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Abstract:

• The analysis of incomplete contingency tables is an important problem, which is also
of practical interest. In this paper, we consider boundary solutions under nonignorable
nonresponse models in two-way incomplete tables with data on both variables miss-
ing. We establish a result similar to [9] on sufficient conditions for the occurrence of
boundary solutions. We also provide a new result, which connects the forms of bound-
ary solutions under various parameterizations of the missing data models. This result
helps us to obtain the exact form of boundary solutions in the above tables, which
improves a claim made in [2] and avoids computational burden. A counterexample is
provided to show that the sufficient conditions for the occurrence of boundary solu-
tions are not necessary, thereby disproving a conjecture of [7]. Finally, we establish
new necessary conditions for the occurrence of boundary solutions under nonignorable
nonresponse models in square two-way incomplete tables, and show that they are not
sufficient. These conditions are simple and easy to check as they depend only on the
observed cell counts. They are useful and important for model selection also. Some
real life data sets are analyzed to illustrate the results.
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1. INTRODUCTION

Contingency tables with fully observed counts and partially classified mar-
gins (nonresponses) are called incomplete tables. The following three types of
missing data mechanisms have been proposed in the literature ([8]): missing
completely at random (MCAR), missing at random (MAR) and not missing at
random (NMAR). The missing mechanism is said to be (a) MCAR when miss-
ingness is independent of both observed and unobserved data, (b) MAR when
missingness depends only on observed data, and (c) NMAR if missingness de-
pends on unobserved data. Nonresponses are called ignorable when the missing
data mechanism is MAR or MCAR, and the parameters governing the missing
data mechanism are distinct from those to be estimated. They are nonignorable
when the missing data mechanism is NMAR.

Log-linear models have generally been used to study missing data mech-
anisms in incomplete tables (see [9] and references therein). However, under
nonignorable models, a boundary solution occurs when the cell probabilities of
non-respondents are estimated to be zeros for certain levels of the missing vari-
ables. That is, the maximum likelihood estimators (MLE’s) of the parameters
lie on the boundary of the parameter space. Note that the problem of boundary
solutions is an important one as it has serious consequences for statistical infer-
ence. For example, the observed counts cannot be reproduced by a perfect fit
model (a model for which the estimated expected counts are equal to the observed
counts) if boundary solutions occur. This implies that the fit is inadequate and
the parameter estimates are imprecise. The log likelihood function is flat and,
therefore, convergence of the EM algorithm to the boundary MLE’s requires a
lot of iterations. Also, the eigenvalues of the covariance matrix are inappropriate
(either around zero or negative), which implies some parameter estimates have
large estimated standard errors and wide confidence intervals. Hence, it is useful
to study various forms of boundary solutions and explore conditions for their
occurrence in incomplete tables.

Consider two categorical variables with I and J levels. Then an I × J × 2
table and an I × J × 2× 2 table represent two-way incomplete tables with data
on one of the variables and data on both the variables missing respectively. The
problem of boundary solutions was first considered by [1] who proposed a suffi-
cient condition for their occurrence in a 2×2×2 incomplete table. [2] studied the
problem for an I × J × 2× 2 incomplete table, which has non-monotone missing
value patterns. For an I × J × 2 incomplete table with simple monotone missing
value patterns, [10] and [3] described the problem geometrically, while [4] dis-
cussed properties of MLE’s in case of boundary solutions. [9] proposed sufficient
conditions for the occurrence of boundary solutions under various NMAR models
in an I × I × 2 × 2 incomplete table. Recently, [5] provided forms of boundary
solutions in arbitrary three-way and n-dimensional incomplete tables with one or
more variables missing, and also established sufficient conditions for their occur-
rence under various NMAR models. In this paper, we consider the above and
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other related issues for an I × J × 2 × 2 table. Note that a lower dimensional
incomplete table is not a special case of a higher dimensional one and hence any
result for the former cannot be obtained directly from that for the latter.

The purpose of this paper is to provide a comprehensive treatment of the
problem of boundary solutions in two-way incomplete tables with both variables
missing. To this effect, we first introduce some notations and consider various
identifiable NMAR log-linear models (Models [M1]-[M5]) for an I × J × 2 × 2
incomplete table. The problem of boundary solutions, along with their forms
under the above models, is discussed in Section 3. We formally define boundary
solutions for an I × J × 2 × 2 incomplete table by extending the definition of
[1], which are unavailable in the literature. A novel result (Proposition 3.1) is
provided, which gives the relationship among forms of boundary solutions ac-
cording to various parameterizations for the missing data models. This helps us
to theoretically justify and deduce the exact boundary solutions in those models
directly without having to obtain them empirically (see pp. 39-40 of [9]) using
the EM algorithm. In Section 4, we illustrate this result using some data analy-
sis examples from [2], thereby improving a claim made by them on the forms of
boundary solutions in I × J × 2× 2 tables, which also eliminates computations.

In Section 5, we provide a result (Theorem 5.1) on sufficient conditions
for the occurrence of boundary solutions in the above tables, which is similar
to Theorem 1 of [9] but proved using direct arguments instead of contrapositive
ones used in [9]. While [9] consider only Model [M5] in Theorem 1, we consider
Models [M1]-[M5] in Theorem 5.1. A counterexample is provided to show that the
sufficient conditions for the occurrence of boundary solutions are not necessary,
which refutes a conjecture due to [7].

Finally, we propose new necessary conditions in Theorem 5.2 for the occur-
rence of boundary solutions under Models [M1]-[M5] in square two-way incom-
plete tables, and later show that they are not sufficient through a counterexample.
Such conditions do not exist in the literature. Note that these conditions help
us to identify the non-occurrence of boundary solutions, which is very useful for
fitting appropriate models to the incomplete data (model selection). Also, these
conditions involve only the observed cell counts and their sums in the tables, and
hence can be easily verified. Section 6 provides some concluding remarks.

2. NMAR LOG-LINEAR MODELS

Suppose Y1 and Y2 are two categorical variables having I and J levels
respectively. For i = 1, 2, let Ri denote the missing indicator for Yi so that
Ri = 1 or 2 if Yi is observed or unobserved. Then we have an I × J × 2 × 2
incomplete table, corresponding to Y1, Y2, R1 andR2, with cell counts y = {yijkl}
where 1 ≤ i ≤ I, 1 ≤ j ≤ J and 1 ≤ k, l ≤ 2. The vector of observed counts
is yobs = ({yij11}, {yi+12}, {y+j21}, y++22), where {yij11} are the fully observed
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counts and {yi+12}, {y+j21}, y++22 are the partially classified counts also known
as the supplementary margins. All cell counts are assumed to be positive. The
fully observed counts are those for which data on both Y1 and Y2 is available, while
data on at most Y1 or Y2 is available for the supplementary margins. Note that
‘+’ denotes summation over levels of the corresponding variable. For example,
y+j21 denotes the number of observations corresponding to Y2 = j for which data
on Y2 is observed but data on Y1 is missing. Let π = {πijkl} be the vector of cell
probabilities, µ = {µijkl} be the vector of expected counts and N =

∑
i,j,k,l yijkl

the total number of cell counts. For I = J = 2, we have the 2 × 2 × 2 × 2
incomplete table given by Table 1.

