
REVSTAT – Statistical Journal

Volume 0, Number 0, Month 0000, 000-000

ON SOME STATIONARY INAR(1) PROCESSES
WITH COMPOUND POISSON DISTRIBUTIONS

Authors: Emad-Eldin A. A. Aly
– Department of Statistics and Operations Research, Kuwait University,

Kuwait (emad@kuc01.kuniv.edu.kw)

Nadjib Bouzar �
*

– Department of Mathematical Sciences, University of Indianapolis,
USA (nbouzar@uindy.edu)

Received: Month 0000 Revised: Month 0000 Accepted: Month 0000

Abstract:

� Aly and Bouzar ([2]) used the backward approach in presence of the binomial thinning
operator to construct underdispersed stationary first-order autoregressive integer-
valued (INAR (1)) processes. The present paper is to be seen as a continuation of
their work. The focus of this paper is on the development of stationary INAR (1)
processes with discrete compound Poisson innovations. We expand on some recent
results obtained by several authors for these processes. A number of theoretical re-
sults are established and then used to develop stationary INAR (1) processes with
compound Poisson innovations with finite mean. We apply our results to obtain
in detail important distributional properties of the new models when the innova-
tion follows the Polya-Aeppli distribution, the non-central Polya-Aeppli distribution,
the negative binomial distribution, the noncentral negative binomial distribution, the
Poisson-Lindley distribution, the Euler-type distribution and the Euler distribution.

Key-Words:

� Integer-valued time series, The binomial thinning operator, Infinite divisibility, Euler
distribution.

AMS Subject Classification:

� 62M10, 60E99.

*Corresponding author

https://orcid.org/0000-0003-1148-6299
https://orcid.org/0000-0002-4841-5841


2 Aly and Bouzar

1. INTRODUCTION

Assume that X is a Z+-valued random variable (rv) and α ∈ (0, 1). The
binomial thinning operator (Steutel and van Harn ([22])) of X, denoted by α⊙X,
is defined by

(1.1) α⊙X =
X∑
i=1

Yi,

where {Yi} is a sequence of independent identically distributed (iid) Bernoulli(α)
(Ber(α)) rv’s independent of X. The operation ⊙ acts as the analogue of the
standard multiplication used in standard time series models.

The main results of this paper use the two facts below without further
reference. For α and β in (0, 1),

α⊙ (β ⊙X)
d
= β ⊙ (α⊙X)

d
= (αβ)⊙X

and for X and Y independent Z+-valued rv’s,

α⊙ (X + Y )
d
= α⊙X + α⊙ Y.

Assume that {εt} is a sequence of iid Z+-valued rv’s. A sequence {Xt} of
Z+-valued rv’s is said to be an INAR (1) process if

(1.2) Xt = α⊙Xt−1 + εt (t ≥ 1),

where {εt} is the innovation sequence and α is the coefficient of the process. The
binomial thinning α⊙Xt−1 in (1.2) is performed independently for each t. More
precisely, we assume the existence of an array (Yi,t, i ≥ 1, t ≥ 0) of iid Ber(α)
rv’s, independent of {εt}, such that

α⊙Xt−1 =

Xt−1∑
i=1

Yi,t−1.

Let φXt(z) be the pgf of Xt of (1.2) and Ψ(z) be the pgf εt. Then we have by
(1.2)

φXt(z) = φXt−1(1− α+ αz)Ψ(z).

If one further assumes that {Xt} is stationary with φX(z) as the pgf of its
marginal distribution, then the following functional equation holds

(1.3) φX(z) = φX(1− α+ αz)Ψ(z).

It is a well known result that if α ∈ (0, 1) and φX(z) and Ψ(z) are pgf’s
that satisfy (1.3), then there exists a stationary INAR (1) process {Xt} on some
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probability space such that φX(z) and Ψ(z) are respectively the pgf of its marginal
distribution and the pgf of its innovation sequence {εt}.

In the backward approach, one starts out with the pgf Ψ(z) of the inno-
vation sequence and solve (1.3) for the pgf φX(·) of the marginal distribution of
the INAR (1) process. In this case

φX(z) = lim
n−→∞

n∏
i=0

Ψ(1− αi + αiz),

provided that the limit exists and is a pgf (see [2]).

The main focus of the present paper is on the development of stationary
INAR (1) models driven by (1.2) with an infinitely divisible (Compound Poisson)
innovation whose mean is finite. In Section 2, we prove a number of basic results
in the context of the backward approach for these models. The results of Section
2 are used in Sections 3-9 to obtain in detail key distributional properties of the
marginal distributions of some important INAR (1) processes. We discuss models
whose innovations follow the Polya-Aeppli distribution, the non-central Polya-
Aeppli distribution, the negative binomial distribution, the noncentral negative
binomial distribution, the Poisson-Lindley distribution, and the Euler-type and
Euler distributions.

The above INAR (1) models are necessarily overdispersed. An example of a
data set which is empirically overdispersed is presented and analyzed in [4]. This
data set gives the monthly claim counts by workers in the heavy manufacturing
industry who were collecting benefits due to a burn related injury. The same
data set was further analyzed in [23] and [18] and shown to have an INAR (1)-
like autocorrelation structure. Another example of an overdispersed data set
was introduced in [11] and was further analyzed in [12]. This data set involves
the number of publications produced by Ph.D. biochemists. Several examples of
underdispersed data sets are reported and analyzed in [20].

In the rest of this paper we will assume that α ∈ (0, 1) and a = 1 − a for

a ∈ (0, 1). We will also use the notation µ
(u)
r (κ

(u)
r ) and µ

(u)
[r] (κ

(u)
[r] ) to designate

the r-th moment (cumulant) and the r-th factorial moment (factorial cumulant)
of the pmf {ur}, respectively.

The backward approach rests heavily on the following important result
found in [2].

Theorem 1.1. Assume that Ψ′(1) < ∞. The function

(1.4) φ(z) =
∞∏
i=0

Ψ(1− αi + αiz)

is a pgf. Moreover, the convergence of the infinite product is uniform over the
interval [0, 1] and φ(z) satisfies (1.3).
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2. PROCESSES WITH COMPOUND POISSON INNOVATIONS

2.1. Basic Results

We start out by specializing Theorem 1.1 to infinitely divisible distributions
with finite mean. Recall that a distribution on Z+ is infinitely divisible if and
only if it is a discrete compound Poisson distribution with pgf

(2.1) Ψ(z) = exp{λ(H(z)− 1)},

for some λ > 0 and some unique pgf H(z) =
∑∞

r=1 hrz
r with pmf {hr} and

H(0) = h0 = 0. We will refer to such distributions as DCP (λ,H) distributions.

First, we need a lemma.

Lemma 2.1. Assume that Ψ(z) is the pgf of a DCP (λ,H) distribution.
Then for each i ≥ 0,Ψ(1 − αi + αiz) is the pgf of a DCP (λ′

i, Hi) distribution
which is described below.

(i) For every i ≥ 0,

(2.2) λ′
i = λmi, mi = 1−H(1− αi),

and

(2.3) Hi(z) = 1− 1

mi

(
1−H(1− αi + αiz)

)
.

(ii) The pmf {h(i)r } with pgf Hi(z) is

(2.4) h(i)r =
αir

mi

∞∑
n=r

(
n

r

)
(1− αi)n−rhn (r ≥ 1).

Note that H0(z) = H(z) and {h(0)r } = {hr}.

(iii) If the factorial moment generating function (fmgf) H(1+t) of the pmf {hr}
exists for |t| < ρ0 for some ρ0 > 0, then for every i ≥ 0, the pmf {h(i)r } has

finite factorial moments {µ(h(i))
[r] } for all r ≥ 1, and

(2.5) µ
(h(i))
[r] =

αir

mi
µ
(h)
[r] .
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Proof: By (2.1), we have lnΨ(1− αi + αiz) = λ(H(1− αi + αiz)− 1),
i ≥ 0, which can be rewritten as

lnΨ(1− αi + αiz) = λ(1−H(1− αi))
(H(1− αi + αiz)−H(1− αi)

1−H(1− αi)
− 1
)
.

