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Abstract:

• Considering the wide class of discrete Compound Poisson INARCH models, intro-
duced in [6], the main goal of this paper is to develop and compare parametric esti-
mation procedures for first-order models, applicable without specifying the conditional
distribution of the process. Therefore, two-step estimation procedures, combining ei-
ther the conditional least squares (CLS) or the Poisson quasi-maximum likelihood
(PQML) methods with that of the moment’s estimation, are introduced and dis-
cussed. Specifying the process conditional distribution, we develop also within this
class of models the conditional maximum likelihood (CML) methodology. A sim-
ulation study illustrates, particularly, the competitive performance of the two-step
approaches regarding the more classical CML one which requires the conditional dis-
tribution knowledge. A final real-data example shows the relevance of this wide class
of models, as it will be clear the better performance in the data fitting of some new
models emerging in such class.
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1. INTRODUCTION

The family of discrete compound Poisson distributions, which includes as
particular cases the Poisson, the Neyman type-A or the geometric Poisson laws,
was recently used to define a new class of integer-valued GARCH models, the
compound Poisson INGARCH ones [6], specified through the characteristic func-
tion of the conditional law of the process given its past. Namely, X = (Xt, t ∈ Z)
follows a CP-INGARCH process if the characteristic function of Xt conditioned
on Xt−1 is such that

ΦXt|Xt−1
(u) = exp

{
i λt
φ′
t(0)

[φt(u)− 1]
}
, u ∈ R,

E(Xt|Xt−1) = λt = α0 +

p∑
j=1

αjXt−j +

q∑
k=1

βkλt−k,

where α0 > 0, α1, ..., αp, β1, ..., βq ≥ 0, Xt−1 represents the σ-field generated by
{Xt−s, s ≥ 1} and (φt, t ∈ Z) is a family of characteristic functions on R, Xt−1-
measurables, associated to a family of discrete laws with support in N0 and finite
mean. If βk = 0, k = 1, ..., q, the CP-INGARCH(p, q) model is simply denoted
CP-INARCH(p). The functional form of the conditional characteristic function
ΦXt|Xt−1

allows a wide flexibility of the class of CP-INGARCH models. In fact,
as it is assumed that the family of discrete characteristic functions (φt, t ∈ Z)
is Xt−1-measurable it means that its elements may be random functions or de-
terministic ones. Thus, this general model unifies and enlarges substantially the
family of conditionally heteroscedastic integer-valued processes. In fact, it is pos-
sible to present new specific models with conditional distributions with interest
in practical applications as, for instance, the geometric Poisson INGARCH ([6])
or the Neyman type-A INGARCH ([5]) ones, and also recover recent contribu-
tions such as the Poisson INGARCH ([4]), the generalized Poisson INGARCH
([15]), the negative binomial INGARCH ([14]) and the negative binomial DI-
NARCH ([13]) processes (corresponding to random or deterministic functions φt,
respectively). In addition to having the ability to describe different distributional
behaviors and consequently different kinds of conditional heteroscedasticity, the
CP-INGARCH model is able to incorporate simultaneously the overdispersion
characteristic that has been recorded in real count data.

In this paper, we focus on the case where φt is deterministic and constant
in time which still includes many of the particular cases referred above. For
that reason, from now on we will refer these functions simply as φ. In this
subclass of models, there exists a strictly stationary and ergodic solution with
finite first and second order moments under

∑p
j=1 αj+

∑q
k=1 βk < 1 ([6]). For p =

q = 1, Gonçalves, Mendes-Lopes and Silva [7] stated that this simple coefficient
condition is also necessary and sufficient to establish the existence of all the
moments of Xt.

In this class of models we have, additionally to the usual estimation of
the parameters of the conditional mean, the estimation of φ. We observe that
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a related problem with the knowledge of φ has been discussed in [12] in which
a testing methodology was proposed to distinguish between a simple Poisson
INARCH model (φ(u) = exp(iu)) and a true CP-INARCH one (φ(u) ̸= exp(iu)).
In order to analyse φ, in this paper we propose a two-step estimation procedure
that lead us to its consistent estimation after estimating the conditional mean
parameters.

The remainder of the paper proceeds as follows. In Section 2 we consider
the subclass of CP-INARCH models of order one, with φt = φ deterministic,
and deduce its moments, central moments and cumulants up to the order 4.
These results are particularly important in Section 3, devoted to estimation pro-
cedures, to deduce explicit expressions for the asymptotic distribution of the
Conditional Least Squares (CLS) estimators of the conditional mean parameters,
α0 and α1. In a second step, the method of moments is used to estimate the
additional parameter associated to the function φ. Another two-step estimation
procedure, combining the Poisson Quasi Maximum Likelihood (PQML) and the
moment methods, is also proposed in this section, followed by the Conditional
Maximum Likelihood (CML) estimation for the NTA-INARCH(1) and GEOMP2-
INARCH(1) models. Section 4 presents some simulation studies that illustrate
and compare the performance of these three methodologies of estimation. In Sec-
tion 5 an integer-valued time series related to the prices of electricity in Portugal
and Spain between July 2016 and June 2017 is considered. The data is fitted
by several CP-INARCH(1) models estimated by the three estimation approaches
considered and the quality of the fitting is discussed using for the CML method,
in particular, the values of the log likelihood function, Akaike and Bayesian in-
formation criteria. Detailed calculations are included in the Appendices.

2. THE CP-INARCH(1) PROCESS

Let us consider now the subclass of CP-INARCH(1) models. Supposing
φt = φ constant in time and deterministic we recall that α1 < 1 is a necessary
and sufficient condition to assure the existence of a strictly stationary and ergodic
solution of the model. Moreover the process has moments of all the orders.

Setting X = (Xt, t ∈ Z) a CP-INARCH(1) process we derive in the fol-
lowing closed-form expressions for the joint (central) moments and cumulants of
the CP-INARCH(1) up to order 4. In fact, setting the notations below (used, for
instance, by Weiß in [10]),

fk =
α0∏k

j=1 (1− αj
1)
, k ∈ N,

µ(s1, ..., sr−1) = E
(
XtXt+s1 ...Xt+sr−1

)
,

µ̃(s1, ..., sr−1) = E
(
(Xt − µ)(Xt+s1 − µ)...(Xt+sr−1 − µ)

)
,(2.1)

κ(s1, ..., sr−1) = Cum
[
Xt, Xt+s1 , ..., Xt+sr−1

]
,
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with r = 2, 3, 4 and 0 ≤ s1 ≤ ... ≤ sr−1, and

v0 = −i
φ′′(0)

φ′(0)
, d0 = −φ′′′(0)

φ′(0)
, c0 = i

φ(iv)(0)

φ′(0)
,

we establish the following results whose proofs may be found in Appendices 1
and 2, respectively.

Theorem 2.1 (Moments of a CP-INARCH(1) process).
We have:

(a) For any k ≥ 0, µ(k) = f2(v0α
k
1 + α0(1 + α1)).

(b) For any l ≥ k ≥ 0,

µ(k, l) = [d0(1−α2
1)−v20(1+α1−2α2

1)]f3α
l+k
1 +

v0(α0 + v0)

1− α1
f2α

l
1+v0f1f2α

l−k
1 +f1µ(k).

(c) For any m ≥ l ≥ k ≥ 0,

µ(k, l,m) = αm−l
1

[{
(c0 − 4v0d0 + 3v30) + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+ (7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
f4α

2l+k
1

+
2v0 + α0

1− α1
f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2l
1

+
v0

(1− α1)(1− α2
1)
f2
[
2v0α0 + d0(1− α1) + v20(2α1 − 1)

]
α2l−k
1

+
α0f3
1− α1

{
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
}
α
2(l−k)
1 +

v0 + α0

1− α1
µ(k, l)

−f2µ(k)[α0 + (v0 + α0)α1]] + f1µ(k, l).

Corollary 2.1 (Central Moments and Cumulants of a CP-INARCH(1) process).

We have:

(a) For any s ≥ 0, µ̃(s) = κ(s) = v0α
s
1f2.

(b) For any l ≥ s ≥ 0, we have

µ̃(s, l) = κ(s, l) = f3α
l
1[v

2
0(1 + α1 + α2

1)− {v20(1 + α1 − 2α2
1)− d0(1− α2

1)}αs
1].