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 missing

R1 = 1 Y1 = 1 y1111 y1211 y1+12

Y1 = 2 y2111 y2211 y2+12

R1 = 2 Y1 missing y+121 y+221 y++22

Table 1: 2× 2× 2× 2 Incomplete Table

We consider Poisson sampling for convenience, that is, Yijkl ∼ P (µijkl).
The likelihood function of µ is

L(µ; yobs) =
e−

∑
i,j,k,l µijkl

∏
i,j µ

yij11
ij11

∏
i µ

yi+12

i+12

∏
j µ

y+j21

+j21 µ
y++22

++22∏
i,j,k,l yijkl!

(2.1)

so that the log-likelihood function of µ is

l(µ; yobs) =
∑
i,j

yij11 logµij11 +
∑
i

yi+12 logµi+12 +
∑
j

y+j21 logµ+j21

+y++22 logµ++22 − µ++++ + ∆,(2.2)

where ∆ is independent of µijkl’s. For an I × J × 2 × 2 incomplete table, [2]
proposed the following log-linear model (with no three-way or four-way interac-
tions):

logµijkl = λ+ λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j)

+λY1R1(i, k) + λY2R1(j, k) + λY1R2(i, l) + λY2R2(j, l) + λR1R2(k, l),(2.3)

where the sum over any argument of a log-linear parameter is zero, for example,∑
i λY1Y2(i, j) =

∑
j λY1Y2(i, j) = 0. To study the various missing mechanisms of

Y1 and Y2, [2] introduced the following notations:

aij =
P (R1 = 2, R2 = 1|Y1 = i, Y2 = j)

P (R1 = 1, R2 = 1|Y1 = i, Y2 = j)
=
πij21
πij11

=
µij21
µij11

,

bij =
P (R1 = 1, R2 = 2|Y1 = i, Y2 = j)

P (R1 = 1, R2 = 1|Y1 = i, Y2 = j)
=
πij12
πij11

=
µij12
µij11

, mij11 = Nπij11,

g =
P (R1 = 1, R2 = 1|Y1 = i, Y2 = j)P (R1 = 2, R2 = 2|Y1 = i, Y2 = j)

P (R1 = 1, R2 = 2|Y1 = i, Y2 = j)P (R1 = 2, R2 = 1|Y1 = i, Y2 = j)
.
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Remark 2.1. Under (2.3), it can be shown that aij = exp[−2{λR1(1) +
λY1R1(i, 1) + λY2R1(j, 1) + λR1R2(1, 1)}] and bij = exp[−2{λR2(1) + λY1R2(i, 1) +
λY2R2(j, 1) + λR1R2(1, 1)}]. Also, we have g =

πij11πij22
πij12πij21

=
µij11µij22
µij12µij21

. Hence

log g = logµij11 + logµij22 − logµij12 − logµij21

⇒ log g = λR1R2(1, 1) + λR1R2(2, 2)− λR1R2(1, 2)− λR1R2(2, 1) (from (2.3))

⇒ log g = 4λR1R2(1, 1) (∵ λR1R2(1, 2) = −λR1R2(2, 2) = λR1R2(2, 1)

= −λR1R2(1, 1))

⇒ g = exp[4λR1R2(1, 1)],

which is independent of i and j.

Note that mij11 = µij11 and g denotes the odds ratio between the missing
indicators of Y1 and Y2. Also, µij21 = mij11aij , µij12 = mij11bij and µij22 =
mij11aijbijg. Note that aij is the conditional odds of Y1 being missing given
Y2 is observed, while bij is the conditional odds of Y2 being missing given Y1
is observed. Here, aij and bij describe the missing mechanisms of Y1 and Y2,
respectively. Denote aij (bij) by αi. (βi.) or α.j (β.j) or α.. (β..) if it depends only
on i or j or none, respectively. Then we have the following definition.

Definition 2.1. The missing mechanism of Y1 under (2.3) is NMAR if
aij = αi., MAR if aij = α.j and MCAR if aij = α... Similarly, the missing
mechanism of Y2 is NMAR if bij = β.j , MAR if bij = βi. and MCAR if bij = β...

Using Definition 2.1 and the above notations, there are nine possible identi-
fiable models (see pp. 647-648 of [2]) based on different missing mechanisms for Y1
and Y2. The equivalent log-linear models can be obtained as submodels of (2.3).
As an example, consider the model (αi., βi.), for which the missing mechanism is
NMAR for Y1 and MAR for Y2. Using the expressions of aij and bij in Remark
2.1, the corresponding log-linear model is obtained from (2.3) by substituting
λY2R1(j, k) = λY2R2(j, l) = 0. The following are the five models when the missing
mechanism is NMAR for Y1 or Y2.

1. Model M1 (NMAR for Y1, MCAR for Y2):

logµijkl = λ+λY1(i)+λY2(j)+λR1(k)+λR2(l)+λY1Y2(i, j)+λY1R1(i, k)+λR1R2(k, l)

2. Model M2 (NMAR for Y2, MCAR for Y1):

logµijkl = λ+λY1(i)+λY2(j)+λR1(k)+λR2(l)+λY1Y2(i, j)+λY2R2(j, l)+λR1R2(k, l)

3. Model M3 (NMAR for Y1, MAR for Y2):

logµijkl = λ+ λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j) + λY1R1(i, k)

+λY1R2(i, l) + λR1R2(k, l)
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4. Model M4 (NMAR for Y2, MAR for Y1):

logµijkl = λ+ λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j) + λY2R1(j, k)

+λY2R2(j, l) + λR1R2(k, l)

5. Model M5 (NMAR for both Y1 and Y2):

logµijkl = λ+ λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j) + λY1R1(i, k)

+λY2R2(j, l) + λR1R2(k, l)

Note that for Models [M1]-[M5], there is an association term between a variable
and its missing indicator if the missing mechanism is NMAR for that variable
(for example, the term λY1R1(i, k) in Model [M1]), between a variable and the
other missing indicator if the missing mechanism is MAR for that variable (for
example, the term λY2R1(j, k) in Model [M4]) and none if the missing mechanism
is MCAR for a variable (for example, λY1R1(i, k) and λY2R1(j, k) are absent in
Model [M2]).

3. BOUNDARY SOLUTIONS IN NMAR MODELS

In this section, we consider boundary solutions under non-ignorable nonre-
sponse (NMAR) models for an I × J × 2 × 2 incomplete table. We first define
boundary solutions under the above models and then present a result relating the
forms of boundary solutions in terms of various parameterizations of the models.

For an incomplete table, boundary solutions in NMAR models occur when
the MLE’s of nonresponse cell probabilities are all zeros for certain levels of the
missing variables. For an I × J × 2 incomplete table, where data on only Y2 is
missing, [1] defined boundary solutions in the NMAR model for Y2 as π̂ij2 = 0 for
at least one pair (i, j). For the same model, [4] showed that boundary solutions
are given by π̂+j2 = 0 for at least one and at most (J − 1) values of Y2. [1]
defined a nonresponse boundary solution under NMAR models in general to be
a stationary point that lies on a boundary of the space of parameters modeling
the nonignorable nonresponse. Using this, we may extend their definition to an
I × J × 2× 2 table as follows.