Letting mi and λ′
i be as in (2.2), we have

lnΨ(1− αi + αiz) = λ′
i

(H(1− αi + αiz) +mi − 1

mi
− 1
)
,

which leads to (2.3). The identity (a+ b)n =
∑n

r=0

(
n
r

)
arbn−r implies

H(1− αi + αiz)−H(1− αi) =
∞∑
r=1

( ∞∑
n=r

(
n

r

)
αir(1− αi)n−rhn

)
zr.

Hence, Hi(z) is the pgf of {h(i)r } of (2.4). This establishes (i)-(ii). To prove (iii),
we note that since the fmgf H(1 + t) of the pmf {hr} exists, then {hr} has finite

factorial moments µ
(h)
[r] of all orders r ≥ 1. It follows by equation (1.274), p. 59,

in [6] and (2.3) that

(2.6) Hi(1 + t) = 1 +
1

mi

∞∑
r=1

µ
(h)
[r] α

ir t
r

r!
(|t| < ρ0),

which in turn leads to (2.5).

Next, we study the pgf φ(·) of (1.4) when Ψ(z) is the pgf of a DCP (λ,H)
distribution.

Theorem 2.1. Let φ(·) and Ψ(·) be as in (1.4). If Ψ(z) is the pgf of a
DCP (λ,H) distribution with Ψ′(1) < ∞, then the following assertions hold.

(i) φ(z) is the pgf of the infinite convolution of the distributions (DCP (λmi, Hi), i ≥
0), as described in Lemma 2.1.

(ii) φ(z) is the pgf of a DCP (λ̃, G) distribution, where,

(2.7) λ̃ = λM > 0, M =
∞∑
i=0

mi =
∞∑
i=0

(1−H(1− αi)),

and

(2.8) G(z) =

∞∑
i=0

mi

M
Hi(z) (G(0) = 0).

Moreover, the pmf {gr} with pgf G(z) is the infinite countable mixture

(2.9) gr =

∞∑
i=0

mi

M
h(i)r (r ≥ 1),

with
(
{h(i)r }, i ≥ 0

)
of (2.4) and mixing probabilities

(
mi
M , i ≥ 0

)
.
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Proof: By Theorem 1.1, φ(z) is a pgf. Part (i) follows directly from
Lemma 2.1. To prove (ii), first we note Ψ(z) is the pgf of an infinitely divisible
distribution. Therefore, there exists a pgf Ψn(z) such that Ψ(z) = (Ψn(z))

n

for every n ≥ 1. Since Ψ′(z) = n (Ψn (z))
n−1Ψ′

n (z) and Ψ′(1) < ∞, we have

Ψ′
n(1) < ∞. Applying Theorem 1.1 to Ψn, it follows that

∞∏
i=0

Ψn(1− αi + αiz) is

a pgf. Note that

φ(z) =
∞∏
i=0

Ψ(1− αi + αiz) =

{ ∞∏
i=0

Ψn(1− αi + αiz)

}n

(n ≥ 1).

Hence, φ(z) is the the pgf of an infinitely divisible distribution, or a DCP (λ̃, G)
distribution for some λ̃ > 0 and pgf G(z). We have by Theorem 1.1 and (2.1)

φ(z) =
∞∏
i=0

Ψ(1− αi + αiz) = exp

{
λ

∞∑
i=0

(H(1− αi + αiz)− 1)

}
.

It is clear that φ′(1) < ∞ implies H ′(1) < ∞. Let QH(z) = 1−H(z)
1−z (z ̸= 1)

be the generating function of the tail probabilities qr =
∞∑

i=r+1
hi of {hr}. It

follows that 1 − H(1 − αi + αiz) ≤ αiH ′(1) (recall QH(1) = H ′(1)) and thus∑∞
i=0(1 − H(1 − αi + αiz)) converges uniformly over [0, 1]. This implies that

M =
∑∞

i=0mi < ∞ (see (2.2)). The fact that λ̃ = λM follows by setting z = 0

in the equation λ
∑∞

i=0(H(1−αi+αiz)−1) = λ̃(G(z)−1). Solving for G(z) and
using (2.3) leads to (2.8) and (2.9) follows from (2.4) and (2.8).

The following result is a direct consequence of Theorem 2.1 and equation
(9.43), p. 390, in [6], for infinitely divisible distributions.

Corollary 2.1. Under the assumptions and notation of Theorem 2.1,
the pmf {pr} with pgf φ(z) can be derived via the recurrence formula

(2.10) (r + 1)pr+1 = λ

r∑
j=0

(r + 1− j)gr+1−jpj with p0 = e−λM (r ≥ 0).

Remark 2.1. A distribution on Z+ with pgf Ψ(z) is discrete self-decomposable
(DSD), cf. Steutel and van Harn ([22]), if for any β ∈ (0, 1).

(2.11) Ψ(z) = Ψ(1− β + βz)Ψβ(z),

for some pgf Ψβ(z). If Ψ(z) is the pgf of a DSD distribution with finite mean,
then φ(z) of (1.4) is the pgf of a DSD distribution. Indeed, basic properties of
infinite products and the fact that Ψ′

β(1) < ∞ lead to

φ(z) = φ(1− β + βz)

∞∏
i=0

Ψβ(1− αi + αiz).

We conclude by Theorem 1.1 applied to Ψβ(z) that
∞∏
i=0

Ψβ(1−αi +αiz) is a pgf.
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We proceed to discuss the case of INAR (1) processes with a DCP (λ,H)
innovation. We will add to results obtained in [18], [19] and [24]. These papers
deal mainly with DCP (λ,H) innovation when the compounding distribution has
a pgf of the form H(z) =

∑n
i=1 hiz

i, n < ∞. For example, on page 355 in [24], it
is mentioned, quoting, ” Let (Xt ) be a stationary CP∞ − INAR(1) process. In
general, a closed-form expression for the observations’ pmf is not available”. In
addition, on page 624 in [19], it is mentioned that ” the structural implications of
Theorem 2.1 can be extended to the case of compound Poisson arrival distribu-
tions with an infinite compounding structure. The stationary distribution in this
general case is again compound Poisson distributed with infinite compounding
structure. However, a way to explicitly calculate the stationary distribution in
this case is not known”.

The next result asserts the existence of a stationary INAR (1) process whose
innovation is DCP with infinite compounding structure. It is a consequence of
Theorem 2.1 and the standard result on the existence of stationary INAR (1)
processes recalled in the introduction. The proof is omitted.

Theorem 2.2. Any DCP (λ,H) distribution with pgf Ψ(z) of (2.1) such
that H ′(1) < ∞ gives rise to a stationary INAR (1) process {Xt} defined on some
probability space and driven by equation (1.2). Its innovation has pgf Ψ(z) and
its marginal distribution is the DCP (λ̃, G) distribution described by (2.7)-(2.10).

Next, we list key distributional properties of a stationary INAR (1) process
{Xt} with a DCP (λ,H) innovation.

1. The 1-step transition probabilities of {Xt} are given by

(2.12) P (Xt = k|Xt−1 = l) =

min(l,k)∑
j=0

(
l

j

)
αj(1− α)l−jfk−j ,

where

(2.13) fx = P (ε = x) =

{
e−λ if x = 0∑∞

n=1 e
−λ λn

n! h
∗n
x if x > 0

and {h∗nx } is the n-fold convolution of the pmf {hr} with pgfH(z). Similarly
to (2.10), fx can be obtained by the recurrence formula

(2.14) (x+ 1)fx+1 = λ

x∑
j=0

(x+ 1− j)hx+1−jfj with f0 = e−λ (x ≥ 0).