(c) For any m ≥ l ≥ s ≥ 0,

κ(s, l,m) = αm
1 f4

[{
c0 + 3v30 − 4v0d0 + 3v0(v

2
0 − d0)α1 + (3α0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
αl+s
1

+v0(1 + α1 + α2
1 + α3

1)[d0(1− α2
1)− v20(1 + α1 − 2α2

1)](2α
l
1 + αs

1)

+v0(1 + α1 + α2
1)(1 + α2

1)[(1 + α1)v
2
0 + (d0(1− α1) + v20(2α1 − 1))αl−s

1 ]
]
,

µ̃(s, l,m) = κ(s, l,m) + v20f
2
2 (α

m−l+s
1 + 2αm+l−s

1 ).
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From Theorem 2.1 we deduce, for instance,

E(X2
t ) = µ(0) =

α0(v0 + α0(1 + α1))

(1− α1)(1− α2
1)

,(2.2)

E(X3
t ) = µ(0, 0) =

α0

(1− α1)3

[
d0 + (3v20 − d0)α

2
1

(1 + α1)(1 + α1 + α2
1)

+
3v0α0

1 + α1
+ α2

0

]
.

These results generalize those of Weiß [10] for the INARCH(1) model and
the two last equalities are important to deduce explicit expressions for the asymp-
totic distribution of the CLS estimators of the parameters α0 and α1 provided
in the next section. As we will take in our study some important particular
cases concerning the process conditional law, we conclude this section recalling
such cases and deducing the corresponding values of v0, d0 and c0, previously
introduced.

a) The INARCH(1) model ([4]) corresponds to a CP-INARCH model con-
sidering φ the characteristic function of the Dirac’s law concentrated in {1}, that
is, with a Poisson conditional distribution; we denote it by Poisson-INARCH(1)
model. So, we deduce that v0 = d0 = c0 = 1.

b) When φ is the characteristic function of the Poisson distribution with
mean ϕ > 0, Xt|Xt−1 follows a Neyman type-A law with parameter (λt/ϕ, ϕ), and
we have the NTA-INARCH(1) model introduced in [5]. For this case, v0 = 1+ϕ,
d0 = 1 + 3ϕ+ ϕ2 and c0 = 1 + 7ϕ+ 6ϕ2 + ϕ3.

c) Considering in the above expressions v0 = (2 − p∗)/p∗, d0 = (6 − 6p∗ +
(p∗)2)/(p∗)2 and c0 = ((2−p∗)(12−12p∗+(p∗)2))/(p∗)3, we obtain the expressions
for the GEOMP2-INARCH(1) model ([6]). In fact, this process is defined consid-
ering φ the characteristic function of the geometric distribution with parameter
p∗ ∈]0, 1[ and Xt|Xt−1 following a geometric Poisson (p∗λt, p

∗) law.

d) Another particular case of the CP-INARCH model is the NB2-INARCH
(that is identical to the NB-DINARCH model proposed by Xu et al., [13]), where
Xt|Xt−1 follows a negative binomial distribution with parameter (λt/(β − 1), 1/β)
and β > 0. This process is stated when φ is the characteristic function of the
logarithmic distribution with parameter (β − 1)/β and then we deduce v0 = β,
d0 = 2β2 − β and c0 = 6β2(β − 1) + β.

e) When φ is the characteristic function of the Borel law with parame-
ter κ ∈]0, 1[, Xt|Xt−1 follows a generalized Poisson distribution with parameter
((1− κ)λt, κ) and we recover the GP-INARCH model ([15]). So, v0 = (1− κ)−2,
d0 = (2κ+ 1)(1− κ)−4 and c0 = (6κ2 + 8κ+ 1)(1− κ)−6.
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3. ESTIMATION PROCEDURES

In this section, we focus on the estimation of the vector θ = (α0, α1, v0)
⊤,

where v0 includes the additional parameter associated to the conditional dis-
tribution of the CP-INARCH(1) model (for example, v0 = 1 + ϕ in the NTA-
INARCH(1) model and v0 = (2 − p∗)/p∗ in the GEOMP2-INARCH(1)). To
estimate the true value of θ, we start by discussing a two-step approach using the
conditional least squares and moment estimation methods; after we consider the
combination of the Poisson Quasi-Maximum Likelihood and moments estimation
methods and finally develop the conditional maximum likelihood estimation. For
this purpose, let (x1, ..., xn) be n particular values, arbitrarily fixed, of the process
X.

3.1. Two-step estimation procedures

3.1.1. Conditional Least Squares and Moments estimation methods

In the first step, we discuss the conditional least squares (CLS) approach for
the estimation of the conditional mean parameters α0 and α1 and, for parameter
v0 associated to the CP-INARCH(1) conditional distribution, an approach based
on the moment estimation method is developed.

The CLS estimator of α = (α0, α1) is obtained by minimizing the sum of
squares

Qn(α) =
n∑

t=2

[xt − E (Xt|Xt−1 = xt−1)]
2 =

n∑
t=2

[xt − α0 − α1xt−1]
2,

with respect to α. Solving the least squares equations
∂Qn(α)

∂α0
= −2

n∑
t=2

(xt − α0 − α1xt−1) = 0

∂Qn(α)

∂α1
= −2

n∑
t=2

xt−1 (xt − α0 − α1xt−1) = 0,

we obtain the following explicit expressions for the CLS estimator α̂n = (α̂0,n, α̂1,n):

α̂1,n =

∑n
t=2XtXt−1 − 1

n−1 ·
∑n

t=2Xt ·
∑n

s=2Xs−1∑n
t=2X

2
t−1 − 1

n−1 (
∑n

t=2Xt−1)
2 ,

(3.1) α̂0,n =

∑n
t=2Xt − α̂1,n

∑n
t=2Xt−1

n− 1
.
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The consistency and the asymptotic distribution of these estimators are
stated in the next theorem. This theorem generalizes the results obtained in [11],
Section 4.2, where the CLS estimators of α0 and α1 are obtained and studied in
the particular case of a Poisson-INARCH model.

Theorem 3.1. Let α̂n = (α̂0,n, α̂1,n) be the CLS estimator of α = (α0, α1)
given in (3.1). Then α̂n converges almost surely to α and

√
n(α̂n − α)

d−→ N(02×1,V
−1WV−1),

as n → ∞, where the entries of the matrix V−1WV−1 = (bij), i, j = 1, 2, are
given by

b11 =
α0

1− α1

(
α0(1 + α1) +

v20 + (d0 − v20)α1(1 + α1 − α2
1) + (3v20 − d0)α

4
1

v0(1 + α1 + α2
1)

)
,

b12 = b21 = v0α1 − α0(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

,

b22 = (1− α2
1)

(
1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)
,

and
d−→ means convergence in distribution.

Proof. The results announced are proved using those of Klimko and Nelson
[9, Section 3]. In fact, it is easily checked that the regularity conditions (i) to
(iii) defined on [9, p. 634] are satisfied taking into account that g(α;Xt−1) =
E
(
Xt|Xt−1

)
= α0 + α1Xt−1, and thus, by their Theorem 3.1, it follows that the

CLS estimators are strongly consistent. Furthermore, the matrix V is invertible
as it is given by

V =

 E
(

∂g
∂α0

∂g
∂α0

)
E
(

∂g
∂α0

∂g
∂α1

)
E
(

∂g
∂α1

∂g
∂α0

)
E
(

∂g
∂α1

∂g
∂α1

)
 =

[
E (1) E (Xt−1)

E (Xt−1) E
(
X2

t−1

)
]
=

 1 α0
1−α1

α0
1−α1

α0(v0+α0(1+α1))
(1−α1)(1−α2

1)

 ,

considering the expressions stated in Theorem 2.1. Thus, Theorem 3.2 of [9] is
satisfied implying the asymptotic normality of the CLS estimators. The entries
of the covariance matrix of the asymptotic distribution V−1WV−1 are derived
in Appendix 3. �

To estimate the parameter v0 we propose to use the moments estimation
method. Taking into consideration the expression (2.2) of the second order mo-
ment of the CP-INARCH(1) model, an estimator for v0, whose strong consistence
is a consequence from the strict stationarity and ergodicity of the process X, is
given by solving the equation

α̂0,n(v0 + α̂0,n(1 + α̂1,n))

(1− α̂1,n)(1− α̂2
1,n)

=
1

n

n∑
t=1

X2
t
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in order to v0. In this way we get the two-step CLS+M estimator for (α0, α1, v0).

We note that the estimation of v0 doesn’t involve the knowledge of the
conditional law, as it is totally determined by the estimators of α0 and α1 and
the empirical second order moment.

3.1.2. Poisson Quasi-Maximum Likelihood and Moments estimation methods

One of the advantages of using the above CLS+M approach is the fact
that we do not need to specify entirely the conditional distribution of the CP-
INARCH(1) model to estimate its parameters. We refer now another two-step
approach where it is used the Poisson quasi-conditional maximum likelihood es-
timator (PQMLE) to estimate the conditional mean parameters α0 and α1 and,
as previously, the moment estimation method for parameter v0. The resulting
estimator is denoted PQML+M.