Definition 3.1. Consider an I × J × 2 × 2 incomplete table, and let
1 ≤ i ≤ I, 1 ≤ j ≤ J and k, l = 1, 2. Then we have the following.
1. A nonresponse boundary solution under the NMAR models for Y1 only, that is,
Models [M1] and [M3] is an MLE given by π̂ij2l = 0 for at least one combination
(i, j, l).
2. A nonresponse boundary solution under the NMAR models for Y2 only, that is,
Models [M2] and [M4] is an MLE given by π̂ijk2 = 0 for at least one combination
(i, j, k).
3. A nonresponse boundary solution under the NMAR model for both Y1 and
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Y2, that is, Model [M5] is an MLE given by π̂ij2l = 0 for at least one combination
(i, j, l) or π̂ijk2 = 0 for at least one combination (i, j, k).

Note that in the literature, boundary solutions have usually been defined in
terms of cell probabilities because the cell probabilities are in some sense natural
to the model for the incomplete table, whereas the loglinear parameters are not.
The next proposition explores the relationships among boundary solutions under
Models [M1]-[M5] in terms of MLE’s of nonresponse cell probabilities, some spe-
cific log-linear parameters and αi. or β.j for two-way incomplete tables with both
variables missing.

Proposition 3.1. For an I × J × 2 × 2 incomplete table, we have the
following.
1. For Models [M1] and [M3], if boundary solutions occur, then they are given
by λ̂Y1R1(i, 2) = −∞⇔ π̂i+2+ = 0⇔ α̂i. = 0 for at least one and at most (I − 1)
values of Y1.
2. For Models [M2] and [M4], if boundary solutions occur, then they are given
by λ̂Y2R2(j, 2) = −∞⇔ π̂+j+2 = 0⇔ β̂.j = 0 for at least one and at most (J −1)
values of Y2.
3. For Model [M5], if boundary solutions occur, then they are given by λ̂Y1R1(i, 2) =
−∞ or λ̂Y2R2(j, 2) = −∞ ⇔ π̂i+2+ = 0 or π̂+j+2 = 0 ⇔ α̂i. = 0 for at least one

and at most (I − 1) values of Y1 or β̂.j = 0 for at least one and at most (J − 1)
values of Y2.

Proof: See Appendix A1.

From the proof of Proposition 3.1 in Appendix A1, note that the one-to-one
relation between the cell probabilities and the log-linear parameters cannot be
used to derive the connection between the different forms of boundary solutions.
This is because it is not obvious which specific log-linear parameters have infinite
MLE’s just by noting the zero MLE’s of the nonresponse cell probabilities when
boundary solutions occur.

4. SOME EXAMPLES OF BOUNDARY SOLUTIONS IN NMAR
MODELS

In this section, we reanalyze some examples in [2], illustrating the result in
Section 3. We use Proposition 3.1 to investigate a claim made by [2] regarding
forms and occurrence of boundary solutions in an I × J × 2 × 2 incomplete
table. This improvement is useful as it avoids computation and provides the
exact boundary solutions under a NMAR model by simply noting the level (s) of
the variable (s) for which the MLE’s of the parameters are negative or infinite.
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First, we present the correct expression of the likelihood ratio statistic for
missing data models in such a table. Consider testing the goodness of fit of a null
model (here one of the Models [M1]-[M5]) against the alternative model (perfect
fit model). Let {µ̂ijkl} and {µ̃ijkl} denote the MLE’s of the expected counts under
a null model and a perfect fit model respectively. Also, let L0 and L1 denote the
log-likelihoods for the null and the alternative models, respectively. Then the
likelihood ratio statistic is given by

G2 = −2(L0 − L1)

= −2

∑
i,j

yij11 ln

(
µ̂ij11
µ̃ij11

)
+
∑
i

yi+12 ln

(
µ̂i+12

µ̃i+12

)
+
∑
j

y+j21 ln

(
µ̂+j21
µ̃+j21

)

+y++22 ln

(
µ̂++22

µ̃++22

)
− µ̂++++ + µ̃++++

]

= −2

∑
i,j

yij11 ln

(
m̂ij11

yij11

)
+
∑
i

yi+12 ln

(∑
j m̂ij11b̂ij

yi+12

)

+
∑
j

y+j21 ln

(∑
i m̂ij11âij
y+j21

)
+ y++22 ln

(∑
i,j m̂ij11âij b̂ij ĝ

y++22

)

−
∑
i,j

m̂ij11(1 + âij + b̂ij + âij b̂ij ĝ) +N

 .(4.1)

Note that the last two terms of (4.1) are missing in the expression of G2 in [2]
(see p. 646). Observe that in general,

∑
i,j m̂ij11(1 + âij + b̂ij + âij b̂ij ĝ) 6= N ,

unless the hypothetical (null) model is a perfect fit model for example, in which
case G2 = 0.

Using Definition 2.1 and the notations in Section 2, Models [M1]-[M5] can
be represented as follows − Model [M1]: (αi., β..), Model [M2]: (α.., β.j), Model
[M3]: (αi., βi.), Model [M4]: (α.j , β.j) and Model [M5]: (αi., β.j). Accordingly,
the expression of G2 in (4.1) for each of the above models may be obtained by
making suitable substitutions and using the MLE’s in [2] (see pp. 647-648). For
example, the MLE’s under the model (αi., β..) are

m̂ij11 =
yij11yi+1+y++11

yi+11y++1+
,
∑
i

m̂ij11α̂i. = y+j21, β̂.. =
y++12

y++11
, ĝ =

y++11y++22

y++12y++21
.

Hence, from (4.1), the likelihood ratio statistic is

G2 = −2

∑
i,j

yij11 ln

(
yi+1+y++11

yi+11y++1+

)
+
∑
i

yi+12 ln

(
yi+1+y++12

yi+12y++1+

) .
[2] mentioned that if any solution α̂i. or β̂.j to the systems of equations∑

iNπ̂ij11α̂i. = y+j21 and
∑

j Nπ̂ij11β̂.j = yi+12 respectively is negative, then
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boundary solutions occur, that is, the MLE lies on the boundary of the param-
eter space. Closed-form boundary MLE’s under Models [M1]-[M5] may then be
obtained (see p. 649 of [2]) by setting certain parameter estimates (α̂i. or β̂.j) to 0
in the likelihood equations obtained from (2.2) for the models. They claimed that
counterintuitively, the parameter estimate set to 0 need not be the estimate with
a negative value as the solution to the above systems of equations. In particular,
for a 2× 2× 2× 2 incomplete table, they suggested examining both boundaries
α̂1. = 0 and α̂2. = 0; similarly β̂.1 = 0 and β̂.2 = 0 to determine the minimum
value of G2, which corresponds to the MLE. We improve this claim and thereby
obviate computations by showing that the MLE indeed always occurs on the spe-
cific boundary (level (s) of the variable (s)) for which α̂i. or β̂.j is negative. In the
next three examples, we use Proposition 3.1 to illustrate this point for Models
[M1]-[M5].