2. The k-step-ahead version of (1.2) for k ≥ 1 is given by

(2.15) Xt+k
d
= αk ⊙Xt +

k∑
j=1

αj−1 ⊙ εt+k−j+1.
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Consequently, the conditional pgf of Xt+k given Xt satisfies

(2.16) φXt+k|Xt
(z) =

(
1− αk + αkz

)Xt

×
k−1∏
i=0

Ψ(1− αi + αiz).

3. It follows by Lemma 2.1 and (2.16) that the conditional distribution of
Xt+k given Xt = n results from the convolution of a binomial distribution,
Bin(n, αk), and the distributions (DCP (λmi, Hi), 0 ≤ i ≤ k − 1) with
characteristics (2.2)-(2.4).

4. Assume the fmgf H(1 + t) of the pmf {hr} exists for |t| < ρ0 for some

ρ0 > 0. By Lemma 2.1-(iii), the fmgf Hi(1 + t) of the pmf {h(i)r } admits
the representation (2.6), for every i ≥ 0 and |t| < ρ0. Using (2.8) and
a standard argument, one can show that G(1 + t) =

∑∞
i=0

mi
M Hi(1 + t)

converges uniformly in the interval |t| ≤ ρ for every 0 < ρ < ρ0. Therefore,
by Weierstrass Theorem, p. 430 in [8], we have

G(1 + t) = 1 +

∞∑
r=1

[ ∞∑
i=0

mi

M
µ
(h(i))
[r]

]
tr

r!
(|t| < ρ0),

which implies

(2.17) µ
(g)
[r] =

∞∑
i=0

mi

M
µ
(h(i))
[r] .

By (2.5), (2.17) and equation (1.246), p. 53, in [6], the factorial moments
and the moments of {gr} are

(2.18) µ
(g)
[r] =

µ
(h)
[r]

M(1− αr)
and µ(g)

r =
1

M

r∑
j=1

S(r, j)
µ
(h)
[j]

1− αj
(r ≥ 1),

where {S(r, j)} are the Stirling numbers of the second kind defined as

S(r, j) =
1

j!

j∑
k=0

(−1)j−k

(
j

k

)
kr, (S(0, 0) = 1, S(0, k) = S(r, 0) = 0).

5. By (2.18), equations (9.49), p. 391, and (1.257), p. 55, in [6], the factorial
cumulants and cumulants of Xt are:

(2.19) κ
(p)
[r] =

λ

1− αr
µ
(h)
[r] and κ(p)r = λ

r∑
j=1

S(r, j)
µ
(h)
[j]

1− αj
(r ≥ 1).

6. The first and second cumulants of a pmf are its mean and variance, respec-

tively. The mean µ
(p)
1 and the variance (σ(p))2 of Xt follow from the above

formulas:

(2.20) µ
(p)
1 =

λµ
(h)
1

1− α
and (σ(p))2 =

λ(µ
(h)
2 + αµ

(h)
1 )

1− α2
.
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7. The moments and factorial moments of Xt can be computed recursively by
a formula in [21] for the former and equation (1.244) in [6] for the latter:

(2.21) µ(p)
r =

r−1∑
i=0

(
r − 1

i

)
κ
(p)
r−iµ

(p)
i and µ

(p)
[r] =

r∑
j=0

s(r, j)µ
(p)
j ,

where {s(r, j)} are the Stirling numbers of the first kind satisfying the
recurrence relation

s(r + 1, j) = s(r, j − 1)− rs(r, j), (s(n, 0) = 0, s(1, 1) = 1).

We note that the moments and factorial moments of the marginal distri-
butions of the INAR (1) models we introduce here are only obtainable through
(2.21). Except for a couple of instances, we will make no further reference to
these moments.

2.2. Processes whose innovations are convolutions of DCP distribu-
tions

We consider stationary INAR (1) processes whose innovation is the finite
convolution of DCP distributions with finite means.

Let ν be a positive integer. We assume throughout the section that (H̃k, 1 ≤
k ≤ ν) is a collection of pgf’s such that H̃k(0) = 0, H̃ ′

k(1) < ∞ and (λk, 1 ≤ k ≤ ν)

are positive constants. We denote by {h(k)r } the pmf of H̃k(z).

Lemma 2.2. Let Ψk(z) be the pgf of a DCP (λk, H̃k) distribution, 1 ≤
k ≤ ν. The following assertions hold.

(i) The convolution of theDCP (λk, H̃k) distributions, 1 ≤ k ≤ ν, isDCP (λ,H),
where

(2.22) λ =

ν∑
k=1

λk and H(z) =

ν∑
k=1

λk

λ
H̃k(z).

(ii) For each k = 1, 2, ···, ν, Ψk(1−αi+αiz) is the pgf of a DCP (λkm
(k)
i , H̃ki(z))

distribution, where m
(k)
i = 1 − H̃k(1 − αi) and H̃ki(z) is the pgf of a pmf

we denote {h(k,i)r }, with H̃ki(0) = 0 and H̃ ′
ki(1) < ∞.

(iii) Ψ(1 − αi + αiz) is the pgf of a DCP (λmi, Hi) distribution, where mi =

1−H(1− αi) =
∑ν

k=1
λk
λ m

(k)
i , with λ and H of (2.22), and

(2.23) Hi(z) =

ν∑
k=1

λkm
(k)
i

λmi
H̃ki(z) and h(i)r =

ν∑
k=1

λkm
(k)
i

λmi
h(k,i)r (r ≥ 1).
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(iv) For every i ≥ 0, the DCP (λmi, Hi) distribution admits the following rep-

resentation, with λ
(k)
i = λkm

(k)
i (1 ≤ k ≤ ν),

(2.24)

DCP (λmi, Hi) ∼ DCP (λ
(1)
i , H̃1i) ∗DCP (λ

(2)
i , H̃2i) ∗ · · · ∗DCP (λ

(ν)
i , H̃νi).

Proof: (i) is clear and (ii) follows from Lemma 2.1. For (iii), mi follows

from (2.22) by Theorem 2.1. We have by (i) Ψk(1−αi+αiz) = exp{λkm
(k)
i (H̃ki(z)−

1)}, which implies

φ(z) = exp
{ ν∑
k=1

λkm
(k)
i (H̃ki(z)− 1)

}
= exp

{( ν∑
k=1

λkm
(k)
i H̃ki(z)

)
− λmi

}

and (2.23), as
∑ν

k=1
λkm

(k)
i

λmi
= 1. (iv) follows from (iii) and (2.23).

Next, we present key distributional properties of a stationary INAR (1)
with an innovation that is the convolution of DCP distributions. The proofs are
omitted as the results are a direct consequence of Lemma 2.2 and Theorem 2.1.

Theorem 2.3. Let {Xt} be a stationary INAR (1) process driven by
(1.2) with the DCP (λ,H) innovation that results from the convolution of the
DCP (λk, H̃k) distributions, 1 ≤ k ≤ ν (as described in Lemma 2.2). Let Mk =
∞∑
i=0

m
(k)
i , 1 ≤ k ≤ ν. The following assertions hold.

(i) The marginal distribution of {Xt} is the infinite convolution of the sequence

of distributions
(
DCP (λmi, Hi), i ≥ 0

)
with the representation (2.24).

(ii) The marginal distribution of {Xt} is DCP (λ̃, G), where

(2.25) M =

ν∑
k=1

λk

λ
Mk; λ̃ = λM =

ν∑
k=1

λkMk

and G(z) admits the representation (2.8).

(iii) The pmf {gr} is the infinite mixture of the pmf’s ({h(i)r }, i ≥ 0) of (2.23)
with mixing probabilities (mi

M , i ≥ 0).

We discuss additional properties of the process {Xt} of Theorem 2.3.