The PQMLE provides a general approach for estimating the conditional
mean parameters of the CP-INARCH(1) models by maximizing a pseudo-likelihood
function considering the conditional distribution the Poisson one, that is, the
function

L̃n(θ|x) =
n∑

t=2

(xt log (λt)− λt − log (xt!)).

Ahmad and Francq [1] found some regularity conditions to establish the
consistency and asymptotic normality of the Poisson quasi-maximum likelihood
estimator of the conditional mean parameters of a count time series. These reg-
ularity conditions are easily satisfied by a CP-INARCH (1) process with α1 < 1,
and so the PQML estimator of (α0, α1) is consistent and asymptotically Gaussian.
The almost sure convergence of the v0 estimator follows as previously.

3.2. Conditional Maximum Likelihood Estimation

When the distribution of Xt|Xt−1 is known, we can estimate its param-
eters using the conditional maximum likelihood estimation (CMLE) method.
In this section, we discuss this procedure by considering NTA-INARCH(1) and
GEOMP2-INARCH(1) models, as developed in [11] , Section 4.1, for a Poisson-
INARCH(1) model .

Starting by a NTA-INARCH(1) process, we have the conditional probability
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mass function of Xt ([8]) given by

P
[
Xt = xt|Xt−1

]
=

e
−λt

ϕ ϕxt

xt!
Z(λt, xt, ϕ), Z(λt, Xt, ϕ) =

∞∑
j=0

(
λte

−ϕ
)j

jXt

ϕjj!
,

for xt = 0, 1, .... The conditional likelihood function is then

Ln(θ|x) =
n∏

t=2

e
−λt

ϕ ϕxt

xt!
Z(λt, xt, ϕ),

where for convenience θ = (α0, α1, ϕ) as v0 = 1+ϕ. So the log-likelihood function
has the form

logLn(θ|x) =
n∑

t=2

lt(θ) =
n∑

t=2

{
−λt

ϕ
+ xt log(ϕ)− log (xt!) + log (Z(λt, xt, ϕ))

}
.

The first derivatives of lt are given as

∂lt(θ)

∂ϕ
=

λt

ϕ2
+

xt
ϕ

−
(
ϕ+ 1

ϕ

)
Z(λt, xt + 1, ϕ)

Z(λt, xt, ϕ)
,

∂lt(θ)

∂αj
=

[
− 1

ϕ
+

1

λt

Z(λt, xt + 1, ϕ)

Z(λt, xt, ϕ)

]
∂λt

∂αj
, j = 0, 1,

and the second derivatives of lt are

∂2lt(θ)

∂ϕ2
= −2λt

ϕ3
− xt
ϕ2

+
Z(λt, xt + 1, ϕ)

ϕ2Z(λt, xt, ϕ)
+

(
ϕ+ 1

ϕ

)2 [Z(λt, xt + 2, ϕ)

Z(λt, xt, ϕ)
− Z2(λt, xt + 1, ϕ)

Z2(λt, xt, ϕ)

]
,

∂2lt(θ)

∂ϕ∂αj
=

[
1

ϕ2
− ϕ+ 1

ϕλt

{
Z(λt, xt + 2, ϕ)

Z(λt, xt, ϕ)
− Z2(λt, xt + 1, ϕ)

Z2(λt, xt, ϕ)

}]
∂λt

∂αj
,

∂2lt(θ)

∂αj∂αk
=

1

λ2
t

[
−Z(λt, xt + 1, ϕ)

Z(λt, xt, ϕ)
+

Z(λt, xt + 2, ϕ)

Z(λt, xt, ϕ)
− Z2(λt, xt + 1, ϕ)

Z2(λt, xt, ϕ)

]
∂λt

∂αj

∂λt

∂αk
,

for 0 ≤ j, k ≤ 1, where the expressions for ∂λt/∂αj and ∂2λt/∂αj∂αk are easily
deduced.

Analogously, for the GEOMP2-INARCH(1) process we obtain the following
expression

logLn(θ|x) =
n∑

t=2

lt(θ)

=

n∑
t=2

{
−λt + log

(
1xt=0 +

[
xt∑
n=1

λn
t

n!

(
xt − 1
n− 1

)
(p∗)n(1− p∗)xt−n

]
1xt ̸=0,

)}
,
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where θ = (α0, α1, p
∗), as v0 = (2− p∗)/p∗ and taking into consideration that the

conditional probability mass function of Xt is given by

P
[
Xt = 0|Xt−1

]
= e−λt ,

P
[
Xt = xt|Xt−1

]
=

xt∑
n=1

e−λt
λn
t

n!

(
xt − 1
n− 1

)
(p∗)n(1− p∗)xt−n, xt = 1, 2, ...

Similarly to the previous case, the first and second derivatives of lt in order to
α0, α1 and p∗ are deduced.

4. A SIMULATION STUDY

Some simulation studies are now developed to examine and compare the
performance of the different estimators considered in Section 3 for the model
parameters. We begin by illustrating the two-step approach based on CLS and
moments estimation methods by computing the estimates and analyzing its per-
formance. In the sequel, the several estimation procedures are discussed and
compared. The study is developed considering the NTA-INARCH(1) and the
GEOMP2-INARCH(1) models. So, after estimating α0, α1 and v0, we deduce
the estimator of ϕ, in the first case, given by

ϕ̂n = −1− α̂0,n(1 + α̂1,n) +
(1− α̂1,n)(1− α̂2

1,n)

nα̂0,n

n∑
t=1

X2
t ,

and, in the second one, that of p∗ namely

p̂∗n = 2

[
1− α̂0,n(1 + α̂1,n) +

(1− α̂1,n)(1− α̂2
1,n)

nα̂0,n

n∑
t=1

X2
t

]−1

.

4.1. CLS estimators performance

4.1.1. NTA-INARCH(1) model

To illustrate the CLS method, we focus on the NTA-INARCH(1) model
with true parameters α0 = 2, α1 = 0.2 and ϕ = 2 and, for different sample sizes
n = 100, 250, 500, 750, 1000, we present in Table 1 the expected values, variances
and covariance of α̂0,n, α̂1,n and ϕ̂n, considering 10000 replications. In the last
column of this Table we present the true values of α0, α1 and ϕ as well as the
entries of the asymptotic matrix V−1WV−1, respectively b11, b22 and b12 given
in Theorem 3.1. We verify that the asymptotic and the sample values are quite
similar for large values of n.
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Figure 1 displays a multiple boxplot for samples of length n = 250, 750
and 2000 of the CLS estimator of α0 and α1 based on 10000 model replications
as well as the histogram of the corresponding standardized values, for n = 2000,
of a NTA-INARCH(1) model with α0 = 2, α1 = 0.2 and ϕ = 2. These multiple
boxplots show a significant stability and allow to infer a high rate of convergence
to the limit distribution. In agreement with Theorem 3.1, the plots indicate the
adequacy of the normal for the empirical marginal distributions of the estima-
tors α̂0, α̂1. Let us observe that the Kolmogorov-Smirnov test for the sampling
laws of the standardized CLS estimation gives large p-values for testing the stan-
dard normal distribution as, for instance, when we consider n = 2000 and 1000
replications we obtain 0.9454 and 0.4051.

Table 1: Means, variances and covariances for the CLS+M estimates of
the NTA-INARCH(1) model with coefficients α0 = 2, α1 = 0.2,
ϕ = 2 and for different sample sizes n.

n 100 250 500 750 1000
Eest(α̂0) 2.0444 2.0161 2.0090 2.0090 2.0041 2
Eest(α̂1) 0.1797 0.1918 0.1956 0.1973 0.1981 0.2

Eest(ϕ̂) 1.9238 1.9670 1.9842 1.9899 1.9929 2
n · Vest(α̂0) 12.2393 12.3125 12.3782 12.3133 12.3133 12.3774
n · Vest(α̂1) 1.1793 1.1957 1.2227 1.2594 1.2776 1.2604

n · Vest(ϕ̂) 21.9663 21.7000 21.3637 22.2183 22.1552
n · Covest(α̂0, α̂1) −2.3311 −2.4081 −2.4814 −2.5270 −2.5911 −2.5510

In Figure 2 we present now a multiple boxplot and the histogram of the
distribution of

√
n(ϕ̂n − ϕ). Figure 3 shows the similarity between the empirical

cumulative distribution function of
√
n(ϕ̂n − ϕ) (represented in blue) and the

cumulative distribution function of the normal(0, 4.7) law (in red), whose pa-
rameters are the sample mean and variance of

√
n(ϕ̂n − ϕ). The stability previ-

ously observed appears also here and, once again, the p-value of the Kolmogorov-
Smirnov test, namely 0.8231 when n = 2000 and for 1000 replications, indicates
the adequacy of the normal for the empirical distribution of

√
n(ϕ̂n − ϕ).