Example 4.1. Consider the data in Table 2 discussed in [2], which cross-
classifies mother’s self-reported smoking status (Y1) (Y1 = 1(2) for smoker (non-
smoker)) with newborn’s weight (Y2) (Y2 = 1(2) if weight < 2500 grams (≥ 2500
grams)). The supplementary margins contain data on only smoking status, data
on only newborn’s weight and missing data on both variables.

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 missing

R1 = 1 Y1 = 1 4512 21009 1049
Y1 = 2 3394 24132 1135

R1 = 2 Y1 missing 142 464 1224

Table 2: Birth weight and smoking: observed counts

[2] mentioned that α̂2. < 0 is obtained on fitting models [M1], [M3] and [M5]
to the data in Table 2. Also, the value of G2 corresponding to α̂2. = 0 is larger
than that corresponding to α̂1. = 0 for all the above models, which is incorrect
as shown below. When we fit the same models to the data in Table 2 using the
‘MASS’ package in R software, we obtain α̂1. = 0.0493 and α̂2. = −0.0237 under
Models [M1], [M3] and [M5], that is, boundary solutions occur in each of the
models.

Also, G2 = 55.2198 (12.4682) under Model [M1], G2 = 55.2168 (12.4638)
under Model [M3] and G2 = 55.214 (12.464) under Model [M5] when α̂1. =
0 (α̂2. = 0). The G2 values for α̂2. = 0 upon rounding off in each of the models
match those given in Table V of [2]. Hence, G2 is minimum for α̂2. = 0 in each
case, which implies that boundary solutions are given by α̂2. = 0 or equivalently
π̂2+2+ = 0. This result is consistent with points 1 and 3 of Proposition 3.1.
Further, it is the exact form of boundary solutions that we obtain on fitting
Models [M1], [M3] and [M5] to the data in Table 2 using the EM algorithm (see
the ‘ecm.cat’ function of ‘cat’ package in R software).
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Example 4.2. Consider the example given in the last paragraph of
p. 646 in [2]. The model [M1] was fitted to the following data: y1111 = 100,
y1211 = 40, y2111 = 50, y2211 = 1000, y1+12 = 0, y2+12 = 0, y+121 = 100,
y+221 = 10 and y++22 = 0. They mentioned that though α̂1. < 0, G2 is mini-
mum for α̂2. = 0 implying that the MLE is on the boundary α̂2. = 0. However,
we obtain α̂1. = 1.0153 (> 0) and α̂2. = −0.0306 on fitting Model [M1] to the
above data. Also, note that ĝ = y++11y++22

y++12y++21
(see p. 649 of [2]) is undefined since

y++12 = 0. Hence, we introduce the following changes: y1+12 = 1, y2+12 = 1 and
y++22 = 2 as shown in Table 3.

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 missing

R1 = 1 Y1 = 1 100 40 1
Y1 = 2 50 1000 1

R1 = 2 Y1 missing 100 10 2

Table 3: Modified 2× 2× 2× 2 table

On fitting models [M1], [M3] and [M5] to the data in Table 3, we obtain
α̂1. = 1.0098 under [M1], and α̂1. = 1.0153 under [M3] and [M5], along with
α̂2. = −0.0306 under all the above models, which implies boundary solutions
occur in each case. Also, G2 = 426.1604 (17.4704) under Model [M1], G2 =
424.3288 (15.669) under Model [M3] and G2 = 424.3188 (15.664) under Model
[M5] when α̂1. = 0 (α̂2. = 0). Hence, G2 is minimum for α̂2. = 0 in each model,
which implies that boundary solutions are given by π̂2+2+ = 0. This result is
consistent with points 1 and 3 of Proposition 3.1. Further, it is the exact form of
boundary solutions that we obtain on fitting Models [M1], [M3] and [M5] to the
data in Table 3 using the EM algorithm.

Example 4.3. Consider the data in Table 2 discussed in Example 4.1.
We introduce the following changes corresponding to supplementary margins in
Table 2: 464→ 700 and 1135→ 750. The modified table is shown in Table 4.

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 missing

R1 = 1 Y1 = 1 4512 21009 1049
Y1 = 2 3394 24132 750

R1 = 2 Y1 missing 142 700 1224

Table 4: Birth weight and smoking: observed counts (modified)

When we fit the models [M2], [M4] and [M5] to the data in Table 4, we
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obtain β̂.1 = 0.2538 under [M2], and β̂.1 = 0.2543 under [M4] and [M5] along
with β̂.2 = −0.0047 under all the above models, that is, boundary solutions
occur in each of the models. Also, G2 = 98.5962 (3.3548) under Model [M2],
G2 = 96.1622 (0.922) under Model [M4] and G2 = 96.162 (0.9276) under Model
[M5] when β̂.1 = 0 (β̂.2 = 0). The G2 values in brackets above match those
obtained using the EM algorithm. Hence, G2 is minimum for β̂.2 = 0 in each
case, which implies that boundary solutions are given by β̂.2 = 0 or equivalently
π̂+2+2 = 0. This result is consistent with points 2 and 3 of Proposition 3.1.
Further, it is the exact form of boundary solutions that we obtain on fitting
Models [M2], [M4] and [M5] to the data in Table 4 using the EM algorithm.

5. CONDITIONS FOR THE OCCURRENCE OF BOUNDARY SO-
LUTIONS

In this section, we discuss sufficient conditions and also propose necessary
conditions for the occurrence of boundary solutions in two-way incomplete tables
with both variables missing. We show that the sufficient conditions are not
necessary, which disproves a conjecture made by [7]. Further, we prove that
the proposed necessary conditions are not sufficient. Both sets of conditions are
simple to verify since they involve only the observed cell counts in the tables.
The sufficient conditions and the necessary conditions are of practical utility in
identifying the occurrence and non-occurrence, respectively of boundary solutions
in such tables.

5.1. Sufficient conditions for the occurrence of boundary solutions

Following Park et al. (2014), define the four odds based on the observed
(joint/marginal) cell counts for any pair (j, j′) of Y2:

νi(j, j
′) =

π̂ij11
π̂ij′11

, νn(j, j′) = min
i
{νi(j, j′)}, νm(j, j′) = max

i
{νi(j, j′)},

ν(j, j′) =
y+j21
y+j′21

.(5.1)

Similarly, for a given pair (i, i′) of Y1, define the four odds using the observed cell
counts:

ωj(i, i
′) =

π̂ij11
π̂i′j11

, ωn(i, i′) = min
j
{ωj(i, i′)}, ωm(i, i′) = max

j
{ωj(i, i′)},

ω(i, i′) =
yi+12

yi′+12
.(5.2)

Note that νi(j, j
′) and ωj(i, i

′) are called the response odds, while ν(j, j′) and
ω(i, i′) are called the nonresponse odds. Using the MLE’s of {πij11} under Models
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[M1]-[M5] (see pp. 647-648 of [2]), we deduce that νi(j, j
′) =

yij11
yij′11

and ωj(i, i
′) =

yij11
yi′j11

, which involve only the fully observed counts.