The 1-step transition probabilities of {Xt} can be obtained from equa-
tions (2.12)-(2.14). By (2.16), the conditional distribution of Xt+k given Xt = n
results from the convolution of a Bin(n, αk) distribution and the distributions(
DCP (λmi, Hi), 0 ≤ i ≤ k − 1

)
of (2.24).
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If we assume that for each k = 1, 2, · · · , ν, the fmgf H̃k(1 + t) of the pmf

{h(k)r } exists for |t| < ρ
(k)
0 for some ρ

(k)
0 > 0, then it is easily seen that the fmgf

H(1 + t) of (2.22) exists for |t| < min1≤k≤ν ρ
(k)
0 . It follows by Lemma 2.1-(iii),

Theorem 2.1, and (2.18) applied to λ and H(z) of (2.22) that the r-th factorial
moment of {gr} is

(2.26) µ
(g)
[r] =

1

M(1− αr)

ν∑
k=1

λk

λ
µ
(h(k))
[r] .

By (2.19), the factorial cumulants and the cumulants of Xt are (for r ≥ 1)

(2.27) κ
(p)
[r] =

1

1− αr

ν∑
k=1

λkµ
(h(k))
[r] and κ(p)r =

ν∑
k=1

λk

[ r∑
j=1

S(r, j)

1− αj
µ
(h(k))
[j]

]
.

The mean and variance of Xt can be obtained from (2.20). We omit the details.

3. PROCESSES WITH POLYA-AEPPLI INNOVATIONS

A Z+-valued random variable with pgf Ψ(z) = exp
(
−λ 1−z

1−θz

)
and pmf

(3.1) fr =

{
e−λ if r = 0

e−λθr
∑r

j=1

(
r−1
j−1

) (λθ/θ)j
j! if r > 0

.

is said to have a Polya-Aeppli (or Poisson Geometric) distribution (PA(λ, θ))
with parameters (λ, θ), λ > 0 and θ ∈ (0, 1). The PA(λ, θ) is DCP (λ,H), where
H(z) is the pgf of the shifted geometric (Geo1(θ)) distribution with pmf {hr}:

(3.2) H(z) =
θz

1− θz
and hr = θθr−1 (r ≥ 1).

Theorem 3.1. Let {Xt} be a stationary INAR (1) process with a PA(λ, θ)
innovation. The following assertions hold.

(i) The sequence {mi} of (2.2) satisfies

mi =
αi

1− θ(1− αi)
and 0 < mi ≤ 1 (i ≥ 0).

(ii) The pmf {h(i)r } of (2.4), i ≥ 0, is a Geo1(miθ) distribution, and

(3.3) DCP (λmi, Hi) ∼ PA(λmi,miθ) (i ≥ 0).



12 Aly and Bouzar

(iii) The distribution of {Xt} is the infinite convolution of the PA(λmi,miθ)
distributions (i ≥ 0).

(iv) The distribution of {Xt} is DCP (λ̃, G), where λ̃ = λM , M =
∞∑
i=0

mi, and G

is the pgf of the infinite mixture of Geo1(miθ) distributions with respective
mixing probabilities mi

M , i ≥ 0.

Proof: Part (i) and the first part of (ii) follow from Lemma 2.1, (2.4),
(3.2), and the result (1 − t)−r−1 =

∑∞
n=r

(
n
r

)
tn−r. In turn, the first part of

(ii) implies (3.3). Part (iii) ensues from Theorem 2.1-(i). Part (iv) is a direct
consequence of Theorem 2.1.

We state some additional properties of the process {Xt} of Theorem 3.1.

The 1-step transition probability of {Xt} can be computed from (2.12)-
(2.14) with P (ε = x) = fx of (3.1). By (2.16) and (3.3), the conditional distribu-
tion of Xt+k given Xt = n arises as the convolution of a Bin(n, αk) distribution
and the PA(λmi,miθ) distributions, 0 ≤ i ≤ k − 1.

The fmgf H(1+ t) of the Geo1(θ) distribution with pmf {hr} of (3.2) exists
for |t| < θ/θ. Its power series expansion yields the factorial moments of {hr},

(3.4) µ
(h)
[r] =

r!

θ
(θ/θ)r (r ≥ 1).

Formulas for the moments of {gr} and the cumulants, mean and variance of Xt

are given below. They are derived from (2.18)-(2.20) and (3.4):

µ
(g)
[r] =

r!(θ/θ)r

Mθ(1− αr)
, and µ(g)

r =
1

Mθ

r∑
j=1

S(r, j)
j!(θ/θ)j

1− αj
,

κ
(p)
[r] =

λr!(θ/θ)r

θ(1− αr)
and κ(p)r =

λ

θ

r∑
j=1

S(r, j)
j!(θ/θ)j

1− αj
,

and

µ
(p)
1 =

λ

αθ
and (σ(p))2 =

λ(2− αθ)

(1− α2)θ
2 .

Remark 3.1. (i) The PA(λ, 0) distribution is Poisson (λ) and the cor-
responding stationary INAR (1) process simplifies to the Poisson (λα) INAR (1)
process discussed in [1], [13], and [14].

(ii) One can extend the model discussed in this section to INAR (1) pro-
cesses whose innovations are finite convolutions of Polya-Aeppli distributions.
The extension can be established in fairly straightforward fashion by combining
the results in this section with those in Subsection 2.2.
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4. PROCESSES WITH NONCENTRAL POLYA-AEPPLI INNO-
VATIONS

A noncentral Polya-Aeppli distribution (NPA(λ1, λ2, θ)) with parameters
λ1, λ2 > 0 and θ ∈ (0, 1), as introduced in [9], results from the convolution of a
Poisson(λ1) distribution and a PA(λ2, θ) distribution. Its pmf is

(4.1) fr =


e−λ if r = 0

e−λθr
r∑

j=1

1
j!

( j∑
k=0

(
j
k

)(
r−j+k−1

k−1

)
(λ2θ/θ)

k(λ1/θ)
j−k
)

if r > 0
.

An NPA(λ1, λ2, θ) distribution is DCP (λ,H), where λ = λ1+λ2 and H(z)
is the pgf of a mixture of a Dirac measure δ1 sitting at 1, i.e., δ1({1}) = 1, and a
Geo1(θ) distribution, with respective mixing probabilities λ1/λ and λ2/λ, or

(4.2) H(z) =
λ1

λ
z +

λ2

λ

θz

1− θz
, h1 =

λ1 + θλ2

λ
and hr =

λ2

λ
θθr−1, (r ≥ 2).

Theorem 4.1. Let {Xt} be a stationary INAR (1) process with an
NPA(λ1, λ2, θ) innovation. The following assertions hold.

(i) The sequence {mi} of (2.2) satisfies

mi =
λ1

λ
· αi +

λ2

λ
· αi

1− θ(1− αi)
and 0 < mi ≤ 1 (i ≥ 0).

(ii) The pmf {h(i)r } of (2.4), i ≥ 0, is a mixture of a Dirac measure δ1 sitting at
1 and a Geo1(βi) distribution, with mixing probabilities bi1 and bi2, where

βi =
θαi

1− θ(1− αi)
, bi1 =

λ1α
i

λmi
, bi2 =

λ2

λmi

αi

1− θ(1− αi)
,

h
(i)
1 = 1− bi2βi and h(i)r = bi2βiβi

r−1 (r ≥ 2).

Moreover,

(4.3) DCP (λmi, Hi) ∼ NPA(λ1α
i, λ2βi/θ, βi) (i ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of the
NPA(λ1α

i, λ2βi/θ, βi) distributions (i ≥ 0).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = λM,M =
λ1

λ(1−α) +
λ2
λθ

∑∞
i=0 βi and G is the pgf of the infinite countable mixture of

the sequence of pmf’s ({h(i)r }, i ≥ 0), described in (ii) above, with respective
mixing probabilities (mi

M , i ≥ 0).
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Proof: Parts (i) and (ii) follow essentially from (3.3), (4.2), Lemma 2.2,
and Theorem 2.3 (for k = 2). Part (iii) ensues from Theorem 2.1-(i) and part
(iv) is a direct consequence of Theorem 2.1-(ii).