From the empirical results presented in the two last lines of Table 2, we can
presume that the estimators of α0 (resp., α1) and ϕ are asymptotically uncorre-
lated. In fact, for the NTA-INARCH(1) model in study, the empirical correlations
ρest(α̂0,n, ϕ̂n) and ρest(α̂1,n, ϕ̂n) are significantly low. To support this statement
we use the Monte Carlo method to determine confidence intervals for the mean
of ρest(α̂0,n, ϕ̂n) and for the mean of ρest(α̂1,n, ϕ̂n) which we denote by m0,n,ñ and
m1,n,ñ, respectively. The confidence intervals are obtained considering ñ = 35
and ñ = 50 replications of n-dimensional samples (n = 500 and n = 1000) of a
NTA-INARCH(1) model with α0 = 2, α1 = 0.2 and ϕ = 2. Such intervals with
confidence level 0.99 are presented in Table 3, where we stress the lower values
when n or ñ increase. So we have estimated (α0, α1) and ϕ separately likely
without loss of efficiency.
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Figure 1: Boxplots for n = 250, 750, 2000 (from left to right) and his-
togram for n = 2000 of the empirical law of α̂0 (on top) and α̂1

(below) for a NTA-INARCH(1) process with α0 = 2, α1 = 0.2
and ϕ = 2. Superimposed is the standard normal density func-
tion. The results are based on 10000 replications.

Figure 2: Boxplots for n = 250, 750, 2000 (from left to right) and his-

togram for n = 2000 of the empirical law of
√
n
(
ϕ̂n − ϕ

)
when

α0 = 2, α1 = 0.2 and ϕ = 2 for a NTA-INARCH(1).

4.1.2. GEOMP2-INARCH(1) model

Let us consider now the GEOMP2-INARCH(1) model with true parameters
α0 = 2, α1 = 0.4 and p∗ = 0.1. As in the previous section, for different sample
sizes n, we compute the expected values, variances and covariances of α̂0,n, α̂1,n

and p̂∗n (see Table 4, where in the last column we present the true values of α0, α1

and p∗ as well as the entries b11, b22 and b12 of the asymptotic matrix V−1WV−1)
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Figure 3: Empirical CDF of the law of
√
n
(
ϕ̂n − ϕ

)
when α0 = 2, α1 =

0.2 and ϕ = 2 for a NTA-INARCH(1) (in blue) and the CDF of
the normal(0, 4.7) law (in red), for n = 2000.

Table 2: Empirical correlations for the CLS+M estimates of the NTA-
INARCH(1) model with coefficients α0 = 2, α1 = 0.2, ϕ = 2
and for different sample sizes n.

n 250 750 1000 5000 10000

ρest(α̂0,n, α̂1,n) −0.6276 −0.6417 −0.6385 −0.6482 −0.6402

ρest(α̂0,n, ϕ̂n) 0.0883 0.0962 0.1139 0.1059 0.0911

ρest(α̂1,n, ϕ̂n) 0.0272 0.0192 0.0078 0.0246 0.0438

Table 3: Confidence intervals for the mean of ρest(α̂0,n, ϕ̂n) and for the

mean of ρest(α̂1,n, ϕ̂n), with confidence level γ = 0.99 and for
different sample sizes n and ñ.

ñ = 35 ñ = 50
n = 500 n = 1000 n = 500 n = 1000

m0,n,ñ [0.0917, 0.1180] [0.0883, 0.1162] [0.0940, 0.1160] [0.0814, 0.1064]
m1,n,ñ [0.0113, 0.0412] [0.0165, 0.0412] [0.0137, 0.0354] [0.0132, 0.0397]

and for samples of length n = 250, 750 and 2000 we plot a multiple boxplot and
for n = 2000 the histograms for 10000 values of the CLS+M estimators (in Figure
4) and similar conclusions to the previous case may be deduced. To show the
adequacy of the normal for the empirical distribution of

√
n(p̂∗n − p∗), in Figure

5 we present the empirical cumulative distribution function of
√
n(p̂∗n−p∗) (rep-

resented in blue) and the cumulative distribution function of the normal(0, 0.3)
law (in red). Analogously to the previous study, we can also presume that the
estimators of α0, (resp., α1) and p∗ are asymptotically uncorrelated.
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Table 4: Expected values, variances and covariances for the CLS+M
estimates of the GEOMP2-INARCH(1) model with α0 = 2,
α1 = 0.4, p∗ = 0.1 and different sample sizes n.

n 100 250 500 750 1000
Eest(α̂0) 2.1401 2.0705 2.0381 2.0265 2.0241 2
Eest(α̂1) 0.3267 0.3655 0.3803 0.3875 0.3900 0.4

Eest(p̂∗) 0.1171 0.1068 0.1038 0.1025 0.1019 0.1
n · Vest(α̂0) 54.8720 54.9255 57.1036 57.6511 58.7167 61.5325
n · Vest(α̂1) 2.7975 3.2809 3.6923 3.8768 3.9021 4.3979

n · Vest(p̂∗) 0.2011 0.0879 0.0867 0.0884 0.0886
n · Covest(α̂0, α̂1) −1.4509 −3.4576 −4.8393 −5.3491 −5.5056 −7.0598

4.2. Comparative analysis of the estimation procedures

To examine and compare the finite sample performances of the CLS+M,
PQML+M and CML methods, we consider two different NTA-INARCH(1) mod-
els with parameter values α0 = 2, α1 = 0.2, ϕ = 2 and α0 = 5, α1 = 0.3, ϕ = 1,
and two different GEOMP2-INARCH(1) models with parameter values α0 =
2, α1 = 0.2, p∗ = 0.1 and α0 = 5, α1 = 0.3, p∗ = 0.6. The sample sizes considered
are n = 500 and 1000 and the number of replications m = 10000.

For the maximization of the log-likelihood functions, we use the MATLAB
function fmincon where the estimates obtained using the CLS+M method were
used as the initial values and the constrained conditions are α0 > 0, 0 < α1 < 1,
ϕ > 0 (for the NTA) and 0 < p∗ < 1 (for the GEOMP2). The performance of
the estimators is evaluated by the mean square error, i.e.,

1

m

m∑
k=1

(
θ̂j,k − θj

)2
, j = 1, 2, 3.

The results of the simulation experiments are presented in Tables 5 and 6 where
the smallest values of the mean square errors are highlighted in italics.

From this study we may conclude that the three methods seem to perform
quite well, although the CML gives slightly smaller mean square errors in most
cases.

5. REAL DATA EXAMPLE - COUNTS OF DIFFERENCES IN
THE PRICES OF ELECTRICITY IN PORTUGAL AND SPAIN

OMIE (http://www.omie.es) is the company that manages the wholesale
electricity market on the Iberian Peninsula. Electricity prices in Europe are set
on a daily basis (every day of the year) at 12 noon, for the twenty-four hours of
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Figure 4: Boxplots for n = 250, 750, 2000 (from left to right) and his-
togram for n = 2000 of the empirical law of α̂0 (on top), α̂1 (in
the middle) and p̂∗ (below) when α0 = 2, α1 = 0.4 and p∗ = 0.1
for a GEOMP2-INARCH(1) process. Superimposed is the stan-
dard normal density function. The results are based on 10000
replications.

the following day, known as daily market. The market splitting is the mechanism
used for setting the price of electricity on the daily market. When the price of
electricity is the same in Portugal and Spain, which corresponds to the desired
situation, it means that the integration of the Iberian market is working properly.

In the following, we consider the time series that represents the number
of hours in a day in which the prices of electricity for Portugal and Spain are
different. The data presented in Figure 6 consists of 365 observations, starting
from July 2016 and ending in June 2017.
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Figure 5: Empirical CDF of the law of
√
n
(
p̂∗n − p∗

)
when α0 = 2, α1 =

0.4 and p∗ = 0.1 for a GEOMP2-INARCH(1) model (in blue)
and the CDF of the normal(0, 0.3) law (in red).