Theorem 1 of [9] deals with sufficient conditions for the occurrence of bound-
ary solutions only under Model [M5]. However, in the next result, we provide
such conditions for the occurrence of boundary solutions under Models [M1]-[M5].
Also, we provide a proof which is similar to that of Theorem 1 of [9], but we give
direct arguments, which are different from the contrapositive ones used by [9].

Theorem 5.1. Consider the following conditions for an I × I × 2 × 2
contingency table.

1. ν(j, j′) 6∈ (νn(j, j′), νm(j, j′)) for at least one pair (j, j′) of Y2,

2. ω(i, i′) 6∈ (ωn(i, i′), ωm(i, i′)) for at least one pair (i, i′) of Y1.

Then we have the following:

(a) Boundary solutions in NMAR models for only Y1 (Models [M1] and [M3])
occur if Condition 1 holds.

(b) Boundary solutions in NMAR models for only Y2 (Models [M2] and [M4])
occur if Condition 2 holds.

(c) Boundary solutions in the NMAR model for both Y1 and Y2 (Model [M5])
occur if Condition 1 or Condition 2 holds.

Proof: See Appendix A2.

5.2. The sufficient conditions are not necessary

The next example shows that the sufficient conditions for the occurrence
of boundary solutions mentioned in Theorem 5.1 are not necessary. This result
has not been discussed in the literature earlier. In fact, [7] proved that the above
conditions are both necessary and sufficient for a 2× 2× 2× 2 incomplete table.
They conjectured that a similar result would hold for general two-way incomplete
tables as well.

Example 5.1. Consider Table 5 discussed in [9], which cross-classifies
data on bone mineral density (Y1) and family income (Y2) in a 3 × 3 × 2 × 2
incomplete table. Both variables Y1 and Y2 have three levels. The total count
is 2998 out of which data on Y1 and Y2 are available for 1844 persons, data on
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R2 = 1 R2 = 2
Y2 = 1 Y2 = 2 Y2 = 3 Missing

Y1 = 1 621 290 284 135
R1 = 1 Y1 = 2 260 131 117 69

Y1 = 3 93 30 18 27

R1 = 2 Missing 456 156 266 45

Table 5: Bone mineral density (Y1) and family income (Y2)

Y1 only for 231 persons, data on Y2 only for 878 persons, and data on neither of
them for 45 persons.

Now, we introduce the following changes corresponding to supplementary
margins in Table 5: 266 → 125, 69 → 60 and 27 → 20. The modified table is
shown in Table 6.

R2 = 1 R2 = 2
Y2 = 1 Y2 = 2 Y2 = 3 Missing

Y1 = 1 621 290 284 135
R1 = 1 Y1 = 2 260 131 117 60

Y1 = 3 93 30 18 20

R1 = 2 Missing 456 156 125 45

Table 6: Modified Table 5

From Table 6, ν(1, 2) = 456/156 = 2.92, ν(1, 3) = 456/125 = 3.65,
ν(2, 3) = 156/125 = 1.25, ω(1, 2) = 135/60 = 2.25, ω(1, 3) = 135/20 = 6.75
and ω(2, 3) = 60/20 = 3.00. Let Iν(j, j′) = (νn(j, j′), νm(j, j′)) and Iω(i, i′) =
(ωn(i, i′), ωm(i, i′)). Then from Table 6, it can be shown that ν(1, 2) ∈ Iν(1, 2) =
(260/131, 93/30), ν(1, 3) ∈ Iν(1, 3) = (621/284, 93/18), ν(2, 3) ∈ Iν(2, 3) =
(290/284, 30/18), ω(1, 2) ∈ Iω(1, 2) = (290/131, 284/117), ω(1, 3) ∈ Iω(1, 3) =
(621/93, 284/18) and ω(2, 3) ∈ Iω(2, 3) = (260/93, 117/18) so that the sufficient
conditions for the occurrence of boundary solutions in Theorem 5.1 are not sat-
isfied. The MLE’s of the parameters obtained on fitting Models [M1]-[M5] in
various subtables of Table 6 are shown in Table 7.

From Table 7, note that in each subtable, at least one of α̂i. and β̂.j is
negative, which imply that boundary solutions occur. The forms of boundary
solutions under the Models [M1]-[M5] are also the same as described in Section 3.
This shows that for an I×J×2×2 incomplete table, where I, J ≥ 3, the sufficient
conditions for the occurrence of boundary solutions under Models [M1]-[M5] in
Theorem 5.1 are not necessary.
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Subtable NMAR MLE’s Boundary
model solutions

Y1 [M1] α̂1. = 0.6556, α̂2. = −1.0537, α̂3. = 3.4109 π̂2+2+ = 0

Y2 [M2] β̂.1 = 0.1355, β̂.2 = 0.3420, β̂.3 = −0.1846 π̂+3+2 = 0

Y1Y2 [M1] α̂1. = 0.6556, α̂2. = −1.0537, α̂3. = 3.4109 π̂2+2+ = 0
[M3] α̂1. = 0.6534, α̂2. = −1.0551, α̂3. = 3.4874 π̂2+2+ = 0

Y1Y2 [M2] β̂.1 = 0.1355, β̂.2 = 0.3420, β̂.3 = −0.1846 π̂+3+2 = 0

[M4] β̂.1 = 0.1421, β̂.2 = 0.3289, β̂.3 = −0.1712 π̂+3+2 = 0

Y1Y2 [M5] α̂1. = 0.6534, α̂2. = −1.0551, α̂3. = 3.4874, π̂2+2+ = 0,

β̂.1 = 0.1421, β̂.2 = 0.3289, β̂.3 = −0.1712 π̂+3+2 = 0

Table 7: MLE’s of parameters in subtables of Table 6

5.3. Necessary conditions for the occurrence of boundary solutions

We next state below a result due to [6], which will be used later to obtain
a result on the occurrence of boundary solutions.

Lemma 5.1. Suppose A = (aij) is a matrix with aij ≥ 0 for i 6= j =
1, 2, . . . , n and aii > 0. Also, let b = (bj), where bj > 0 for 1 ≤ j ≤ n. If

(5.3) bi >
n∑

j 6=i=1

aij
bj
ajj

, ∀ 1 ≤ i ≤ n,

then A is invertible and A−1b > 0.

Using Lemma 5.1, the next result provides necessary conditions for the
occurrence of boundary solutions under Models [M1]-[M5] in square two-way
incomplete tables.

Theorem 5.2. For an I × I × 2× 2 incomplete table, consider the fol-
lowing conditions:

1. y+j21 ≤
∑I

i 6=j=1 µ̂ji11
y+i21

µ̂ii11
for at least one j = 1, 2, . . . , I,

2. yi+12 ≤
∑I

j 6=i=1 µ̂ij11
yj+12

µ̂jj11
for at least one i = 1, 2, . . . , I,

where µ̂ij11 is the MLE of µij11. Also, let {µ̂ij11} > 0, {yi+12} > 0 and {y+j21} >
0. Then we have the following:

(a) If boundary solutions under Models [M1] and [M3] occur, then only Condi-
tion 1 holds.
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(b) If boundary solutions under Models [M2] and [M4] occur, then only Condi-
tion 2 holds.

