X = AαY say, where Aα ∼
Beta(α, 1), independently of Y ∼ g on R+, in a similar manner to Khintchine’s
theorem; equivalently, X = U1/αY where U ∼ Uniform(0, 1). Clearly α = 1
corresponds to ordinary monotonicity. By construction, if a distribution is α0-
monotone say, then is it also α-monotone for all α > α0. In particular, α-
monotone distributions with α < 1 are also ordinary monotone.

Providing an alternative view of an equivalent formulation of Abouammoh
(1987/1988), Steutel (1988) first put forward discrete α-monotonicity in the fol-
lowing manner: for α > 0, N ∼ p is discrete α-monotone if N = Aα ◦Mα =
U1/α ◦ Mα, where Aα ∼ Beta(α, 1), U ∼ Uniform(0, 1) and either of these is
independent of Mα ∼ qα on N0. The distribution of N can now be recognized,
from Section 2, as being that of

(4.1) N |Mα = mα ∼ BetaBinomial(mα, α, 1), Mα ∼ qα,
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where the BetaBinomial(mα, α, 1) distribution has p.m.f.

(4.2) pBB1(x) =
αmα! Γ(x+ α)

x! Γ(mα + α+ 1)

for x ∈ {0, ...,mα}. This is because now h(θ) = αθα−1I(0 < θ < 1) in (2.1) so
that the binomial mixture distribution becomes

α

∫ 1

0

(
mα

x

)
θx+α−1(1− θ)mα−x dθ = α

(
mα

x

)
B(x+ α,mα − x+ 1) = pBB1(x).

(4.1) and (4.2) lead directly to confirmation of Steutel’s (1988) formula

p(n) = α
Γ(n+ α)

n!

∞∑
m=n

m! qα(m)

Γ(m+ α+ 1)
.

Steutel then observes that

(4.3) (n+ α)p(n)− (n+ 1)p(n+ 1) = αqα(n)

from which it can be concluded that discrete α-monotonicity corresponds to p
having the simple property that

(n+ α)p(n) ≥ (n+ 1)p(n+ 1).

Here, the inequality is strict except when qα(n) = 0. The corresponding c.d.f.s
P and Qα are related by

αQα(n) = αP (n)− (n+ 1)p(n+ 1),

which can be readily checked to give rise to (4.3). Comments above on continuous
α-monotonicities for various values of α continue to hold in the discrete case.

It can be added that (4.3) can also be written

(4.4) q(n) = (1− α)p(n) + α qα(n)

where q = q1 is as at (2.2) in Result 2.1. To corroborate and interpret (4.4) in the
case that 0 < α ≤ 1, an alternative way of expressing α-monotonicity arises from
writing Aα = UV where U ∼ Uniform(0, 1) independently of some appropriate
V ; this is possible when 0 < α ≤ 1 because then Beta(α, 1) is monotone (non-
increasing). Moreover, Beta(α, 1) is then a distribution on a finite interval with
non-zero density at its upper endpoint. As signposted at the start of Section 2,
the density of V is not −xf ′(x) if f has support (0, b) and f(b) > 0; in fact,

V ∼
{
Y with probability 1− α,
b with probability α,

where Y ∼ −xf ′(x)/{1− f(b)} on (0, b). When b = 1 and h(x) = αxα−1 so that
h(1) = α, it turns out that −xh′(x)/{1 − h(1)} = h(x). In the case of discrete
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α-monotonicity with 0 < α ≤ 1, it follows that N = Aα ◦M = (UV ) ◦M =
U ◦ (V ◦M) so that N = U ◦N0 where U ∼ Uniform(0, 1) and

N0 ∼
{
N with probability 1− α,
M with probability α,

which is immediately seen to be equivalent to (4.4).

By any of a number of routes, it can be shown that, for α-monotone distri-
butions for any α > 0,

E(N) =
αE(Mα)

α+ 1
, V(N) =

α
[
(α+ 1)2V(Mα) + (α+ 1)E(Mα) + {E(Mα)}2

]
(α+ 1)2(α+ 2)

.

Since V(Mα) ≥ 0 and E(Mα) = (α + 1)E(N)/α, the following variance-mean
inequality ensues.

Result 4.1 If N follows an α-monotone p.m.f. on N0 for all α ≥ αmin say, then

V(N) ≥ E(N){αmin + E(N)}
αmin(αmin + 2)

≥ E(N){α+ E(N)}
α(α+ 2)

.

The ‘outside’ inequality is essentially Theorem 3.1 of Abouammoh, Ali and
Mashhour (1994) with a = 0 and Corollary 5.3.21 of Bertin et al. (1997). An
α-monotone distribution is thereby guaranteed to be overdispersed if E(N) >
αmin(αmin + 1). Of course, the outside inequality in Result 4.1 reduces to Result
2.2 when α = 1.