Table 5: Mean estimates (in bold) and mean square errors (within paren-
theses) for the NTA-INARCH(1) model with different sample
sizes n.

n Method α0 = 2 α1 = 0.2 ϕ = 2 α0 = 5 α1 = 0.3 ϕ = 1

CLS+M 2.0071 0.1967 1.9832 5.0288 0.2956 0.9915
(0.0248) (0.0025) (0.0458) (0.1169) (0.0021) (0.0180)

500 PQML+M 2.0061 0.1971 1.9831 5.0259 0.2960 0.9912
(0.0239) (0.0023) (0.0459) (0.1123) (0.0020) (0.0181)

CML 2.0047 0.1977 1.9937 5.0249 0.2961 0.9928
(0.0233) (0.0022) (0.0174) (0.1115) (0.0020) (0.0141)

CLS+M 2.0023 0.1982 1.9906 5.0117 0.2979 0.9946
(0.0124) (0.0013) (0.0219) (0.0582) (0.0010) (0.0089)

1000 PQML+M 2.0020 0.1983 1.9907 5.0103 0.2981 0.9945
(0.0120) (0.0012) (0.0221) (0.0558) (0.0010) (0.0090)

CML 2.0017 0.1985 1.9960 5.0105 0.2981 0.9948
(0.0116) (0.0011) (0.0085) (0.0552) (0.0010) (0.0072)

Empirical mean and variance of the data are 1.4082 and 7.3027, respectively,
indicating that the true marginal distribution is overdispersed. Let us observe
that this time series exhibits also volatility clusters suggesting characteristics of
conditional heteroscedasticity. The partial autocorrelation function presented in
Figure 7, suggests an order 1 dependence and so a CP-INARCH(1) model may be
a reasonable choice to fit the data within the CP-INGARCH class. Despite the
support bounding of this variable, the empirical analysis of the data set observed
allows us to infer that its distributional characteristics (see histogram in Figure
7) are compatible with some compound Poisson laws.

Trying to obtain a suitable model for this count time series, we present a
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Table 6: Mean estimates (in bold) and mean square errors (within paren-
theses) for the GEOMP2-INARCH(1) model with different sam-
ple sizes n.

n Method α0 = 2 α1 = 0.2 p∗ = 0.1 α0 = 5 α1 = 0.3 p∗ = 0.6

CLS+M 2.0142 0.1898 0.1035 5.0269 0.2963 0.6033
(0.0964) (0.0058) (0.0002) (0.1219) (0.0021) (0.0009)

500 PQML+M 2.0070 0.1926 0.1036 5.0250 0.2966 0.6033
(0.0913) (0.0052) (0.0002) (0.1173) (0.0020) (0.0009)

CML 1.9967 0.1968 0.1013 5.0240 0.2967 0.6027
(0.0807) (0.0036) (0.0001) (0.1141) (0.0020) (0.0007)

CLS+M 2.0072 0.1959 0.1017 5.0100 0.2985 0.6020
(0.0481) (0.0030) (0.0001) (0.0600) (0.0011) (0.0004)

1000 PQML+M 2.0032 0.1975 0.1018 5.0084 0.2988 0.6020
(0.0450) (0.0026) (0.0001) (0.0578) (0.0010) (0.0004)

CML 1.9995 0.1989 0.1006 5.0080 0.2988 0.6016
(0.0397) (0.0018) (0.0000) (0.0566) (0.0010) (0.0003)

Figure 6: Daily number of hours in which the price of electricity of Portu-
gal and Spain are different, starting from July 2016 and ending
in June 2017.

Figure 7: Sample histogram, autocorrelations and partial autocorrela-
tions.

comparative study between five CP-INARCH(1) processes, namely those asso-
ciated to the Poisson ([4]), the generalized Poisson ([15]), the Neyman type-A,
the geometric Poisson and the negative binomial ([13]) laws. Considering the
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slightly better performance observed in Section 3 for the CML estimator, we
begin by using this methodology to estimate the models parameters and take a
decision on the model fitting. The results, obtained with the help of MATLAB
software, are displayed in Table 7. So, based on the values of the log likelihood
function, the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC), we conclude that the GEOMP2-INARCH(1) model gives better
fit than the other CP-INARCH(1) models considered. The NB2 model follows
closely and the Poisson model shows the worst adequacy. The mean, variance and
the first-order autocorrelation coefficient (FOAC) for the fitted CP-INARCH(1)
models are summarized in Table 8. The results are in accordance with the pre-
vious conclusion as, although the similarity of the mean values, the variance and
FOAC values point to a GEOMP2 or NB2-INARCH(1) choice. The two other
methodologies are also considered to estimate the previous models and it should
be noted in Table 9 the close proximity between each of the three parameters and
those obtained by the CML method in the case of the GEOMP2 and also NB2
models. This conclusion is validated by the values referred in Table 10 for the
sample and estimated means, variances and FOAC values under the two methods,
particularly for the CLS+M one. Thus these methodologies seem to capture the
same models as the powerful but distribution-demanding CML approach, which
is in line with the previous conclusions of the simulation study.

Table 7: CML parameters estimates for several CP-INARCH(1) models.
Standard errors are shown in parentheses. The best values of
the criteria -Log L, AIC and BIC are emphasised in italics

Model α̂0,365 α̂1,365 Additional parameter -Log L AIC BIC
Poisson 0.9751 0.3055 786.3 1576.5 1584.3

(0.0008) (0.0018)
GP 0.8971 0.3608 κ̂365 = 0.3736 524.6 1055.2 1066.9

(0.0012) (0.0018) (0.0073)

INARCH(1) NTA 0.9558 0.3192 ϕ̂365 = 2.4368 524.7 1055.4 1067.1
(0.0051) (0.0125) (0.0502)

GEOMP2 0.9338 0.3349 p̂∗365 = 0.3599 516.2 1038.4 1050.1
(0.0060) (0.0022) (0.0024)

NB2 0.9129 0.3496 β̂365 = 5.5659 519.8 1045.6 1057.3
(0.0078) (0.0031) (0.0968)

Table 8: Sample and estimated means, variances and FOACs under CP-
INARCH(1) models.

Method Model Sample Poisson GP NTA GEOMP2 NB2

CML Mean 1.4082 1.4040 1.4034 1.4039 1.4040 1.4036
Variance 7.3027 1.5485 4.1125 5.3723 7.2064 8.9001
FOAC 0.349 0.3055 0.3608 0.3192 0.3349 0.3496

The statistical study that was developed in this Section was naturally cir-
cumscribed to the class of CP-INARCH(1) models considered here. However, this
observed time series has characteristics that can also be taken into account if the
adjustment is done in other classes of models, namely, in view of its histogram,
the zero-inflated CP-INGARCH models ([7]).
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Table 9: Estimated parameters of several CP-INARCH(1) models based
on CLS+M and PQML+M approaches. Standard errors are
shown in parentheses. (a) means all models.

Method Additional parameter Model
CLS+M α̂0,365 = 0.9138 α̂1,365 = 0.3490 (a)

(0.0862) (0.0564) − Poisson
(0.1493) (0.0928) 0.5319 GP
(0.1337) (0.0799) 3.5645 NTA
(0.1392) (0.0845) 0.3594 GEOMP2
(0.1445) (0.0889) 4.5645 NB2

PQML+M α̂0,365 = 0.9751 α̂1,365 = 0.3055 (a)
(0.0008) (0.0018) 0.5392 GP
(0.0008) (0.0018) 3.7096 NTA
(0.0008) (0.0018) 0.3503 GEOMP2
(0.0008) (0.0018) 4.7096 NB2

Table 10: Sample and estimated means, variances and FOACs under CP-
INARCH(1) models.

Method Model Sample GEOMP2 NB2

CLS+M Mean 1.4082 1.4037 1.4037
Variance 7.3027 7.2964 7.2958
FOAC 0.349 0.3490 0.3490

PQML+M Mean 1.4082 1.4040 1.4040
Variance 7.3027 7.2926 7.2929
FOAC 0.349 0.3055 0.3055

6. CONCLUSION

The class of integer-valued GARCH models, specified through the char-
acteristic function of the compound Poisson law and denoted CP-INGARCH
([6]) unifies and enlarges substantially the family of conditionally heteroscedastic
integer-valued processes. With this new class, we may capture simultaneously dif-
ferent kinds of conditional volatility and the overdispersion characteristic often
recorded in real count data. The probabilistic analysis of these models, con-
cerning stationarity and ergodicity properties as well as moments studies, was
the goal of previous works among which we may refer those established in [5]
and [6]. The aim of this paper is to develop some statistical studies, regard-
ing the parametric estimation of the CP-INARCH models, that allow the use
of this general class with real data and show its true practical usefulness. We
concentrate our study on the CP-INARCH models of order one, and a two-step
estimation methodology, involving the conditional least squares or the Poisson
quasi-maximum likelihood methods in a first step, and the moment’s estimation
method in the second one, has been introduced and developed. We point out the
great advantage of this procedure regarding the more classical conditional maxi-
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mum likelihood one, as its application is independent from the specific conditional
distribution of the process. In fact, the simulation study presented allows con-
cluding that the two-step methodology performance is strongly competitive with
that of the conditional maximum likelihood estimation. We should also stress
that the practical relevance of this wide class is clearly shown with the real-data
example presented which illustrates the better quality of the fitting performed by
new models emerged from that class.