We obtain additional properties of the process {Xt} of Theorem 4.1.

The 1-step transition probability of {Xt} is obtained from (2.12)-(2.14)
with P (ε = x) = fx of (4.1). By (2.16), Lemma 2.1, and Theorem 4.1-(ii), the
conditional distribution of Xt+k given Xt = n is the convolution of a Bin(n, αk)
distribution and the NPA(λ1α

i, λ2βi/θ, βi) distributions (0 ≤ i ≤ k − 1).

The fcmgf H(1 + t) of the pmf {hn} of (4.2) exists for |t| < θ/θ. Its power
series expansion, (2.18) and (3.4), lead to the factorial moments of {gr}:

µ
(g)
[r] =

{
1

λM(1−α)

(
λ1 + λ2/θ)

)
if r = 1

1
λM(1−αr)

(
λ2r!/θ

)(
θ/θ
)r

if r ≥ 2
.

Factorial cumulants and cumulants of Xt follow from (2.19):

κ
(p)
[r] =

{
1

1−α(λ1 + λ2/θ) if r = 1
1

1−αr

(
λ2r!/θ

)(
θ/θ
)r

if r ≥ 2

and

κ(p)r =
λ1θ + λ2

αθ
+

λ2

θ

r∑
j=2

S(r, j)
j!
(
θ/θ
)j

1− αj
.

By (2.20), the mean and variance of Xt are

µ
(p)
1 =

λ1θ + λ2

αθ
and (σ(p))2 =

λ1θ
2
(1 + α) + λ2(2− αθ)

(1− α2)θ
2 .

5. PROCESSES WITH NEGATIVE BINOMIAL INNOVATIONS

The negative binomial (NB) distribution with parameters s > 0 and θ ∈
(0, 1), denoted by NB(s, θ)), has pgf and pmf

(5.1) Ψ(z) =

{
θ

1− θz

}s

and fr =

(
s+ r − 1

r

)
θ
s
θr (r ≥ 0).

The NB(s, θ) distribution is DCP (λ,H), where λ = −s ln θ and H(z) is
the pgf of the logarithmic distribution with pmf {hr} described below

(5.2) H(z) =
ln(1− θz)

ln θ
and hr = − θr

n ln θ
, (r ≥ 1).
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Theorem 5.1. Let {Xt} be a stationary INAR (1) process with anNB(s, θ)
innovation. The following assertions hold.

(i) The sequence {mi} of (2.2) is

(5.3) mi =
ln(1− θ̃i)

ln θ
with θ̃i =

θαi

1− θ(1− αi)
(i ≥ 0).

Note 0 < θ̃i ≤ θ and 0 < mi ≤ 1 (i ≥ 0). Moreover,

M =
∞∑
i=0

mi =
ln p(α, θ)

ln θ
, where p(α, θ) =

∞∏
i=0

(1− θ̃i).

(ii) The pmf {h(i)r } of (2.4), i ≥ 0, is logarithmic(θ̃i) (cf. (5.2)) and

(5.4) DCP (λmi, Hi) ∼ NB(s, θ̃i) (i ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of theNB(s, θ̃i)
distributions, i ≥ 0.

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = −s ln p(α, θ)
and G is the pgf of an infinite countable mixture of logarithmic(θ̃i) distri-

butions with mixing probabilities
( ln(1−θ̃i)
ln p(α,θ) , i ≥ 0

)
.

Proof: By (5.2), mi = 1−H(1−αi) = (ln θ−ln(1−θ(1−αi))/ ln θ, which
implies (5.3), since 1 − θ̃i = θ/(1 − θ(1 − αi)). Thus (i) holds. Straightforward
calculations show that

Hi(z) = 1− 1

mi

(
1−H(1− αi + αiz)

)
=

ln(1− θ̃iz)

ln(1− θ̃i)
,

where H(z) is as in (5.2). This establishes the first part of (ii), which in turn
implies (5.4). Clearly, (iii) follows from Theorem 2.1-(i). Part (iv) is a direct
consequence of (i)-(ii) and Theorem 2.1-(ii).

We give additional proprerties of the process {Xt} of Theorem 5.1.

The 1-step transition probability of {Xt} can be computed from (2.12)-
(2.14) with P (ε = x) = fx of (5.1). By (2.16), Lemma 2.1, and Theorem 5.1 (i)-
(ii), the conditional distribution ofXt+k givenXt = n results from the convolution
of a Bin(n, αk) distribution and the NB(s, θ̃i) distributions (0 ≤ i ≤ k − 1).

The fmgf H(1 + t) of the logarithmic(θ) distribution with pgf H(z) and
pmf {hr} of (5.2) exists for |t| < θ/θ. The factorial moments of {hr} are given
by (see equation 7.11, p. 305, in [6])

(5.5) µ
(h)
[r] = −

(r − 1)!
(
θ/θ
)r

ln θ
(r ≥ 1).
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Formulas for the moments of {gr} and the cumulants, mean and variance
of Xt are given below. They are derived from (2.18)-(2.20) and (5.5):

µ
(g)
[r] = −

(r − 1)!
(
θ/θ
)r

(1− αr) ln p(α, θ)
and µ(g)

r = − 1

ln p(α, θ)

r∑
j=1

S(r, j)
(j − 1)!(θ/θ)j

1− αj
,

κ
(p)
[r] =

s(r − 1)!
(
θ/θ
)r

1− αr
and κ(p)r = s

r∑
j=1

S(r, j)
(j − 1)!(θ/θ)j

1− αj
,

and

µ
(p)
1 =

sθ

αθ
and (σ(p))2 =

sθ(1 + αθ)

(1− α2)θ
2 .

Remark 5.1. (i) Note that the special case of s = 1 of Theorem 5.1
covers the important special case of the unshifted geometric(θ), or Geo0(θ), in-
novation. These results can be seen as extensions of some of the work in [5].

(ii) One can extend the model discussed in this section to INAR (1) pro-
cesses whose innovations are finite convolutions of negative binomial distributions.
The extension can be established in fairly straightforward fashion by combining
the results in this section with those in Subsection 2.2.

6. PROCESSES WITH NONCENTRAL NEGATIVE BINOMIAL
INNOVATIONS

Assume that θ ∈ (0, 1), s > 0 and λ2 > 0. Ong and Lee ([16]) introduced
the noncentral NB distribution, NNB(λ2, s, θ), as the mixture of NB(v, θ) distri-
butions, where v is a value of the random variable V = Y +s and Y is Poisson(λ2).

The pgf of NNB(λ2, s, θ) is Ψ(z) =
(

θ
1−θz

)s
exp

(
−λ2

1−z
1−θz

)
, and

(6.1) fr =


θ
s
e−λ2 if r = 0

e−λ2θrθ
s r∑
k=0

k∑
j=1

(
k−1
j−1

)(
s+r−k−1

r−k

)λ2(θ/θ)j

j! if r > 0
.

The NNB(λ2, s, θ) distribution is the convolution of an NB(s, θ) distribution
and a PA(λ2, θ) distribution. Hence, by Lemma 2.2 (for k=2), NNB(λ2, s, θ) ∼
DCP (λ,H), where λ = λ2 − s ln θ > 0 and

(6.2) H(z) =
1

λ

(
−s ln(1−θz)+λ2

θz

1− θz

)
and hr =

θr

λ

(s
r
+λ2

θ

θ

)
(r ≥ 1).

We note that {hr} is a mixture of a logarithmic(θ) distribution and a
Geo1(θ) distribution with respective mixing probabilities −s ln θ/λ and λ2/λ.
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Theorem 6.1. Let {Xt} be a stationary INAR (1) process with an
NNB(λ2, s, θ) innovation of (6.1)-(6.2). Let

θ̃i =
θαi

1− θ(1− αi)
and p(α, θ) =

∞∏
i=0

(1− θ̃i).