Example 4.1

(a) N ∼ Geometric(p) is α-monotone for α ≥ 1 − p ≡ αmin. Using (4.3), the
corresponding p.m.f. of Mα is

qα(m) = {(m+ 1)p− (1− α)}p(1− p)m/α.

As noted in Example 2.1(a), M1 ∼ NegativeBinomial(2, p) while it can now
also be observed that M1−p has the distribution of M1 + 1. The dispersion
inequality for α-monotone distributions confirms the overdispersion of the
geometric distribution for all 0 < p < 1.

(b) Let N ∼ Poisson(µ) with 0 < µ ≤ α. Then, the Poisson p.m.f. p is
α-monotone on N0, and formula (4.3) applies to give

qα(m) = (m+ α− µ) p(m)/α.

Now, qα is the distribution of M0 + B where B ∼ Bernoulli(µ/α), inde-
pendent of M0 ∼ Poisson(µ). In particular, qµ is the length-biased form of
the Poisson distribution which is, in fact, the distribution of M0 + 1. The
dispersion inequality is, of course, not satisfied for any µ > 0.
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(c) Both of the above examples together with binomial and negative binomial
distributions are covered by the Katz family, for which

(1 + n) p(n+ 1) = (a+ bn) p(n);

see Section 2.3.1 of Johnson et al. (2005). In general, a > 0 and b < 1,
but α-monotonicity restricts the range of a to 0 < a ≤ α. For any Katz
distribution,

qα(m) = {(α− a) + (1− b)m}p(m)

reducing to qa(m) = (1 − b)mp(m)/a when α = a. Let Ka,b be a random
variable following the Katz distribution with parameters a and b. Then,
the latter length-biased distribution is also the distribution of Ka+b,b + 1.
Since E(Ka,b) = a/(1−b) and V(Ka,b) = a/(1−b)2, the dispersion inequality
yields overdispersion if (a+1)(1−b) < 1 while a Katz distribution is actually
overdispersed for 0 < b < 1. The general results reduce to those of part (a)
when a = b = 1 − p and part (b) when a = µ, b = 0. They give results for
the Binomial(k, p) distribution when a = kp/(1− p), b = −p/(1− p) and to
the NegativeBinomial(k, p) distribution when a = k(1− p), b = (1− p).

5. MULTIVARIATE DISCRETE DISTRIBUTIONS WITH
α-MONOTONE UNIVARIATE MARGINALS

Combining Sections 2 and 3 further, it is natural to develop discrete distri-
butions on Nd0 with monotone univariate marginals as the distribution of N (d) ≡
(N1, ..., Nd) where

Ni|Mi = mi,Θi = θi ∼ Binomial(mi, θi) independently for i = 1, ..., d,

M (d) ≡ {M1, ...,Md} ∼ q(m1, ...,md),

Θ(d) ≡ {Θ1, ...,Θd} ∼ c(θ1, ..., θd),

where q is now an arbitrary p.m.f. on Nd0 and M (d) is independent of Θ(d). This
is, of course, equivalent to mixing the multivariate discrete uniform distribution
of Section 3 over q:

N (d)|M (d) = {m1, ...,md} ∼ pU (n1, ..., nd|m1, ...,md), M (d) ∼ q(m1, ...,md).

To additionally fold in the work of Section 4, to provide multivariate dis-
crete distributions with α-monotone marginal distributions (more properly α(d)-
monotone marginal distributions where α(d) ≡ {α1, ..., αd}), the key is to replace

Θ(d) by Θ
(d)
α ≡ {Θ1/α1

1 , ...,Θ
1/αd
d }. Let the resulting random variable be N

(d)
α .

The joint p.m.f. of N
(d)
α is
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pD(n1, ..., nd;α1, ...αd) =
∞∑

m1=n1

· · ·
∞∑

md=nd

q(m1, ...,md)

{
d∏
i=1

(
mi

ni

)}

×
∫ 1

0
· · ·
∫ 1

0

{
d∏
i=1

θ
ni/αi
i (1− θ1/αi

i )mi−ni

}
c(θ1, ..., θd) dθ1 ... dθd.(5.1)

Its univariate marginal distributions have the α1-monotone, α2-monotone, ...,
αd-monotone p.m.f.’s of Section 4 by construction. The form of (5.1) involves
d infinite sums and integrals but, as will be seen below, certain special cases
simplify considerably. Moments remain readily available and correlations are as
follows. Using (2.3) and (3.2),

Cov(Ni, Nj) = E(MiMj) Cov(Θ
1/αi
i ,Θ

1/αj
j ) +

αi
αi + 1

αj
αj + 1

Cov(Mi,Mj)

so that
(5.2)

Corr(Ni, Nj) =
E(MiMj) Corr(Θ

1/αi
i ,Θ

1/αj
j )+

√
αi(αi+2)αj(αj+2) Cov(Mi,Mj)√

[(αi+1)2V(Mi)+(αi+1)E(Mi)+{E(Mi)}2][(αj+1)2V(Mj)+(αj+1)E(Mj)+{E(Mj)}2]
.