Future developments of the present study should concern, particularly, the
establishment of the conjectured Gaussian asymptotic distribution of the addi-
tional parameter estimator. The development of the parametric estimation of a
more general CP-INGARCH model should also be considered.
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APPENDIX 1. PROOF OF THEOREM 2.1

To establish the results present in Theorem 2.1 let us begin by recalling the
expression of the following conditional moments:

E(Xt|Xt−1) = λt = α0 + α1Xt−1,

E(X2
t |Xt−1) = v0λt + λ2

t = α2
1X

2
t−1 + α1(2α0 + v0)Xt−1 + α0(α0 + v0),(6.1)

E(X3
t |Xt−1) = i Φ′′′

Xt|Xt−1
(0) = d0λt + 3v0λ

2
t + λ3

t

= α3
1X

3
t−1 + 3α2

1(v0 + α0)X
2
t−1 + α1(3α

2
0 + 6v0α0 + d0)Xt−1

+α0(d0 + 3v0α0 + α2
0).(6.2)

(a) Using the fact that for k ≥ 0, Γ(k) = αk
1f2 we get

µ(k) = E(XtXt+k) = Cov(Xt, Xt+k) + E(Xt)
2

= f2(v0α
k
1 + α0(1 + α1)).(6.3)

(b) To derive µ(k, l), 0 ≤ k ≤ l, we distinguish the following three cases:
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Case 1: l > k. We have

µ(k, l) = E(XtXt+kXt+l) = E[XtXt+kE(Xt+l|Xt+l−1)]

= α0E(XtXt+k) + α1E(XtXt+kXt+l−1)

= α0µ(k) + α1µ(k, l − 1)

= α0µ(k) + α1[α0µ(k) + α1µ(k, l − 2)]

= . . . = αl−k
1 [µ(k, k)− f1µ(k)] + f1µ(k).

Case 2: l = k > 0. We have

µ(k, k) = E[XtE(X2
t+k|Xt+k−1)]

= α2
1E(XtX

2
t+k−1) + α1(2α0 + v0)E(XtXt+k−1) + α0(α0 + v0)E(Xt)

= α2
1µ(k − 1, k − 1) + α1(2α0 + v0)µ(k − 1) + α0(α0 + v0)f1

= . . . = α2k
1

[
µ(0, 0)− v0(2α0 + v0)f2

1− α1
− f1µ(0)

]
+

v0(2α0 + v0)f2α
k
1

1− α1
+ f1µ(0).

Case 3: l = k = 0. According to the relations between the moments and
the cumulants (e.g., formula (15.10.4) in [3, p. 186]) and Theorem 4.2
of [7], we have

µ(0, 0) = E(X3
t ) = κ3 + 3κ2µ+ µ3 = f3[d0(1− α2

1) + 3v20α
2
1] + 3v0f2f1 + f3

1

= [d0(1− α2
1) + 3v20α

2
1]f3 +

2α0v0
1− α1

f2 + f1µ(0),

since f1 = (1− α2
1)f2. So the above formula for µ(k, k) simplifies to

µ(k, k) = α2k
1

[
[d0(1− α2

1) + 3v20α
2
1]f3 −

v20
1− α1

f2

]
+

v0(2α0 + v0)

1− α1
f2α

k
1 + f1µ(0)

= α2k
1 f3

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
+

v0(2α0 + v0)

1− α1
f2α

k
1 + f1µ(0),

which also holds for k = 0. Replacing this expression in µ(k, l) above, it
follows that

µ(k, l) = αl−k
1

[
[d0(1− α2

1)− v20(1 + α1 − 2α2
1)]f3α

2k
1 +

v0(2α0 + v0)

1− α1
f2α

k
1

+f1µ(0)− f1µ(k)] + f1µ(k).

As

f1µ(0)− f1µ(k) = v0f1f2 −
v0α0

1− α1
f2α

k
1 ,

we finally obtain, for any 0 ≤ k ≤ l,

µ(k, l) = [d0(1− α2
1)− v20(1 + α1 − 2α2

1)]f3α
l+k
1 +

v0(α0 + v0)

1− α1
f2α

l
1 + v0f1f2α

l−k
1 + f1µ(k).

(c) In what concerns the fourth-order moments µ(k, l,m) with 0 ≤ k ≤ l ≤ m,
we proceed in a similar way as above and distinguish the following four
cases:
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Case 1: m > l. As above we have

µ(k, l,m) = E(XtXt+kXt+lXt+m)

= αm−l
1 [µ(k, l, l)− f1µ(k, l)] + f1µ(k, l).

Case 2: m = l > k. For this case, using formula (6.1), we obtain

µ(k, l, l) = E[XtXt+kE(X2
t+l|Xt+l−1)]

= α2
1µ(k, l − 1, l − 1) + α1(v0 + 2α0)µ(k, l − 1) + α0(v0 + α0)µ(k).

Replacing µ(k, l − 1), using µ(0) = (v0 + α0(1 + α1))f2 and replacing
µ(k), we obtain

µ(k, l, l) = α
2(l−k)
1 µ(k, k, k) + µ(k)µ(0)

−f2v0

[
f2(v0 + α0(1 + α1)) +

(v0 + 2α0)(v0 + α0)

(1− α1)2

]
α2l−k
1

−f1

[
f1µ(0) +

v0(v0 + 2α0)

1− α1
f2

]
α
2(l−k)
1 +

v0 + 2α0

1− α1
[µ(k, l)− f1µ(k)]

−v0 + 2α0

1− α1

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
f3α

2l
1 .

So, replacing µ(0), recalling µ(0, 0) and taking into account that f1
1−α1

=

(1 + α1)f2, we get

µ(k, l, l) = α
2(l−k)
1 µ(k, k, k)− µ(k)f2[α0 + (v0 + α0)α1]

− f2v0
(1− α1)(1− α2

1)

[
v20(1 + α1) + v0α0(4 + 3α1) + 3α2

0(1 + α1)
]
α2l−k
1

−f1

{
µ(0, 0)− [d0(1− α2

1) + 3v20α
2
1]f3 +

v20f2
1− α1

}
α
2(l−k)
1

+
v0 + 2α0

1− α1
µ(k, l)− v0 + 2α0

1− α1

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
f3α

2l
1 .(6.4)

Case 3: m = l = k > 0. From formula (6.2) we have

µ(k, k, k) = E[XtE(X3
t+k|Xt+k−1)]

= α3
1µ(k − 1, k − 1, k − 1) + 3α2

1(v0 + α0)µ(k − 1, k − 1)

+α1(d0 + 6v0α0 + 3α2
0)µ(k − 1) + α0(d0 + 3v0α0 + α2

0)µ.

Replacing µ(k − 1, k − 1) and thereafter µ(k − 1), we deduce

µ(k, k, k) = α3
1µ(k − 1, k − 1, k − 1)

+3(v0 + α0)
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
f3α

2k
1

+
v0f2

1− α1

[
3α1(v0 + α0)

2 + 3α1(v0 + α0)α0 + (d0 + 6v0α0 + 3α2
0)(1− α1)

]
αk
1

+f1f2
{
3α2

1(v0 + α0)(v0 + α0(1 + α1)) + (d0 + 6v0α0 + 3α2
0)α1(1− α1)(1 + α1)

+(d0 + 3v0α0 + α2
0)(1− α1)(1− α2

1)
}
.
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Making some calculations and then recalling the expression of µ(0, 0), we
obtain

µ(k, k, k) = α3
1µ(k − 1, k − 1, k − 1)

+3(v0 + α0)
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
f3α

2k
1

+
v0f2
1− α1

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v20α1

]
αk
1

+f1(1− α3
1)µ(0, 0).