(c) If boundary solutions under the Model [M5] occur, then Condition 1 or
Condition 2 holds.

Proof: See Appendix A3.

Henceforth, we denote A = (aij) = (µ̂ij11), b = (bj) = (y+j21) and b∗ = (b∗i ) =
(yi+12) for 1 ≤ i ≤ I, 1 ≤ j ≤ I. The example below is an application of Theorem
5.2.

Example 5.2. From Table 6 in Example 5.1, we have the following:

A =

621 290 284
260 131 117
93 30 18

 , b = (456, 156, 125), b∗ = (135, 60, 20).

The MLE’s α̂ = (α̂i.) and β̂ = (β̂.j) under Model [M5] satisfy respectively the
systems ATα = b from (6.11) and Aβ = b∗ from (6.12) for i, j = 1, 2, 3. From
Table 7, we observe that if Model [M5] is fitted to the data in Table 6, then we
obtain α̂2. < 0 and β̂.3 < 0, that is, boundary solutions occur. Now we need to
verify if both Conditions 1 and 2 of Theorem 5.2 hold. For the matrix AT and
the vector b, we have

456 < a12 ×
b2
a22

+ a13 ×
b3
a33

= 260× 156

131
+ 93× 125

18
= 955.4516,

156 < a21 ×
b1
a11

+ a23 ×
b3
a33

= 290× 456

621
+ 30× 125

18
= 421.2802,

125 < a31 ×
b1
a11

+ a32 ×
b2
a22

= 284× 456

621
+ 117× 156

131
= 347.8693,

so that Condition 1 in Theorem 5.2 is satisfied. Also, for the matrix A and the
vector b∗, we have

135 < a12 ×
b∗2
a22

+ a13 ×
b∗3
a33

= 290× 60

131
+ 284× 20

18
= 448.38,

60 < a21 ×
b∗1
a11

+ a23 ×
b∗3
a33

= 260× 135

621
+ 117× 20

18
= 186.5217,

20 < a31 ×
b∗1
a11

+ a32 ×
b∗2
a22

= 93× 135

621
+ 30× 60

131
= 33.9578,

so that Condition 2 in Theorem 5.2 is satisfied. Further, from Table 7, we observe
that boundary solutions also occur if Models [M1]-[M4] are fitted to data in Table
6. Then only Condition 1 is satisfied if boundary solutions under [M1] and [M3]
occur, while only Condition 2 is satisfied if boundary solutions under [M2] and
[M4] occur. This is because the MLE α̂ = (α̂i.) under Models [M1] and [M3]
satisfies the system ATα = b, while the MLE β̂ = (β̂.j) under Models [M2] and
[M4] satisfies the system Aβ = b∗.
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5.4. The necessary conditions are not sufficient

The next example shows that the necessary conditions for the occurrence
of boundary solutions in Theorem 5.2 are not sufficient.

Example 5.3. In Example 5.2, replace 456 by 366 in b and 20 by 15
in b∗ so that b = (366, 156, 125) and b∗ = (135, 60, 15) now. For the matrix AT

and the vector b, we have

366 < a12 ×
b2
a22

+ a13 ×
b3
a33

= 260× 156

131
+ 93× 125

18
= 955.4516,

156 < a21 ×
b1
a11

+ a23 ×
b3
a33

= 290× 366

621
+ 30× 125

18
= 379.2512,

125 < a31 ×
b1
a11

+ a32 ×
b2
a22

= 284× 366

621
+ 117× 156

131
= 306.7099,

so that Condition 1 in Theorem 5.2 is satisfied. Also, for the matrix A and the
vector b∗, we have

135 < a12 ×
b∗2
a22

+ a13 ×
b∗3
a33

= 290× 60

131
+ 284× 15

18
= 369.4911,

60 < a21 ×
b∗1
a11

+ a23 ×
b∗3
a33

= 260× 135

621
+ 117× 15

18
= 154.0217,

15 < a31 ×
b∗1
a11

+ a32 ×
b∗2
a22

= 93× 135

621
+ 30× 60

131
= 33.9578,

so that Condition 2 in Theorem 5.2 is satisfied. Now, when we solve the system
ATα = b, then we obtain the MLE’s α̂1. = 0.0133, α̂2. = 0.7796 and α̂3. = 1.6671.
So, there are no boundary solutions under Model [M3]. Similarly, the system
Aβ = b∗ yields the MLE’s β̂.1 = 0.041, β̂.2 = 0.3655 and β̂.3 = 0.0126, that is,
there are no boundary solutions under Model [M4]. Since the MLE’s in Model
[M5] satisfy both the systems ATα = b and Aβ = b∗, there are no boundary
solutions under [M5] as well. Similar results hold for Models [M1] and [M2].
Hence, the conditions in Theorem 5.2 are not sufficient for the occurrence of
boundary solutions under Models [M1]-[M5].

5.5. Importance of the necessary conditions

Here, we discuss additional details about Theorem 5.2 and discuss its sim-
plicity and effectiveness.

From Theorem 5.2, note that if {yi+12}, {y+j21}, and/or {µ̂ii11} are large,
then Conditions 1 and 2 may not hold. Indeed, if the inequalities in Conditions
1 and 2 are reversed for all 1 ≤ i ≤ I and 1 ≤ j ≤ I, then from statements (a),
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(b) and (c) of Theorem 5.2, boundary solutions do not occur on fitting Models
[M1]-[M5] in an I × I × 2× 2 incomplete table.

It is known that when boundary solutions occur, perfect fit models (here
Models M3], [M4] and [M5]) cannot reproduce the observed counts, indicating
poor fit and imprecision of the parameter estimates. The MLE’s of the parame-
ters under NMAR models lie on the boundary of the parameter space and the log
likelihood function tends to be flat, which makes derivation of the MLE’s compu-
tationally intensive. Also, the corresponding covariance matrix has unreasonable
eigenvalues (close to either zero or negative), which implies the estimated stan-
dard errors for some parameter estimates are large. Hence, for model selection,
we prefer NMAR models which don’t yield boundary solutions upon fitting them
to the given data.

Theorem 5.1 provides conditions, which help us identify the occurrence of
boundary solutions. However, boundary solutions may occur under some NMAR
models if any of the sufficient conditions in Theorem 5.1 does not hold. This
implies that Theorem 5.1 cannot always provide us the set of plausible NMAR
models for model selection. However, note that Theorem 5.2 is very useful in this
regard since it gives us an insight into verifying the non-occurrence of boundary
solutions under each of the NMAR models [M1]-[M5]. That is, if any of the
necessary conditions in Theorem 5.2 does not hold, then we know for sure that
boundary solutions do not occur. This always helps us to obtain the list of
candidate NMAR models suitable for fitting the given data. Hence, Theorem 5.2
is more reliable than Theorem 5.1 for the purpose of model selection in square
two-way incomplete tables.