In the following two subsections, I will take a brief look at two major particular
cases of this in terms of the form of distribution for M . These distributions and
their properties are analogues of those given in Section 3 of Bryson and Johnson
(1982) in the continuous case when d = 2. They are theoretically interesting but
for the most part may prove to have limited practical applicability.

5.1. When M1, ...,Md are mutually independent

Let Mi ∼ qi, independently for i = 1, ..., d. This allows the dependence
structure of pD to depend only on that of C ameliorated by the value of α(d). The

joint p.d.f. of N
(d)
α is given by the obvious small change to (5.1). The correlation

of Ni and Nj , given by (5.2), reduces to
(5.3)

Corr(Ni, Nj) =
√

E(Mi)
(αi+1)2D(Mi)+E(Mi)+αi+1

√
E(Mj)

(αj+1)2D(Mj)+E(Mj)+αj+1
Corr(Θ

1/αi
i ,Θ

1/αj
j ).

where D(M) = V(M)/E(M) is the index of dispersion of M . Again, this has the
same sign as the correlation associated with the copula and is always a reduc-
tion of the absolute value of the correlation compared with that of the copula,
sometimes considerably so.
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Example 5.1

This example concerns a family of multivariate distributions with geometric
marginal distributions. Following Example 2.1(a), let qi(m) = (m + 1) p2

i (1 −
pi)

m with E(Mi) = 2(1 − pi)/pi and V(Mi) = 2(1 − pi)/p
2
i , i = 1, ..., d. The

corresponding multivariate geometric distribution arises by taking α1 = · · · =
αd = 1. Reduction of (5.1) in this case requires simplification of terms of the
form

∑∞
m=n(m+ 1)p2(1− p)m

(
m
n

)
θn(1− θ)m−n which is achieved by noting that,

with 0 < ψ ≡ (1− p)(1− θ) < 1,

∞∑
m=n

(m+ 1)

(
m

n

)
ψm−n = (n+ 1)

∞∑
m=n

(
m+ 1

n+ 1

)
ψm−n

= (n+ 1)
∞∑
j=0

(
n+ j + 1

j

)
ψj =

n+ 1

(1− ψ)n+2
.

This results in the joint p.m.f.

pG(n1, . . . , nd; p1, ..., pd) =

d∏
i=1

(ni + 1)p2
i (1− pi)ni

×
∫ 1

0
· · ·
∫ 1

0

[
d∏
i=1

θnii
{1− (1− pi)(1− θi)}ni+2

]
c(θ1, ..., θd) dθ1 ... dθd

with correlations

Corr(Ni, Nj) =
1

3

√
(1− pi)(1− pj) Corr(Θi,Θj).

The correlations associated with this family of multivariate geometric distribu-
tions are therefore limited to the range −1/3 < Corr(Ni, Nj) < 1/3, although the
range of correlations decreases as the pi’s increase.

Example 5.2

In a similar manner to Example 5.1, this example concerns a family of
multivariate distributions with Poisson marginals. It arises by taking qi(m) =
µm−1
i e−µi/(m − 1)!, m = 1, 2, ..., and αj = µj , j = 1, ..., d (cf. Example 4.1(b)).

In this case, simplification of (5.1) requires simplification of sums of the form∑∞
m=n e

−µµm−1
(
m
n

)
θn/µ(1− θ1/µ)m−n/(m− 1)!. Now, with Ω ≡ µ(1− θ1/µ) > 0,∑

m=n

m
Ωm−n

(m− n)!
=
∞∑
m=n

(m− n)
Ωm−n

(m− n)!
+ n

∞∑
m=n

Ωm−n

(m− n)!
= (Ω + n)eΩ.

The corresponding joint p.m.f. is

pP (n1, . . . , nd;µ1, ..., µd) =
d∏
i=1

µni

ni!

×
∫ 1

0
· · ·
∫ 1

0

{
d∏
i=1

θ
ni/µi
i

(
1− θ1/µi

i +
ni
µi

)
e−µiθ

1/µi
i

}
c(θ1, ..., θd) dθ1 ... dθd.
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Since E(Mi) = µi + 1,V(Mi) = µi, i = 1, ..., d, the correlations associated with
these distributions are

Corr(Ni, Nj) =
1√

(µi + 2)(µj + 2)
Corr(Θ

1/µi
i ,Θ

1/µj
j )

so that −1/2 < Corr(Ni, Nj) < 1/2. In this case, the range of correlations de-
creases as the mean parameters increase.