Replacing successively the expression of µ(k−j, k−j, k−j), j = 1, ..., k−1,
it remains

µ(k, k, k) = α3k
1

{
µ(0, 0, 0)− 3(v0 + α0)

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
] f3
1− α1

− v0f2
(1− α1)(1− α2

1)

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v20α1

]
−f1µ(0, 0)}+

3(v0 + α0)f3α
2k
1

1− α1

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]

+
v0f2α

k
1

(1− α1)(1− α2
1)

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v20α1

]
+f1µ(0, 0).(6.5)

Replacing µ(0, 0), highlighting f3
1−α2

1
, noting that f2 = (1−α3

1)f3 and
f3

1−α2
1
=

f4(1 + α2
1) and developing the calculations, we finally get

µ(k, k, k) =
{
µ(0, 0, 0)− f4

[
4v0d0 − 3v30 + 3v0(d0 − v20)α1 + v0(3v

2
0 + d0)α

2
1

+v0(6v
2
0 − d0)α

3
1 + 3v0(2v

2
0 − d0)α

4
1 + v0(9v

2
0 − 4d0)α

5
1

+α0(1 + α2
1)
[
3v20 + 4d0 + (3v20 + 4d0)α1 + (15v20 − 4d0)α

2
1 + (12v20 − 4d0)α

3
1

]
+6v0α

2
0(1 + α2

1)(1 + α1)(1 + α1 + α2
1)

+α3
0(1 + α2

1)(1 + α1)
2(1 + α1 + α2

1)
]}

α3k
1

+3
v0 + α0

1− α1
f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2k
1 + f1µ(0, 0)

+
v0

(1− α1)(1− α2
1)
f2
[
3α2

0(1 + α1) + 3v0α0(2 + α1)

+d0(1− α1) + 3v20α1

]
αk
1 .(6.6)

Case 4: m = l = k = 0. Once again, according to the relations between
the moments and the cumulants, we obtain

µ(0, 0, 0) = E(X4
t ) = κ4 + 3κ2

2 + 6κ2µ
2 + 4κ3µ+ µ4

= f4
{
c0 + (3v30 + 4v0d0 − c0)α

2
1 + (6v0d0 − c0)α

3
1 + (15v30 − 10v0d0 + c0)α

5
1

+α0(1 + α2
1)

[
3v20 + 4d0 + (3v20 + 4d0)α1 + (15v20 − 4d0)α

2
1 + (12v20 − 4d0)α

3
1

]
+6v0α

2
0(1 + α1)(1 + α2

1)(1 + α1 + α2
1) + α3

0(1 + α1)
2(1 + α2

1)(1 + α1 + α2
1)
}
.

So the formula (6.6) for µ(k, k, k) studied in case 3 simplifies to

µ(k, k, k) = f4
{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
α3k
1

+3
v0 + α0

1− α1
f3

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2k
1 + f1µ(0, 0)

+
v0

(1− α1)(1− α2
1)

f2
[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v20α1

]
αk
1 .
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Inserting into the formula (6.4) for µ(k, l, l) stated in case 2, we obtain

µ(k, l, l) = f4
{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
α2l+k
1

+
2v0 + α0

1− α1
f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2l
1

+

{
α0f3
1− α1

[d0(1− α2
1)− v20(1 + α1 − 2α2

1)]

}
α
2(l−k)
1

+
v0

(1− α1)(1− α2
1)
f2
[
2v0α0 + d0(1− α1) + v20(2α1 − 1)

]
α2l−k
1

+
v0 + 2α0

1− α1
µ(k, l)− f2µ(k)[α0 + (v0 + α0)α1].

So it follows that we have

µ(k, l,m) = αm−l
1 [µ(k, l, l)− f1µ(k, l)] + f1µ(k, l)

= αm−l
1

[
f4
{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
α2l+k
1

+
2v0 + α0

1− α1
f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2l
1

+

{
α0f3
1− α1

[d0(1− α2
1)− v20(1 + α1 − 2α2

1)]

}
α
2(l−k)
1

+
v0

(1− α1)(1− α2
1)
f2
[
2v0α0 + d0(1− α1) + v20(2α1 − 1)

]
α2l−k
1

+
v0 + α0

1− α1
µ(k, l)− f2µ(k)[α0 + (v0 + α0)α1]

]
+ f1µ(k, l),

which holds for all 0 ≤ k ≤ l ≤ m.

APPENDIX 2. PROOF OF COROLLARY 2.1

To establish the results present in Corollary 2.1 we use the general relations
between joint moments and joint cumulants (see [2], p. 5),

(a) the second-order central moments and cumulants of X, for any s ≥ 0, are
given by

µ̃(s) = κ(s) = Cov(Xt, Xt+s) = v0α
s
1f2.

(b) the third-order central moments and cumulants, for any l ≥ s ≥ 0, are
given by

µ̃(s, l) = κ(s, l)

= f3α
l
1[v

2
0(1 + α1 + α2

1)− {v20(1 + α1 − 2α2
1)− d0(1− α2

1)}αs
1].
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(c) In what concerns the fourth-order cumulants we have, for m ≥ l ≥ s ≥ 0,

κ(s, l,m) = αm−l
1

[
α2l+s
1 f4

{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
+
2v0 + α0

1− α1
f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2l
1

+

{
α0f3

1 − α1
[d0(1 − α2

1) − v2
0(1 + α1 − 2α2

1)]

}
α

2(l−s)
1

+
v0

(1− α1)(1− α2
1)
f2
[
2v0α0 + d0(1− α1) + v20(2α1 − 1)

]
α2l−s
1

+
v0 + α0

1− α1
µ(s, l)− f2µ(s)[α0 + (v0 + α0)α1]

]
+f1µ(s, l) − f1µ(s, l)

−f1

(
[d0(1 − α2

1) − v2
0(1 + α1 − 2α2

1)]f3α
m+l−2s
1 +

v0(v0 + α0)

1− α1
f2α

m−s
1

+v0f1f2α
m−l
1 +f1µ(l − s) − f1f2(v0α

l−s
1 + α0(1 + α1))

+[d0(1− α2
1)− v20(1 + α1 − 2α2

1)]f3α
m+l
1

+
v0(v0 + α0)

1− α1
f2α

m
1 + f1f2v0α

m−l
1 +f1µ(l) − f1µ(l)+

v0(v0 + α0)

1− α1
f2α

m
1

+[d0(1− α2
1)− v20(1 + α1 − 2α2

1)]f3α
m+s
1 + v0f1f2α

m−s
1 +f1µ(s) − f1µ(s)

)
−(f2[v0α

s
1 + α0(1 + α1)]− f2

1 )(f2[v0α
m−l
1 + α0(1 + α1)]− f2

1 )

−(f2[v0α
l
1 + α0(1 + α1)]− f2

1 )(f2[v0α
m−s
1 + α0(1 + α1)]− f2

1 )

−(f2[v0α
m
1 + α0(1 + α1)]− f2

1 )(f2[v0α
l−s
1 + α0(1 + α1)]− f2

1 )

+f2
1

(
f2[v0α

m
1 + α0(1 + α1)] + f2[v0α

m−s
1 + α0(1 + α1)]

+f2[v0α
m−l
1 + α0(1 + α1)]− 3f2

1

)
,

where we highlight, using bold, expressions whose sum equals zero.

So, taking into account that

−f2µ(s)[α0 + (v0 + α0)α1]α
m−l
1 =

[
−f1

α0 + v0
1− α1

µ(s) + v0f2µ(s)

]
αm−l
1

and

−(f2[v0α
s
1 + α0(1 + α1)]− f2

1 )(f2[v0α
m−l
1 + α0(1 + α1)]− f2

1 )

−(f2[v0α
l
1 + α0(1 + α1)]− f2

1 )(f2[v0α
m−s
1 + α0(1 + α1)]− f2

1 )

−(f2[v0α
m
1 + α0(1 + α1)]− f2

1 )(f2[v0α
l−s
1 + α0(1 + α1)]− f2

1 )

+f2
1

(
f2[v0α

m
1 + α0(1 + α1)] + f2[v0α

m−s
1 + α0(1 + α1)]

+f2[v0α
m−l
1 + α0(1 + α1)]− 3f2

1

)
= −v20f

2
2 [α

m−l+s
1 + 2αm+l−s

1 ] + v0f
2
1 f2[α

m−l
1 + αm−s

1 + αm
1 ]
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we obtain by replacing µ(s, l),

κ(s, l,m) = αm
1 f4

[{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3α0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
αl+s
1

+v0(1 + α1 + α2
1 + α3

1)[d0(1− α2
1)− v20(1 + α1 − 2α2

1)](2α
l
1 + αs

1)

+v0(1 + α1 + α2
1)(1 + α2

1)[(1 + α1)v
2
0 + (d0(1− α1) + v20(2α1 − 1))αl−s

1 ]
]
,

for any m ≥ l ≥ s ≥ 0.

Finally, the fourth-order central moments of X are given by

µ̃(s, l,m) = κ(s, l,m) + v0α
s
1f2v0α

m−l
1 f2 + v0α

l
1f2v0α

m−s
1 f2 + v0α

l−s
1 f2v0α

m
1 f2

= κ(s, l,m) + v20f
2
2α

m−l+s
1 + 2v20f

2
2α

m+l−s
1 .

APPENDIX 3. COVARIANCE MATRIX OF THE ASYMPTOTIC
DISTRIBUTION OF CLS ESTIMATORS IN CP-INARCH MODEL

To obtain the entries of the covariance matrix V−1WV−1, let us begin by
deducing the inverse of V.