The following assertions hold.

(i) For {mi} of (2.2) we have

mi =
1

λ

(
−s ln(1− θ̃i) + λ2

θ̃i
θ

)
and M =

1

λ

(
−s ln p(α, θ) +

λ2

θ

∞∑
i=0

θ̃i

)
.

(ii) The pmf {h(i)r } of (2.4), i ≥ 0, is a a mixture of a logarithmic(θ̃i) dis-
tribution and a Geo1(θ̃i) distribution, with respective mixing probabilities
bi1 = (−s ln(1− θ̃i)/(λmi) and bi2 = (λ2θ̃i)/(λmiθ). Moreover

(6.3) DCP (λmi, Hi) ∼ NB(s, θ̃i) ∗ PA(λ2
θ̃i
θ
, θ̃i).

(iii) The marginal distribution of {Xt} is the infinite convolution of the(
DCP (λmi, Hi), i ≥ 0

)
of (6.3).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = λM and G is

the pgf of an infinite countable mixture of the sequence of pmf’s ({h(i)r }, i ≥
0) (described in (ii) above) with mixing probabilities (mi

M , i ≥ 0).

Proof: The proof is similar to that of Theorem 4.1. The results follow
from Lemma 2.2, Theorem 2.3 (with k = 2), Theorem 3.1 and Theorem 5.1. We
omit the details.

We give some additional properties of the process {Xt} of Theorem 6.1.

The 1-step transition probability of {Xt} can be computed from (2.12)-
(2.14) with P (ε = x) = fx of (6.1). By (2.16), the conditional distribution of
Xt+k given Xt = n results from the convolution of a Bin(n, αk) distribution and
the distributions (DCP (λmi, Hi), 0 ≤ i ≤ k − 1) of (6.3).

As a mixture of a logarithmic(θ) distribution and a Geo1(θ) distribution,
the pmf {hr} of (6.2) has a finite fmgf H(1 + t) for |t| < θ/θ. Therefore, the
factorial moments of {gr} are, by (2.26), (3.4) and (5.5),

µ
(g)
[r] =

(r − 1)!(θ/θ)r

λMθ(1− αr)
(sθ + λ2r).
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Combining (2.27) with the moment and cumulant formulas derived in Section 6
yields the factorial cumulants and the cumulants of Xt:

κ
(p)
[r] =

(r − 1)!(θ/θ)r

θ(1− αr)
(sθ + λ2r)

and

κ(p)r =
1

θ

r∑
j=1

S(r, j)
(j − 1)!(θ/θ)j

1− αj
(sθ + λ2j).

By (2.20), the mean and variance of {Xt} are

µ
(p)
1 =

λ2 + sθ

αθ
and (σ(p))2 =

λ2(2− αθ) + sθ(1 + αθ)

(1− α2)θ
.

7. PROCESSES WITH POISSON-LINDLEY INNOVATIONS

In this section, we revisit the INAR (1) model with Poisson-Lindley in-
novation introduced in [10] (see also [17]) and expand on their results. The
Poisson-Lindley distribution (PL(ϕ)) with parameter ϕ > 0 is the mixture of a
Geo1(

1
1+ϕ) distribution and an NB(2, 1

1+ϕ) distribution with respective mixing

probabilities ϕ
1+ϕ and 1

1+ϕ . Its pgf and pmf are

(7.1) Ψ(z) =
ϕ2

1 + ϕ
· 2 + ϕ− z

(1 + ϕ− z)2
and fr =

ϕ2

(1 + ϕ)r+2

(
1+

r + 1

1 + ϕ

)
(r ≥ 0).

For additional details and references on the PL(ϕ) distribution, we refer to
[15]. A PL(ϕ) distribution is DCP (λ,H) with

(7.2) λ = ln
[ (1 + ϕ)3

ϕ2(2 + ϕ)

]
, H(z) = 1 +

1

λ
ln
[ ϕ2(2 + ϕ− z)

(1 + ϕ)(1 + ϕ− z)2

]
,

and

(7.3) hr =
1

λr

( 2

(1 + ϕ)r
− 1

(2 + ϕ)r

)
(r ≥ 1).

We introduce the Modified Poisson-Lindley distribution (MPL(ϕ, β)) with
parameters ϕ > 0 and β ∈ (0, 1] as the distribution of β ⊙X, where X ∼ PL(ϕ).
The pgf of the MPL(ϕ, β)) distribution is Ψ(1 − β + βz), with Ψ(z) of (7.1).
Note that, MPL(ϕ, 1) ∼ PL(ϕ).
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Lemma 7.1. An MPL(ϕ, β) distribution arises as a mixture of a
Geo1(β/(β + ϕ)) distribution and an NB(2, β/(β + ϕ)) distribution with resp.
mixing probabilities ϕ

1+ϕ and 1
1+ϕ . Moreover, MPL(ϕ, β) ∼ DCP (λβ, Hβ), where

(7.4) λβ = ln
[(1 + ϕ)(β + ϕ)2

ϕ2(1 + β + ϕ)

]
; Hβ(z) = 1 +

1

λβ
ln
[ ϕ2(1 + β + ϕ− βz)

(1 + ϕ)(β + ϕ− βz)2

]
.

Moreover. the pmf {h(β)r } of Hβ(z) is

(7.5) h(β)r =
1

λβr

[
2
( β

β + ϕ

)r
−
( β

1 + β + ϕ

)r]
(r ≥ 1).

Proof: If X is Geo1(1/(1 + ϕ)) (resp. NB(2, 1/(1 + ϕ)), then β ⊙X is
Geo1(β/(β + ϕ)) (resp. NB(2, β/(β + ϕ)). By (7.1), we obtain

Ψ(1− β + βz) =
ϕ2

1 + ϕ
· 1 + β + ϕ− βz

(β + ϕ− βz)2
.

A standard argument leads to the representation

Ψ(1− β + βz) = exp
{
λβ(Hβ − 1)

}
,

where λβ and Hβ and its pmf are as in (7.4)-(7.5).

Theorem 7.1. Let {Xt} be a stationary INAR (1) process with a PL(ϕ)
innovation with characteristics (7.1)-(7.3). The following assertions hold.

(i) For every i ≥ 0,

mi =
1

λ
ln
[(1 + ϕ)(ϕ+ αi)2

ϕ2(1 + ϕ+ αi)

]
and M =

1

λ
ln

∞∏
i=0

(1 + ai),

where ai =
αi(ϕ2 + 2ϕ+ αiϕ+ αi)

ϕ2(1 + ϕ+ αi)
.

(ii) The pmf {h(i)r } of (2.4), i ≥ 0, is given in (7.5) with β = αi and λβ = λmi,
and

(7.6) DCP (λmi, Hi) ∼ MPL(ϕ, αi).

.

(iii) The marginal distribution of {Xt} is the infinite convolution of the distri-
butions

(
MPL(ϕ, αi), i ≥ 0

)
.
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(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = ln
∞∏
i=0

(1 + ai),

and G is the pgf of the infinite countable mixture of the pmf’s
(
{h(i)r }, i ≥ 0

)
with respective mixing probabilities

(
mi
M , i ≥ 0

)
.

Proof: (i) follows from Lemma 2.1, (7.1)-(7.2), and the formula M =∑∞
i=0mi. Part (ii) is a direct consequence of Lemma 9.1 by setting β = αi. Part

(iii) and (iv) result from (ii) and Theorem 2.1-(ii), respectively.

We give additional properties of the process {Xt} of Theorem 7.1.

The 1-step transition probability of {Xt} can be computed from (2.12)-
(2.14) with P (ε = x) = fx of (7.1). By (2.16) and Theorem 7.1-(ii), the con-
ditional distribution of Xt+k given Xt = n results from the convolution of a
Bin(n, αk) distribution and the MPL(ϕ, αi) distributions, 0 ≤ i ≤ k − 1.

