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1. INTRODUCTION

Modeling count data is an important issue in different disciplines and applied sci-
ences such as medicine (see, for example, Joe and Zhu [25]), actuarial sciences (see,
for example, Gossiaux and Lemaire [17], Lord et al. [32]), biology (see, for instance,
Esnaola et al. [13]), health economics (see, for example, Zafakali and Ahmad [50]),
among many others. With this aim, the one-parameter Poisson distribution and the two-
parameter Negative Binomial distribution are commonly used. Nevertheless, observed
count data often exhibit overdispersion (i.e., variance greater than the mean) and, there-
fore, the Poisson distribution is not adequate for fitting such data, since its variance is
restricted to be equal to the mean. Additionally, a second usual feature of the observed
count data is the presence of a high percentage of zero values (zero inflation or zero
vertex). The zero-inflation index zi = 1 + log(p0)/µ, where p0 is the probability of
zero, can be used to measure zero-inflation. Then zi = 0 for Poisson distribution, and
zi = 1 + log(d)/(1 − d) > 0 for the Negative Binomial, where d denotes the Fisher
dispersion index given by d = σ2/µ, where σ2 and µ are the variance and mean, respec-
tively [see 42]. Therefore, the Negative Binomial distribution is an improvement over
the Poisson distribution, since it can model overdispersed and zero-inflated data.

Several other distributions have been presented in the statistical literature to han-
dle both overdispersion and zero-inflation. In this frame, Neyman [39] developed the
now well-known Neyman type A (NTA) distribution, which is overdispersed, because
d ≥ 1, and its zero-inflation index zi is always larger than the respective for the Neg-
ative Binomial for any fixed value of the dispersion index d (see Figure 1 in Puig and
Valero [42]). For these reasons, the NTA distribution has been used in various disci-
plines such as bacteriology, ecology and entomology. The reader is referred to Johnson
et al. [26, Chapter 9] and to Tripathi [49] for a list of applications of NTA distribution.
Let pN (k; τ, δ) and gN (t; τ, δ) be the probability mass function (pmf) and probability
generating function (pgf) of the NTA distribution, with parameters δ > 0 and τ > 0. We
have that

(1.1) Pr(X = k) := pN (k; τ, δ) =
τkeδ(e

−τ−1)

k!
mk(δe

−τ ), k ∈ N0

where N0 = N ∪ {0} = {0, 1, 2, . . .}, mk(r) =
∑k

j=0 S(j, k)rk is the k-th moment
about zero for the Poisson distribution with parameter r > 0, and S(k, j) are the Stir-
ling numbers of second kind (see, for instance, Massé and Theodorescu [33] for further
details). Also, gN (t; τ, δ) = exp[δ(eτ(t−1) − 1)], |t| ≤ 1. We shall use the notation
X ∼ NTA(τ, δ) to refer to this distribution.

Recently, Castellares et al. [8] on the basis of a series expansion presented in
Touchard [48] and Bell [4, 5], obtained a two-parameter family of distributions (named
as Bell-Touchard distribution) with pmf of the form

(1.2) Pr(X = k) := p(k; θ) =
eb(1−ea) ak Tk(b)

k!
, k ∈ N0,

where a > 0 and b > 0, θ = (a, b) ∈ Θ = (0,∞)× (0,∞), and Tk(·) are the Touchard
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polynomials [48] defined by Tk(b) = e−b
∑∞

j=0 j
k bj/j!. We shall use the notation

X ∼ BT(a, b), or X ∼ BT(θ), to refer to the NTA distribution with this specific
parameterization. If X ∼ BT(a, b), then its pgf is given by

(1.3) g(t; θ) = exp{[b(eta − ea)]}, |t| ≤ 1.

The Touchard polynomials Tk(b) corresponds to the k-th moment of the Poisson distri-
bution with parameter equal to b and can be obtained for different values of k. For ex-
ample, T0(b) = 1, T1(b) = b, T2(b) = b2 + b, T3(b) = b3 + 3b2 + b, T4(b) = b4 + 6b3 +
7b2 +b, T5(b) = b5 +10b4 +25b3 +15b2 +b, T6(b) = b6 +15b5 +65b4 +90b3 +31b2 +b,
and so on.