V−1 =
(1− α1)(1− α2

1)

v0α0

[
α0(v0+α0(1+α1))
(1−α1)(1−α2

1)
− α0

1−α1

− α0
1−α1

1

]
=

[
1 + α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0
(1− α2

1)
(1−α1)(1−α2

1)
v0α0

]
.

Furthermore, considering ut(α) = Xt − g(α,Xt−1),

E
[
f(Xt−1) · u2t (α)

]
= E

[
f(Xt−1) · E

[
(Xt − α0 − α1Xt−1)

2|Xt−1

]]
= E [f(Xt−1) · V [Xt − α0 − α1Xt−1|Xt−1] + 0]

= E [f(Xt−1) · V [Xt|Xt−1]] = E [f(Xt−1) · v0(α0 + α1Xt−1)] ,

because of the conditional compound Poisson distribution, and then

W =

 E
(
u2t

∂g
∂α0

∂g
∂α0

)
E
(
u2t

∂g
∂α0

∂g
∂α1

)
E
(
u2t

∂g
∂α1

∂g
∂α0

)
E
(
u2t

∂g
∂α1

∂g
∂α1

) 
=

[
E[1 · v0 (α0 + α1Xt−1)] E[Xt−1 · v0 (α0 + α1Xt−1)]

E[Xt−1 · v0 (α0 + α1Xt−1)] E[X2
t−1 · v0 (α0 + α1Xt−1)]

]

=
v0α0

1− α1

 1 v0α1+α0(1+α1)
1−α2

1
v0α1+α0(1+α1)

1−α2
1

v0α0(1+2α1)
(1−α1)(1−α2

1)
+

α2
0

(1−α1)2
+

α1(d0+(3v20−d0)α2
1)

(1−α2
1)(1−α3

1)

 ,

since
E[v0 (α0 + α1Xt−1)] = v0

[
α0 + α1

α0

1− α1

]
=

v0α0

1− α1
,

E[Xt−1v0 (α0 + α1Xt−1)] = v0

[
α2
0

1− α1
+

α1α0(v0 + α0(1 + α1))

(1− α1)(1− α2
1)

]
=

v0α0

1− α1
·
v0α1 + α0(1 + α1)

1− α2
1

,
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E[X2
t−1 · v0 (α0 + α1Xt−1)] = v0

[
α2
0(v0 + α0(1 + α1))

(1− α1)(1− α2
1)

+
α1α0

(1− α1)3

(
d0 + (3v20 − d0)α2

1

(1 + α1)(1 + α1 + α2
1)

+
3v0α0

1 + α1
+ α2

0

)]

=
v0α0

1− α1

[
v0α0(1− α1) + 3v0α0α1

(1− α1)2(1 + α1)
+

α2
0(1− α1) + α2

0α1

(1− α1)2
+

α1(d0 + (3v20 − d0)α2
1)

(1− α2
1)(1− α3

1)

]

=
v0α0

1− α1

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2
0

(1− α1)2
+

α1(d0 + (3v20 − d0)α2
1)

(1− α2
1)(1− α3

1)

]
,

using again the expressions stated in Theorem 2.1.

Now, the product of V−1W is given by[
1 + α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0
(1− α2

1)
(1−α1)(1−α2

1)
v0α0

] 1 v0α1+α0(1+α1)
1−α2

1
v0α1+α0(1+α1)

1−α2
1

v0α0(1+2α1)
(1−α1)(1−α2

1)
+

α2
0

(1−α1)2
+

α1(d0+(3v20−d0)α2
1)

(1−α2
1)(1−α3

1)



=

[
a11 a12
a21 a22

]
=

 1− α1
v0α1

1−α2
1
− α0α1

1−α1
− α1(d0+(3v20−d0)α2

1)
v0(1−α3

1)
α1(1−α1)

α0
1 + α1 +

α1(d0+(3v20−d0)α2
1)

v0α0(1+α1+α2
1)

 ,

since

a11 = 1 +
α0(1 + α1)

v0
− 1− α2

1

v0

v0α1 + α0(1 + α1)

1− α2
1

= 1− α1,

a12 =

(
1 +

α0

v0
(1 + α1)

)
v0α1 + α0(1 + α1)

1− α2
1

−1− α2
1

v0

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2
0

(1− α1)2
+

α1(d0 + (3v20 − d0)α
2
1)

(1− α2
1)(1− α3

1)

]
=

v0α1

1− α2
1

+
α0

1− α1
+

α0α1

1− α1
+

α2
0(1 + α1)

v0(1− α1)
− α0(1 + 2α1)

1− α1

−α2
0(1 + α1)

v0(1− α1)
− α1(d0 + (3v20 − d0)α

2
1)

v0(1− α3
1)

=
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v20 − d0)α

2
1

)
v0(1− α3

1)
,

a21 = −(1− α2
1)

v0
+

(1− α1)(1− α2
1)(v0α1 + α0(1 + α1))

v0α0(1− α2
1)

= −(1− α2
1)

v0
+

α1(1− α1)

α0
+

(1− α2
1)

v0
=

α1(1− α1)

α0
,

a22 = −(1− α2
1)(v0α1 + α0(1 + α1))

v0(1− α2
1)

+
(1− α1)(1− α2

1)

v0α0

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2
0

(1− α1)2
+

α1(d0 + (3v20 − d0)α
2
1)

(1− α2
1)(1− α3

1)

]

= −α1 −
α0(1 + α1)

v0
+ 1 + 2α1 +

α0(1 + α1)

v0
+

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

= 1 + α1 +
α1(d0 + (3v20 − d0)α

2
1)

v0α0(1 + α1 + α2
1)

.
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So, the asymptotic covariance matrix is such that

V−1WV−1 =

[
b11 b12
b21 b22

]

=
v0α0

1− α1

 1− α1
v0α1

1−α2
1
− α0α1

1−α1
− α1(d0+(3v2

0−d0)α
2
1)

v0(1−α3
1)

α1(1−α1)
α0

1 + α1 +
α1(d0+(3v2

0−d0)α
2
1)

v0α0(1+α1+α2
1)

[ 1 + α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0
(1− α2

1)
(1−α1)(1−α2

1)
v0α0

]

where

b11 =
α0

1− α1

(
α0(1 + α1) +

v20 + (d0 − v20)α1(1 + α1 − α2
1) + (3v20 − d0)α

4
1

v0(1 + α1 + α2
1)

)
,

b12 = b21 = v0α1 − α0(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

,

b22 = (1− α2
1)

(
1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)
.

In fact, we have

b11 =
v0α0

1− α1

[
(1− α1)

(
1 +

α0

v0
(1 + α1)

)
− 1

v0
(1− α2

1)

(
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v20 − d0)α

2
1

)
v0(1− α3

1)

)]
=

α0

1− α1

[
v0(1− α1) + α0(1− α2

1)− v0α1 + α0α1(1 + α1)

+
α1

(
d0 + (3v20 − d0)α

2
1

)
(1 + α1)

v0(1 + α1 + α2
1)

]

=
α0

1− α1

[
α0(1 + α1) +

v20(1− 2α1)(1 + α1 + α2
1) + α1

(
d0 + (3v20 − d0)α

2
1

)
(1 + α1)

v0(1 + α1 + α2
1)

]

=
α0

1− α1

(
α0(1 + α1) +

v20 + (d0 − v20)α1(1 + α1 − α2
1) + (3v20 − d0)α

4
1

v0(1 + α1 + α2
1)

)
,

b12 =
v0α0

1− α1

[
− (1− α1)(1− α2

1)

v0

+
(1− α1)(1− α2

1)

v0α0

(
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v20 − d0)α

2
1

)
v0(1− α3

1)

)]

= −α0(1− α2
1) + v0α1 − α0α1(1 + α1)−

α1(1 + α1)
(
d0 + (3v20 − d0)α

2
1

)
v0(1 + α1 + α2

1)

= v0α1 − α0(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

,

b21 =
v0α0

1− α1

[
α1(1− α1)

α0

(
1 +

α0(1 + α1)

v0

)
− 1− α2

1

v0

(
1 + α1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)]
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= v0α1 + α0α1(1 + α1)− α0(1 + α1)− α0α1(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

= v0α1 − α0(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

,

b22 =
v0α0

1− α1

[
−α1(1− α1)(1− α2

1)

v0α0
+

(1− α1)(1− α2
1)

v0α0

(
1 + α1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)]
= −α1(1− α2

1) + α1(1− α2
1) + (1− α2

1)

(
1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)
= (1− α2

1)

(
1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)
.