The fcmgf H(1 + t) of the pmf {hr} of (7.2)-(7.3) exists for |t| < ϕ/2. Its
power series expansion yields the factorial moments of {hr},

µ
(h)
[r] =

(r − 1)!

λ

( 2

ϕr
− 1

(1 + ϕ)r

)
.

Formulas for the factorial moment of {gr} and the cumulants, mean and variance
of Xt are given below. They are derived from (2.18)-(2.20):

µ
(g)
[r] =

(r − 1)!

λM(1− αr)

( 2

ϕr
− 1

(1 + ϕ)r

)
,

κ
(p)
[r] =

(r − 1)!

(1− αr)

( 2

ϕr
− 1

(1 + ϕ)r

)
and κ(p)r =

r∑
j=1

S(r, j)
(j − 1)!

(1− αj)

( 2

ϕj
− 1

(1 + ϕ)j

)
,

and

µ
(p)
1 =

2 + ϕ

αϕ(1 + ϕ)
and (σ(p))2 =

(1 + α)ϕ3 + (4 + 3α)ϕ2 + 2(3 + α)ϕ+ 2

(1− α2)ϕ2(1 + ϕ)2
.

8. PROCESSES WITH EULER-TYPE INNOVATIONS

Let l(0, 1) be the set of sequences Θ = (θk, k ≥ 0) such that θk ∈ (0, 1) for
every k ≥ 0 and

(8.1)
∞∑
k=0

θk
1− θk

< ∞.
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Define

(8.2) Sr(Θ) =
∞∑
k=0

θrk and Tr(Θ) =
∞∑
k=0

( θk
1− θk

)r
(r ≥ 1).

Note that the condition (8.1) implies Sr(Θ) < ∞ and Tr(Θ) < ∞ for all r ≥ 1.

A Z+-valued rv is said to have an Euler-type distribution (Euler− T (Θ)),
Θ ∈ l(0, 1), if it is an infinite convolution of Geo0(θk) rv’s. Its pgf is

(8.3) Ψ(z) =
∞∏
k=0

( 1− θk
1− θkz

)
.

We gather a few basic properties of an Euler − T (Θ) distribution.

Lemma 8.1. Let {qr} be the pmf of an Euler − T (Θ) for some Θ ∈
l(0, 1). The following assertions hold.

(i) {qr} is the pmf of a DCP (λ,H) with

(8.4) λ =

∞∑
k=0

(− ln(1− θk)) and H(z) =

∞∑
k=0

− ln(1− θk)

λ
Hk(z).

where, for each k ≥ 0, Hk(z) is the pgf of a logarithmic(θk) distribu-
tion. The pmf {hr} with pgf H(z) is an infinite countable mixture of
logarithmic(θk) distributions (k ≥ 0) with respective mixing probabilities(− ln(1−θk

)
λ , k ≥ 0

)
, or hr = Sr(Θ)/(λr), r ≥ 1.

(ii) {qr} satisfies the following recurrence relation:

(8.5) (r + 1)qr+1 =
r∑

k=0

qkSr+1−k(Θ) and q0 =
∞∏
k=0

(1− θk).

(iii) There exists 0 < ρ0 ≤ 1 such that the fcmgf H(1+t) of the pmf {hr} of part
(i) is finite for |t| < ρ0. Consequently, {hr} has finite factorial moments of
all orders:

(8.6) µ
(h)
[r] =

(r − 1)!

λ
Tr(Θ) (r ≥ 1).

(iv) {qr} has finite factorial cumulants of all orders:

(8.7) κ
(q)
[r] = (r − 1)!Tr(Θ) (r ≥ 1).
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Proof: Since − ln(1 − x) ∼ x, as x → 0, the two infinite series with
respective positive summands − ln(1 − θk) and − ln(1 − θkz), z ∈ (0, 1), are
convergent. Therefore, lnΨ(z) =

∑∞
k=0 ln(1− θk)−

∑∞
j=0 ln(1− θkz). Letting λ

be as in (8.4), we have

lnΨ(z) = λ

(
− 1 +

∞∑
k=0

− ln(1− θk)

λ

ln(1− θkz)

ln(1− θk)

)
.

The function Hk(z) = ln(1−θkz)
ln(1−θk)

is the pgf of a logarithmic (θk) for each k ≥ 0

(see (5.2)). Therefore, lnΨ(z) = λ(H(z)−1), with H(z) of (8.4). Again by (8.4),
{hr} is an infinite countable mixture of logarithmic(θk) distributions with the
stated mixing probabilities. We have by (8.4) and (5.2)

hr =
∞∑
k=0

− ln(1− θk)

λ

θrk
−r ln(1− θk)

(r ≥ 1),

which establishes (i), via (8.2). Note that q0 = e−λ and, similarly to (2.10),
qr satisfies the recurrence formula (8.5). We now prove (iii). By (8.1), there
exists k0 > 1 such that θk/θk < 1 for k ≥ k0. Therefore, infk≥k0 θk/θk ≥ 1.
Let ρ0 = min

(
1,min0≤k<k0 θk/θk

)
. Since ρ0 ≤ θk/θk for every k ≥ 0, the fmgf

Hk(1+ t) of the logarithmic(θk) distribution exists for |t| < ρ0. We have by (5.5)
and equation (1.274), p. 59, in [6],

Hk(1 + t) = 1 +

∞∑
r=1

(r − 1)!
(
θk/θk

)r
− ln θk

tr

r!
(|t| < ρ0).

A standard argument shows that H(1 + t) =
∑∞

k=0
− ln θk

λ Hk(1 + t) converges
uniformly over the interval |t| ≤ ρ for every 0 < ρ < ρ0. By Weierstrass Theorem,
p. 430, in [8], we have

H(1 + t) = 1 +
∞∑
r=1

[ ∞∑
k=0

− ln θk
λ

(r − 1)!
(
θk/θk

)r
− ln θk

]
tr

r!
(|t| < ρ0),

which implies (8.6). Finally, by equation 9.49, p. 391, in [6], we have κ
(q)
[r] = λµ

(h)
[r]

which leads to (8.7).

One can conclude from (8.7) and (2.21) that an Euler − T (Θ) has finite

moments {µ(q)
r } of all orders, and thus finite factorial moments {µ(q)

[r] } of all orders.

Theorem 8.1. Let {Xt} be a stationary INAR (1) process with an Euler−
T (Θ) innovation for some Θ ∈ l(0, 1). For i, k ≥ 0, let

(8.8) θ
(k)
i =

θkα
i

1− θk(1− αi)
and pi(α,Θ) =

∞∏
k=0

(
1 +

θkα
i

1− θk

)
.

The following assertions hold.
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(i) The sequence {mi} of (2.2) is

(8.9) mi =
1

λ

∞∑
k=0

(− ln(1− θ
(k)
i )) =

1

λ
ln pi(α,Θ) (i ≥ 0).

Note that 0 < θ
(k)
i ≤ θk and 0 < mi ≤ 1. Moreover,

(8.10) M =
∞∑
i=0

mi =
1

λ
ln

[ ∞∏
i=0

pi(α,Θ)

]
.

(ii) The pmf {h(i)r } of (2.4), i ≥ 0, is an infinite countable mixture of logarithmic(θ
(k)
i )

distributions, k ≥ 0, with mixing probabilities
(− ln(1−θ

(k)
i )

pi(α,Θ) , k ≥ 0
)
, and

(8.11) DCP (λmi, Hi) ∼ Euler − T (Θi), Θi = (θ
(k)
i , k ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of the Euler−
T (Θi) distributions (i ≥ 0) of (8.11).