Remark 1.1. Note that when b = 1 in (1.2), the pmf of the Bell distribution
introduced by Castellares et al. [7] is obtained as a special case, while the BT(a, b) dis-
tribution corresponds to the NTA(δ = bea, τ = a) distribution. So, the Bell-Touchard
(BT) distribution is a reparameterization of the NTA distribution and, hence, in the whole
paper the BT distribution stands for this reparameterization of the NTA distribution.

It is worth emphasizing that the two-parameter BT discrete distribution, or equiv-
alently the NTA distribution, is very simple to deal with, since its pmf does not contain
any complicated function. Tractability of the pmf may be a great advantage in computing
the probabilities, as well as structural properties from that equation. The BT distribution
has, among many other interesting properties the following properties: (i) it includes
the one-parameter Bell distribution introduced by Castellares et al. [7] as a special case,
which is also a reparameterization of the well-known NTA distribution; (ii) the Poisson
distribution is not nested in the BT family, but it can be approximated for small values of
a specific parameter of the BT distribution; (iii) it is a special case of a multiple Poisson
process and can have a zero vertex; (iv) it is infinitely divisible; (v) it has variance larger
than the mean; (vi) it is strongly unimodal for b ≥ 1; and (vii) it has an arbitrary number
of modes when b < 1. For a detailed description of the NTA distribution, the reader
could consult Castellares et al. [8] and Johnson et al. [26, Chapter 9].

Based on the key features of the NTA distribution (or equivalently BT distribu-
tion), it can be easily justified why this distribution is a natural candidate and plays an
important role in modeling count data with evidence of overdispersion and with high
percentage of zero values. This implies that it is crucial to test the goodness-of-fit (gof)
of this discrete distribution fitted to a given set of observations. A number of gof tests
for count data are based on the pgf and the empirical pgf (epgf). To mention a few, but
not limited to, we have the gof tests in Kocherlakota and Kocherlakota [29], Rueda et
al. [46], Baringhaus and Henze [2], Epps [14], Rueda and O’Reilly [45], Meintanis and
Bassiakos [36], Meintanis [35], Jiménez-Gamero and Alba-Fernandez [21], Batsidis et
al. [3] and Milocevic et al. [37]. The motivation of using methods based on the pgf in-
stead of the corresponding pmf when dealing with count data is, as argued by Nakamura
and Perez-Abreu [38], that the pgf is usually simpler than the corresponding pmf. This
is the case of the pgf of the BT distribution; compare expressions (1.2) and (1.3).

In this paper, we propose and study a consistent gof test for the two-parameter
BT family of distributions; that is, based on Remark 1.1, it is equivalently to study a
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consistent gof test for the NTA distribution. Initially, it is shown that the pgf of the BT
distribution is the only pgf satisfying a certain differential equation. Then, reasoning
as Nakamura and Perez-Abreu [38] for testing Poisson distribution, Novoa-Muñoz and
Jiménez-Gamero [41] for testing bivariate Poisson distribution, Jiménez-Gamero and
Alba-Fernandez [21] for testing Poisson-Tweedie distribution, and Batsidis et al. [3]
for testing Bell distribution, the proposed statistic is a function of the polynomial of
an empirical version of the differential equation. In particular, the gof test proposed
here can be considered as a generalization of the one in Batsidis et al. [3], since Bell
distribution is a special case of the BT distribution. In addition, it can also be thought as
a complement to the gof test for the Poisson-Tweedie distribution presented by Jiménez-
Gamero and Alba-Fernandez [21], since NTA is a subset of the Poisson-Tweedie family
of distributions. Additionally, for the first time, we apply some existing gof tests to the
BT distribution and study their finite-sample properties from Monte Carlo simulation
experiments. In particular, the numerical results reveal that two of the existing gof tests
considered to the BT distribution present interesting results regarding size and power
properties.

The paper is organized as follows. Section 2 contains some preliminaries related
to existing gof tests. Section 3 introduces the test statistic and derives the asymptotic
null distribution of the test statistic (i.e., the test statistic distribution under the null hy-
pothesis), which depends on unknown quantities. To overcome this problem, it is shown
that the parametric bootstrap consistently estimates the null distribution of the test statis-
tic. Section 4 is devoted to study, with Monte Carlo simulation experiments, the finite
sample performance of the proposed test and simultaneously to compare numerically the
power of the new test with other two pgf-based tests introduced by Rueda and O’Reilly
[45] and Meintanis [35]; that is, we also consider the pgf-based tests introduced by these
authors to the BT distribution and study their finite sample properties in such a case.
Apart from the previous gof tests, which are based on the pgf, the tests in Henze [19]
and Klar [27], which are similar to that in Rueda and O’Reilly [45] but based on the
distribution function and on the integrated distribution function, will also be considered
in the comparison of the existing gof tests. Section 5 provides the application of the gof
tests to real data sets. Section 6 closes up the paper with some concluding remarks. All
technical proofs are deferred to Appendix.