The non-boundary MLE’s of µij11 are µ̂ij11 =
yij11yi+1+y++11

yi+11y++1+
under Model

[M1], µ̂ij11 =
yij11y+j+1y++11

y+j11y+++1
under Model [M2], and µ̂ij11 = yij11 under Models

[M3], [M4] and [M5] (see pp. 647-648 of [2]), which involve only the observed cell
counts and their sums. Hence, from Theorem 5.2, there is no need to solve any
system of likelihood equations, use the EM algorithm or compute odds (based
on the observed (joint/marginal) cell counts) to check for the non-occurrence of
boundary solutions in an I × I × 2× 2 incomplete table.

Remark 5.1. If AD = diag(a11, . . . , aII), then from [6], the solutions
α = (αi.) of the system ATα = b may be obtained iteratively as follows.

α(0) = A−1D b

α(n+1) = α(n) +A−1D (b−ATα(n)), n = 0, 1, 2, . . . .(5.4)

Similarly, the solutions β = (β.j) of the system Aβ = b∗ may be obtained itera-
tively as follows.

β(0) = A−1D b∗

β(n+1) = β(n) +A−1D (b∗ −Aβ(n)), n = 0, 1, 2, . . . .(5.5)

Both the sequences (5.4) and (5.5) converge to the solutions of the respective
systems.
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6. CONCLUSIONS

In this paper, we have discussed the problem of boundary solutions that
occur under various NMAR models for an I × J × 2 × 2 table. We formally
define boundary solutions for such a table and provide a result (Proposition 3.1)
that theoretically connects and justifies various forms of these solutions under
alternative parametrizations of the missing data models. This eliminates the
need of using the EM algorithm (see pp. 39-40 of [9]) to empirically obtain the
forms of the solutions in two-way incomplete tables. The above result is then
used to improve a claim in [2] regarding the occurrence of boundary solutions.
We give the precise forms of such solutions by just noting the corresponding level
(s) of the variable (s) in the table, which reduces computational burden.

As discussed earlier, boundary solutions pose a lot of problems for esti-
mation and inference under NMAR models in incomplete tables. Hence, it is
important to investigate sufficient and necessary conditions for their occurrence
in such tables. We have provided a result (Theorem 5.1) on sufficient conditions
for the occurrence of boundary solutions in an I × J × 2 × 2 table. While [9]
consider only Model [M5], we consider Models [M1]-[M5] in Theorem 5.1. We
use a similar approach but give direct arguments instead of contrapositive ones
used in Theorem 1 of [9] for proving Theorem 5.1. [7] conjectured that these
conditions would also be necessary for general two-way incomplete tables. How-
ever, we show by a counterexample that this is not the case for I, J ≥ 3, thereby
disproving the conjecture.

We have also established necessary conditions in Theorem 5.2 for the oc-
currence of boundary solutions in an I × J × 2 × 2 table, which have not been
discussed in the literature so far. As discussed in Section 5.5, these conditions
are of practical utility to identify the non-occurrence of boundary solutions and
hence for model selection. However, we show by a counterexample that these con-
ditions are not sufficient. Note that a major advantage of the proposed sufficient
conditions and necessary conditions is that they depend only on the observed cell
counts in the table or their sums. As mentioned in [9], this makes the verification
process much easier, and avoids using the EM algorithm or solving likelihood
equations. Finally, all the above results are illustrated using six data analysis
examples. It would be helpful to obtain a set of conditions involving only the
observed cell counts, which are sufficient as well as necessary for the occurrence
of boundary solutions in two-way incomplete tables with both variables missing.
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Appendix

A1

Proof of Proposition 3.1: From Definition 3.1, it follows that if boundary
solutions occur under the Models [M1]-[M5], then the MLE’s of the cell proba-
bilities except some of the nonresponse ones are all non-zero. On substituting
k = l = 1 (for response cell probabilities) in the above models and using the
parameter constraints, we can then deduce that the MLE’s of the constant, the
main effects and the association terms between Yi’s, between Ri’s, and between
Yi and Rj for i 6= j are all finite. This is because non-zero terms (response
cell probabilities) on the LHS of the log-linear models imply that the log-linear
parameters on the RHS are finite.

Consider part 1 first. For the Models [M1] and [M3], the log-linear param-
eters modelling the non-ignorable nonresponse (NMAR) mechanism of Y1 are
λR1(k) and λY1R1(i, k). If boundary solutions occur, then they are of the form
π̂ij2l = 0 (see point 1 of Definition 3.1), which implies λ̂Y1R1(i, 2) = −∞ for at
least one i since the other parameters are finite as mentioned above. Then under
Model [M1], we have

π̂i+2+ =
∑
j,l

π̂ij2l

=
1

N

∑
j,l

exp{λ̂+ λ̂Y1(i) + λ̂Y2(j) + λ̂R1(2) + λ̂R2(l) + λ̂Y1R1(i, 2)

+ λ̂Y1Y2(i, j) + λ̂R1R2(2, l)}
= 0

for at least one i. Conversely, we have

π̂i+2+ = 0 (for at least one i)

⇒
∑
j,l

exp{λ̂+ λ̂Y1(i) + λ̂Y2(j) + λ̂R1(2) + λ̂R2(l) + λ̂Y1R1(i, 2) + λ̂Y1Y2(i, j)

+ λ̂R1R2(2, l)} = 0

⇒ λ̂Y1R1(i, 2) = −∞ for at least one i,

so that λ̂Y1R1(i, 2) = −∞ ⇔ π̂i+2+ = 0 for at least one i under Model [M1].
The same can be shown for Model [M3]. Under Models [M1] and [M3], aij =
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exp[2{λR1(2) + λY1R1(i, 2) + λR1R2(2, 1)}]. Since aij depends only on i, we have

aij = αi.. It is clear that α̂i. = 0 ⇔ λ̂Y1R1(i, 2) = −∞. Also, note that by
definition of aij , if α̂i. = 0 for all 1 ≤ i ≤ I, then y+j21 = 0 for all 1 ≤ j ≤ J ,
which is a contradiction since supplementary margins are assumed to be pos-
itive. Hence, under Models [M1] and [M3], boundary solutions are given by
λ̂Y1R1(i, 2) = −∞ ⇔ π̂i+2+ = 0 ⇔ α̂i. = 0 for at least one and at most (I − 1)
values of Y1.

Consider part 2 now. Under Models [M2] and [M4], the log-linear param-
eters modelling the NMAR nechanism of Y2 are λR2(l) and λY2R2(j, l). Also,
bij = exp[2{λR2(2) + λY2R2(j, 2) + λR1R2(1, 2)}]. Since bij depends only on j, we
have bij = β.j . Then it can be shown similarly as above that boundary solutions

in this case are given by λ̂Y2R2(j, 2) = −∞ ⇔ π̂+j+2 = 0 ⇔ β̂.j = 0 for at least
one and at most (J − 1) values of Y2.

Finally, consider part 3. Under Model [M5], the log-linear parameters mod-
elling the NMAR nechanisms of Y1 and Y2 are λR1(k), λR2(l), λY1R1(i, k) and
λY2R2(j, l). The proof for the form of boundary solutions under Model [M5] fol-
lows on similar lines as for Models [M1]-[M4] shown above.