5.2. When M1, ...,Md are Equal or Most Strongly Dependent

Let M1 = · · · = Md = M say, i = 1, ..., d, with M ∼ q0. This particular
comonotonicity also allows the dependence structure of pD to depend on that of
C, but with an opportunity for higher correlations. Let nmax = max(n1, ..., nd).

The joint p.d.f. of N
(d)
α is given by

pD(n1, ..., nd;α1, ..., αd) =
∞∑

m=nα,max

q0(m)

{
d∏
i=1

(
m

ni

)}

×
∫ 1

0
· · ·
∫ 1

0

{
d∏
i=1

θ
ni/αi
i (1− θ1/αi

i )m−ni

}
c(θ1, ..., θd) dθ1 ... dθd.

Its correlations are, from (5.2),

(5.4) ρij ≡ Corr(Ni, Nj) =
{D(M)+E(M)}Corr(Θ

1/αi
i ,Θ

1/αj
j )+

√
αi(αi+2)αj(αj+2)D(M)√

[(αi+1)2D(M)+E(M)+αi+1][(αj+1)2D(M)+E(M)+αj+1]
,

which are all equal if α1 = · · · = αd. If rij denotes the correlation at (5.3) when
both Mi and Mj have the distribution of M , then

ρij = rij +
D(M)

{
Corr(Θ

1/αi
i ,Θ

1/αj
j )+

√
αi(αi+2)αj(αj+2)

}
√

[(αi+1)2D(M)+E(M)+αi+1][(αj+1)2D(M)+E(M)+αj+1]

which is typically greater than rij , certainly whenever αi(αi + 2)αj(αj + 2) > 1.
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Example 5.3

While in Sections 3 and 5.1 the independence copula with density c(θ1, ..., θd) =∏d
i=1 I(0 < θi < 1) results in distributions with independent marginals, this is not

the case here because of the commonality of M . In fact, using the independence

copula, the joint p.m.f. of N
(d)
α depends only on nmax and is given by

pI(n1, ..., nd;α1, ..., αd) =
∞∑

m=nmax

q0(m)(m!)d
d∏
i=1

αi Γ(ni + αi)

ni! Γ(m+ 1 + αi)
,

reducing to

pI(n1, ..., nd; 1, ..., 1) =

∞∑
m=n1,max

q0(m)

(m+ 1)d
.

The corresponding correlations are, in general,

Corr(Ni, Nj) =
√

αi(αi+2)
(αi+1)2D(M)+E(M)+αi+1

√
αj(αj+2)

(αj+1)2D(M)+E(M)+αj+1
D(M),

which are all positive. When α1 = · · · = αd = 1,

0 < Corr(Ni, Nj) =
3D(M)

4D(M) + E(M) + 2
<

3

4
.

Example 5.4

For a general copula, let us contrast the correlation structure associated
with the specific multivariate geometric and Poisson distributions of Examples
5.1 and 5.2 when M1, ...,Md are independent with the corresponding distributions
when M1 = · · · = Md = M .

(a) Let α1 = · · · = αd = 1 and M ∼ NegativeBinomial(2, p). Then, the corre-
sponding family of multivariate distributions with Geometric(p) marginals
has correlations

Corr(Ni, Nj) =
1

2
+

(3− 2p) Corr(Θi,Θj)

6
.

In this case, 0 < Corr(Ni, Nj) < 1, contrasting with a range of (−1/3, 1/3)
in Example 5.1. In fact, these correlations are always greater than those
when pi = pj = p in the independent M ’s case because α(α+2) = 3 > 1. In
the case of the independence copula as in Example 5.3, Corr(Ni, Nj) = 1/2.

(b) Let α1 = · · · = αd = µ and M = M1 + 1 where M1 ∼ Poisson(µ), as
in Example 5.2. Then, the corresponding family of multivariate Poisson
distributions has correlations

Corr(Ni, Nj) =

(
µ

µ+ 1

)2

+
(µ2 + 3µ+ 1) Corr(Θ

1/µ
i ,Θ

1/µ
j )

(µ+ 1)2(µ+ 2)
.
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It is certainly the case that −1/2 < Corr(Ni, Nj) < 1 (contrasting with
(−1/2, 1/2) in Example 5.2) although slightly more negative correlation is
possible for certain very small µ. The correlation is greater than that when

µi = µj in Example 5.2 whenever Corr(Θ
1/µ
i ,Θ

1/µ
j ) > −µ(µ + 2). In the

case of the independence copula, 0 < Corr(Ni, Nj) = µ2/(µ+ 1)2 < 1.

Finally, if M1, ...,Md are not the same, then the strongest dependence is
comonotonicity or the Fréchet upper bound. The expression for pD does not
simplify but the pair {Ni, Nj} can be more highly correlated in comparison to
Section 5.1.
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