Before ending this section we introduce some notation: all limits in this paper
are taken when n → ∞, where n denotes the sample size; L−→ denotes convergence
in distribution; P−→ denotes convergence in probability; a.s.−→ denotes the almost sure
convergence; I(A) denotes the indicator function of the set A; l2 denotes the separable
Hilbert space l2 = {z = (z0, z1, z2, . . .), zk ∈ R,

∑
k≥0 z

2
k < ∞} with the usual inner

product 〈z, w〉2 =
∑

k≥0 zkwk, and ‖ · ‖2 stands for the associated norm; Eθ and Covθ
denote expectation and covariance by assuming that the data come from a BT distribution
with parameter vector θ = (a, b); P∗, E∗ and Cov∗ denote the conditional probability
law, the conditional expectation and the conditional covariance, respectively, given the
data X1, . . . , Xn.
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2. PRELIMINARIES AND EXISTING GOODNESS-OF-FIT TESTS

LetX1, . . . , Xn be n independent and identically distributed random observations
from a population X taking values in N0, with pgf g(t) = E(tX), |t| ≤ 1. Based on the
sampleX1, . . . , Xn, the objective is to test the composite, in the sense that the parameter
vector θ = (a, b) is unknown, null hypothesis H0 : X ∼ BT(θ), for some θ = (a, b) ∈
Θ against the alternative hypothesis H1 : X � BT(θ), ∀ θ = (a, b) ∈ Θ. Obviously,
based on Remark 1.1, the previous hypothesis is equivalent in testing the null hypothesis
H0 : X ∼ NTA(δ, τ), for some (δ, τ) ∈ (0,∞) × (0,∞), against the alternative
hypothesis H1 : X � NTA(δ, τ), ∀ (δ, τ) ∈ (0,∞)× (0,∞).

It is well-known that the distribution of a random variable X taking values in N0

is fully and uniquely determined by its pgf. Also, the pgf can be consistently estimated
by the epgf given by gn(t) = 1

n

∑n
i=1 t

Xi . It is worth stressing that Kocherlakota and
Kocherlakota [29] were the first authors who proposed to base a gof test on the so-called
epgf process with estimated parameter given by Kn(θ̂, t) =

√
n[gn(t) − g(t; θ̂)], for

0 ≤ t ≤ 1, where g(t; θ) is the pgf under the law in the null hypothesis; that is, in our
special case, g(t; θ) is given in relation (1.3), and θ̂ = (â, b̂) is a consistent estimator of
θ = (a, b).

Kocherlakota and Kocherlakota [29] exemplified their method with the Poisson-
type distributions and NTA distribution. However, their method has the disadvantage
that it depends on the choice of the value of t at which the pgf is evaluated. To overcome
this problem, Rueda et al. [46] suggested the use of the following Cramér-von Mises type
test statistic Rn,0(θ̂) =

∫ 1
0 Kn(θ̂, t)2dt = n

∫ 1
0 [gn(t) − g(t; θ̂)]2dt. In addition, Rueda

and O’Reilly [45] proposed a natural generalization of the Cramér-von Mises type test
statistic by introducing a suitable weight function in order to make the test more sensi-
tive to selected alternatives; see also Baringhaus et al. [1]. In this frame, they suggested
the following test statistic Rn,w(θ̂) = n

∫ 1
0 [gn(t) − g(t; θ̂)]2w(t)dt, where w(t) is a

non-negative function on (0, 1) such that
∫ 1

0 w(t)dt < ∞. By straightforward alge-
bra, we have that Rn,w(θ̂) = 1

n

∑n
j,k=1{ω(1, Xjk)− ω(g(t; θ̂), Xj)− ω(g(t; θ̂), Xk) +

ω(g2(t; θ̂), 0)}, where Xjk = Xj + Xk, and ω(f, d) =
∫ 1

0 t
df(t)w(t)dt. Note that

Rn,w(θ̂) can be equivalently expressed in the form Rn,w(θ̂) = n
∑∞

r,k=0{p(r; θ) −
p̂(r)}{p(k; θ)− p̂(k)}

∫ 1
0 t

r+kw(t)dt, where p(k; θ) is given by (1.2), and

(2.1) p̂(k) =
1

n

n∑
j=1

I (Xj = k) , k = 0, 1, . . . .