A2

Proof of Theorem 5.1: From [2], the MLE’s α̂i. under the NMAR model for
only Y1 (Models [M1] and [M3]) satisfy

(6.1)
∑
i

Nπ̂ij11α̂i. = y+j21, ∀ 1 ≤ j ≤ I,

while the MLE’s β̂.j under the NMAR model for only Y2 (Models [M2] and [M4])
satisfy

(6.2)
∑
j

Nπ̂ij11β̂.j = yi+12, ∀ 1 ≤ i ≤ I.

The MLE’s α̂i. and β̂.j under the NMAR model for both Y1 and Y2 (Model [M5])
satisfy both (6.1) and (6.2). Note that boundary solutions in Models [M1] and
[M3] occur if α̂i. ≤ 0 for at least one and at most (I − 1) values of Y1, while
boundary solutions in Models [M2] and [M4] occur if β̂.j ≤ 0 for at least one and
at most (I−1) values of Y2. Also note that boundary solutions under [M5] occur
if at least one of the following holds:

(i) α̂i. ≤ 0 for at least one and at most (I − 1) values of Y1,

(ii) β̂.j ≤ 0 for at least one and at most (I − 1) values of Y2.
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From (5.1) and (6.1), we have

ν(j, j′) =
y+j21
y+j′21

=

∑
i π̂ij11α̂i.∑
i π̂ij′11α̂i.

,

(6.3) νm(j, j′)− ν(j, j′) =

∑
i 6=m1

(π̂m1j11π̂ij′11 − π̂m1j′11π̂ij11)α̂i.

π̂m1j′11
∑

i π̂ij′11α̂i.
,

(6.4) ν(j, j′)− νn(j, j′) =

∑
i 6=n1

(π̂n1j′11π̂ij11 − π̂n1j11π̂ij′11)α̂i.

π̂n1j′11
∑

i π̂ij′11α̂i.
,

where m1 and n1 are the levels of Y1 corresponding to νm(j, j′) and νn(j, j′)
respectively. From (5.1), we get

(6.5) νn(j, j′) =
π̂n1j11

π̂n1j′11
< νi(j, j

′) =
π̂ij11
π̂ij′11

< νm(j, j′) =
π̂m1j11

π̂m1j′11
.

From (6.5), we have the following inequalities

(6.6) π̂m1j11π̂ij′11 > π̂m1j′11π̂ij11, π̂n1j′11π̂ij11 > π̂n1j11π̂ij′11 for i 6= m1, n1.

Consider part (a). Suppose Condition 1 holds, which implies that (6.3) and (6.4)
are of opposite signs. Using this fact and (6.6), we observe that α̂i. < 0 for at
least one and at most (I−1) values of Y1, that is, boundary solutions of the form
π̂i+2+ = 0 occur.

Again from (5.2) and (6.2), we have

ω(i, i′) =
yi+12

yi′+12
=

∑
j π̂ij11β̂.j∑
j π̂i′j11β̂.j

,

(6.7) ωm(i, i′)− ω(i, i′) =

∑
j 6=m2

(π̂im211π̂i′j11 − π̂i′m211π̂ij11)β̂.j

π̂i′m211

∑
i π̂i′j11β̂.j

,

(6.8) ω(i, i′)− ωn(i, i′) =

∑
j 6=n2

(π̂i′n211π̂ij11 − π̂in211π̂i′j11)β̂.j

π̂i′n211

∑
i π̂i′j11β̂.j

,

where m2 and n2 are the levels of Y2 corresponding to ωm(i, i′) and ωn(i, i′)
respectively. From (5.2), we get

(6.9) ωn(i, i′) =
π̂in211

π̂i′n211
< ωj(i, i

′) =
π̂ij11
π̂i′j11

< ωm(i, i′) =
π̂im211

π̂i′m211
.

From (6.9), we have the following inequalities

(6.10) π̂m2j11π̂ij′11 > π̂m2j′11π̂ij11, π̂n2j′11π̂ij11 > π̂n2j11π̂ij′11 for j 6= m2, n2.
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Now consider part (b). Assume Condition 2 holds, which implies that (6.7) and
(6.8) are of opposite signs. Using this fact and (6.10), we observe that β̂.j < 0
for at least one and at most (I − 1) values of Y2, that is, boundary solutions of
the form π̂+j+2 = 0 occur.

Finally consider part (c). Assume at least one of Conditions 1 and 2 holds.
The cases when only Condition 1 holds or only Condition 2 holds follow from
the proofs of part (a) and part (b) respectively. So it is sufficient here to assume
both Conditions 1 and 2 hold. This implies, from part (a), α̂i. < 0 for at least
one and at most (I − 1) values of Y1, that is, boundary solutions of the form
π̂i+2+ = 0 occur. Also from part (b), we have β̂.j < 0 for at least one and at most
(I − 1) values of Y2, that is, boundary solutions of the form π̂+j+2 = 0 occur.
This completes the proof.

A3

Proof of Theorem 5.2: From Theorem 5.1, the MLE’s α̂i. and β̂.j under
Model [M5] satisfy

(6.11)
∑
i

µ̂ij11α̂i. = y+j21 for j = 1, . . . , I,

(6.12)
∑
j

µ̂ij11β̂.j = yi+12 for i = 1, . . . , I.

Also, the MLE α̂i. under Models [M1] and [M3] satisfy (6.11) only, while the
MLE β̂.j under Models [M2] and [M4] satisfy (6.12) only. Note that boundary
solutions under [M5] occur if at least one of the following conditions hold:

(i) α̂i. ≤ 0 for at least one and at most (I − 1) values of Y1,

(ii) β̂.j ≤ 0 for at least one and at most (I − 1) values of Y2.

Also, boundary solutions in Models [M1] and [M3] are given by only Condition (i),
while boundary solutions in Models [M2] and [M4] are given by only Condition
(ii). In Lemma 5.1, take A = (µ̂ij11), b = (bj) = (y+j21) and b∗ = (b∗i ) = (yi+12)
for 1 ≤ i ≤ I, 1 ≤ j ≤ I. Then (6.11) may be written as ATα = b, while (6.12)
may be written as Aβ = b∗, where α = (αi.) and β = (β.j). We prove Theorem
5.2 by contrapositive.

Consider part (a) first. Suppose Condition 1 in Theorem 5.2 does not hold.
Then by Lemma 5.1, α = (AT )−1b > 0. In other words, α̂i. > 0 for all 1 ≤ i ≤ I,
that is, boundary solutions under Models [M1] and [M3] do not occur.
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Consider part (b) now. Assume Condition 2 in Theorem 5.2 does not hold.
Then by Lemma 5.1, β = A−1b∗ > 0. In other words, β̂.j > 0 for all 1 ≤ j ≤ I,
that is, boundary solutions under Models [M2] and [M4] do not occur.

Finally consider part (c). Assume both Conditions 1 and 2 in Theorem 5.2
do not hold. Then by Lemma 5.1, both α̂i. > 0 and β̂.j > 0 for all 1 ≤ i ≤ I, 1 ≤
j ≤ I, that is, boundary solutions under Model [M5] do not occur.

Hence, the result follows.
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