(iv) The marginal distribution of {Xt} isDCP (λ̃, G), where λ̃ = ln
[∏∞

i=0 pi(α,Θ)
]

and G is the pgf of an infinite countable mixture of the pmf’s (h
(i)
r , i ≥ 0)

of (ii) with mixing probabilities
(
ln pi(α,Θ)

/
ln
[∏∞

j=0 pj(α,Θ)
]
, i ≥ 0

)
.

Proof: For (i), we have by (8.4),

mi = 1−H(1− αi) =

∞∑
k=0

− ln(1− θk)

λ
(1−Hk(1− αi)).

Since Hk(z) is the pgf of a logarithmic(θk) distribution, it follows that 1−Hk(1−
αi) =

ln(1−θ
(k)
i )

ln(1−θk)
, from which we deduce the first equation in (8.9). The second

equation as well as (8.10) are easily seen to hold. The convergence of the infinite

products in part (i) stems from
∑∞

i=0

∑∞
k=0

θkα
i

1−θk
< ∞. This leads to

1−Hk(1− αi + αiz) =
ln(1− θ

(k)
i )

ln(1− θk)
(1−Hki(z)),

where Hki(z) is the pgf of a logarithmic(θ
(k)
i ). We conclude by (2.3) and (8.4)

(8.12) Hi(z) =

∞∑
k=0

− ln(1− θ
(k)
i )

λmi
Hki(z).

Now, by (5.2),

h(i)r =

∞∑
k=1

− ln(1− θ
(k)
i )

λmi

[θ
(k)
i ]r

−r ln(1− θ
(k)
i )

=
Sr(Θi)

rpi(α, θ)
.
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which proves the first part of (ii). Let Ψ(z) be as in (8.3). By Lemma 2.1, (8.9)
and (8.12), the pgf, Ψ(1− αi + αiz), of DCP (λmi, Hi) is shown to be

Ψ(1− αi + αiz) = exp
{
λmi(Hi(z)− 1)

}
=

∞∏
k=0

( 1− θ
(k)
i

1− θ
(k)
i z

)
.

It is easily seen that Θi = (θ
(k)
i , k ≥ 0) belongs to l(0, 1). Therefore, (8.11) holds,

thus completing the proof of (ii). Part (iii) follows from (8.11) and Theorem
2.1-(i). Part (iv) is a direct consequence of (i)-(ii) and Theorem 2.1-(ii).

We discuss additional properties of the process {Xt} of Theorem 8.1.

The 1-step transition probability of {Xt} can be computed from (2.12)-
(2.14) where the probabilities P (ε = x) = qx, x ≥ 0, can be obtained using (8.5).
By (2.16), Lemma 8.1, and Theorem 8.1 (i)-(ii), the conditional distribution of
Xt+k given Xt = n arises as the convolution of a Bin(n, αk) distribution and the
Euler − T (Θi) distributions (0 ≤ i ≤ k − 1) of (8.11).

Formulas for the moments of {gr} and the factorial moments, mean and
variance of Xt are obtained from (2.18)-(2.20) and (8.6),

µ
(g)
[r] =

(r − 1)!

λM(1− αr)
Tr(Θ) and µ(g)

r =
1

λM

r∑
j=1

S(r, j)
(j − 1)!

(1− αj)
Tj(Θ),

κ
(p)
[r] =

(r − 1)!

(1− αr)
Tr(Θ) and κ(p)r =

r∑
j=1

S(r, j)
(j − 1)!

(1− αj)
Tj(Θ).,

and

µ
(p)
1 =

T1(Θ)

1− α
and (σ(p))2 =

(1 + α)T1(Θ) + T2(Θ)

1− α2
.

9. PROCESSES WITH EULER INNOVATIONS

The Euler distribution (Euler(η, q)) introduced by Benkherouf and Bather
([3]) (see [6]) is an Euler−T (Θ) distribution with Θ = (ηqk, k ≥ 0) for 0 < η < 1
and 0 < q < 1. An application of the ratio test shows that indeed Θ ∈ l(0, 1).
We also note that Sr(Θ) = ηr

1−qr , r ≥ 1. We use the notation Tr(η, q) in lieu of
Tr(Θ).

We recall a few basic properties of the Euler(η, q) distribution (cf., for
example, ][7]). Its pmf {qx} is

(9.1) q0 =
∞∏
j=0

(1− ηqj) and qx =
ηx

x∏
l=1

(1− ql)

q0 (x ≥ 1).
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Its mean and variance are

µ =
∞∑
x=0

ηqx

1− ηqx
and σ2 =

∞∑
x=0

ηqx

(1− ηqx)2
.

The following result is known. We refer to Lemma 8.1 for convenience.

The Euler(η, q) distribution is DCP (λ,H) with λ = − ln

(∏∞
k=0(1−ηqk)

)
and H(z) is the pgf of an infinite countable mixture of logarithmic(ηqk) distribu-

tions, k ≥ 0, with respective mixing probabilities (− ln(1−ηqk)
λ , k ≥ 0). Its pmf is

hr = ηk/(λk(1− qk)), r ≥ 1.

The main result of the section is stated without proof as it is a particular
case of Theorem 8.1.

Theorem 9.1. Let {Xt} be a stationary INAR (1) process with an Euler(η, q)
innovation for some η, q ∈ (0, 1). For i, k ≥ 0, let

(9.2) θ
(k)
i =

ηqkαi

1− ηqk(1− αi)
and pi(α, η, q) =

∞∏
k=0

(
1 +

ηqkαi

1− ηqk

)
.

The following assertions hold.

(i) The sequence {mi} of (2.2) and M =
∑∞

i=0mi are as follows:

(9.3) mi =
1

λ
ln pi(α, η, q) and M =

1

λ
ln

[ ∞∏
i=0

pi(α, η, q)

]
.

Note that 0 < θ
(k)
i ≤ ηqk and 0 < mi ≤ 1 (i ≥ 0).

(ii) The pmf {h(i)r } of (2.4), i ≥ 0, is an infinite countable mixture of logarithmic(θ
(k)
i )

distributions, k ≥ 0, with mixing probabilities
(− ln(1−θ

(k)
i )

pi(α,η,q)
, k ≥ 0

)
, and

(9.4) DCP (λmi, Hi) ∼ Euler − T (Θi) Θi = (θ
(k)
i , k ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of the Euler−
T (Θi) distributions (i ≥ 0) of (9.4).

(iv) The marginal distribution of {Xt} isDCP (λ̃, G), where λ̃ = ln
[∏∞

i=0 pi(α,Θ)
]

and G is the pgf of an infinite countable mixture of the pmf’s (h
(i)
r , i ≥ 0)

of (ii) with mixing probabilities
(
ln pi(α, η, q)

/
ln
[∏∞

j=0 pj(α, η, q)
]
, i ≥ 0

)
.

Additional properties of the process {Xt} of Theorem 9.1 are given next.
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The 1-step transition probability of {Xt} can be computed from (2.12)-
(2.14) where the probabilities P (ε = x) = qx, x ≥ 0, are as in (9.1). By (2.16)
and Theorem 8.1 (i)-(ii), the conditional distribution of Xt+k given Xt = n arises
as from the convolution of a Bin(n, αk) distribution and the Euler − T (Θi)
distributions (0 ≤ i ≤ k − 1) of (9.4).

Formulas for the moments of {gr} and the factorial moments, mean and
variance of Xt are as follows:

µ
(g)
[r] =

(r − 1)!

λM(1− αr)
Tr(α, η, q) and µ(g)

r =
1

λM

r∑
j=1

S(r, j)
(j − 1)!

(1− αj)
Tj(α, η, q),

κ
(p)
[r] =

(r − 1)!

(1− αr)
Tr(α, η, q) and κ(p)r =

r∑
j=1

S(r, j)
(j − 1)!

(1− αj)
Tj(α, η, q),

and

µ
(p)
1 =

T1(α, η, q)

1− α
and (σ(p))2 =

(1 + α)T1(α, η, q) + T2(α, η, q)

1− α2
.
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