Note that p̂(k) corresponds to the empirical pmf for a given dataset. Hence, one rejects
the null hypothesis H0 for large values of the test statistic Rn,w(θ̂).

After the pioneer work by Kocherlakota and Kocherlakota [29], a large number of
gof tests for specific discrete distributions have been developed based on test statistics
that utilize properties of the pgf of the law under the null hypothesis. In this context,
Meintanis [35] presented a unified approach in testing the fit to any distribution belong-
ing to the compound Poisson family of distributions. The compound Poisson family of
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distributions is defined as the distribution of X =
∑N

j=1 Yj , where Yj (j = 1, . . . , N )
are independent and identically distributed with a common pgf ψ(t; ξ), ξ ∈ Rp is a
parameter vector, N ∼ Poisson(λ) is independent of Yj (j = 1, . . . , N ), and λ > 0.
Meintanis [35] has noted that the pgf of any member of the compound Poisson family,
say ζ(t), satisfies the following differential equation

(2.2) ζ ′(t)− λψ′(t; ξ)ζ(t) = 0,

where ζ ′(t) = (d/dt)ζ(t) and ψ′(t; ξ) = (d/dt)ψ(t; ξ). Then, since the pgf and its
derivatives can be consistently estimated by the epgf and the derivatives of the epgf (see,
for example, Proposition 2 of Novoa-Muñoz and Jiménez-Gamero [40] for the uniform
consistency of gn and its derivatives), Meintanis [35] proposed the following test statistic

(2.3) Tn,w(λ̂, ξ̂) = n

∫ 1

0
[ζ ′n(t)− λ̂ψ′(t; ξ̂)ζn(t)]2w(t)dt,

where ζ ′n(t) = (d/dt)ζn(t), and ζn(t) denotes the epgf. Note that the test statistic
defined in (2.3) is an integral of the squared of an empirical counterpart of equation
(2.2).

The general test statistic given in (2.3) can be exemplified in the special case of
the BT distribution with parameter vector θ = (a, b), once the proposition below justifies
that the BT distribution belongs to the compound Poisson family of distributions. This
result can be found in Feller [15] and in Castellares et al. [8].

Proposition 2.1. Let X ∼ BT(a, b), where a > 0 and b > 0. Then, we have
that X =

∑N
j=1 Yj , where Yj (j = 1, . . . , N ) are independent and identically zero-

truncated Poisson distributed random variables with parameter a > 0 and a common pgf
ψ(t; a) = exp(at)−1

exp(a)−1 , and N ∼ Poisson(b(ea − 1)) independent of Yj (j = 1, . . . , N ).

In terms of the notation used by Meintanis [35], it is evident that the BT distribu-
tion belongs to the compound Poisson family with λ = b(ea − 1), ψ(t; ξ) = exp(ξt)−1

exp(ξ)−1 ,

ψ′(t; ξ) = ξ exp(ξt)
exp(ξ)−1 , and ξ = a. Therefore, based on the work of Meintanis [35], the pgf

g(t; θ) of the BT distribution defined in (1.3) satisfies the following differential equation

(2.4) g′(t)− baeatg(t) = 0, ∀ t ∈ [0, 1],

and so the null hypothesis H0 is rejected for large values of the following test statistic
Mn,w(θ̂) = n

∫ 1
0 Gn(t, θ̂)2w(t)dt, whereGn(t; θ) is the empirical version of (2.4) given

by

(2.5) Gn(t; θ̂) = g′n(t)− b̂âeâtgn(t),

with g′n(t) = (d/dt)gn(t). By straightforward algebra (see also Meintanis [35, p.
753]), we have that Mn,w(θ̂) = 1

n

∑n
j,k=1{XjXkω(1, Xjk − 2) + (̂bâ)2ω(e2ât, Xjk)−
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b̂âXjkω(eât, Xjk − 1)}. Note that Mn,w(θ̂) can be equivalently expressed in the form
Mn,w(θ̂) = n

∑∞
r,k=0 d̂(r; θ̂)d̂(k; θ̂)

∫ 1
0 t

r+kw(t)dt, where

d̂(k; θ) = (k + 1)p̂(k + 1)−
k∑

u=0

coef (u; θ)p̂(k − u), k = 0, 1, . . . ,(2.6)

and coef (u; θ) := coef (u; a, b) = bau+1

u! can be recursively calculated as follows:
coef (0; a, b) = ba, and coef (u; a, b) = coef (u− 1; a, b)a/u for u ≥ 1.

Remark 2.1. The asymptotic null distributions of the test statistics Rn,w(θ̂)

and Mn,w(θ̂) are intractable (Rueda and O’Reilly [45] and Meintanis [35]) and, hence,
the critical points required for the implementation of these test procedures can be deter-
mined via parametric bootstrap. It should be mentioned that the application of both tests
requires the choice of a weight function. Specific choices of it, which are rather arbi-
trary, can lead to considerable computational simplification. In this frame, the choice of
w(t) = tγ , where γ ≥ 0 denotes a constant, corresponds to an interesting choice. This
weight function, apart from computational convenience, has the following interpretation:
for large values of γ more weight is assigned to the values of Kn(θ̂, t) and Gn(t; θ̂) near
t = 1; hence, large values of γ should render the test sensitive to deviations from the
moments of the hypothesized distribution; see, for instance, Gürtler and Henze [18].

Apart from the previous tests, which are based on the pgf, the tests in Henze [19]
and Klar [27] denoted as Hn and Wn, which are similar to that in Rueda and O’Reilly
[45] but they are based on the distribution function and on the integrated distribution
function, respectively, will be also particularized for the BT distribution and will be also
considered in the simulation studies of Section 4. Specifically, we consider the modified
Cramér–von Mises statistic in expression (3.6) of Henze [19] given by

(2.7) Hn =

X(n)∑
k=0

[Fn(k)− F (k; θ̂)]2[Fn(k)− Fn(k − 1)],

where X(n) = max1≤j≤nXj , Fn(x) stands for the empirical distribution function de-
fined by Fn(x) = n−1

∑n
j=1 I(Xj ≤ x), and F (x; θ) denotes the cumulative distri-

bution function of the BT distribution with parameter θ. In contrast to the Cramér–von
Mises statistic in expression (2.2) of Henze [19], whose practical calculation involves
truncation, the calculation of Hn involves a finite sum and hence was preferred (see also
Jiménez-Gamero and Alba-Fernandez [22]). Finally, following Henze [19], to perform
the test based onHn a parametric bootstrap is used and the null hypothesis is rejected for
a large observed value of the test statisticHn. We also consider the test statistic (see rela-
tion (1) in Klar [27])Wn =

√
n supt≥0 |Yn(t)−Ŷ (t)|, where Y (t) =

∫ +∞
t [1−F (x)]dx,

Yn(t) denotes its empirical counterpart and Ŷ (t) equals Y (t) with F (x) replaced by
F (x; θ̂). In practice (see also Jiménez-Gamero and Alba-Fernandez [22]), we consider
the expression (8) in Klar [27] given by

Wn =
√
n sup

1≤k≤X(n)

∣∣∣∣∣∣X̄ − Eθ̂(X) +
k−1∑
j=0

[Fn(j)− F (j; θ̂)]

∣∣∣∣∣∣ ,
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where X̄ denotes the sample mean. For instance, if the moment estimator is used then
the previous relation is simplified taking into account that E

θ̂
(X) = X̄ . On the other

hand, if the maximum likelihood (ML) estimator is used, then the relation is simplified
taking into account that E

θ̂
(X) = b̂âeâ, where â and b̂ are the ML estimates of a and b,

respectively, since E(X) = baea, when X ∼ BT(a, b). Following Klar [27], to perform
the test based on Wn a parametric bootstrap is used and hence the null hypothesis is
rejected for a large value of the associated test statistic.

3. A NEW TEST STATISTIC

In this section, a new gof test statistic will be constructed based on the charac-
terization of the BT distribution provided below and parallel with the tests discussed
by Nakamura and Perez-Abreu [38] for testing Poisson distribution, Novoa-Muñoz and
Jiménez-Gamero [41] for testing bivariate Poisson, Jiménez-Gamero and Alba-Fernandez
[21] for testing Poisson-Tweedie, and Batsidis et al. [3] for testing Bell distribution. To
be specific, the next proposition shows that the BT pgf is the unique solution of the
differential equation given in (2.4).

Proposition 3.1. Let G = {g : [0, 1] → R, such that g is a pgf and g′(t) =
(∂/∂t)g(t) exists ∀ t ∈ [0, 1]}, which is equivalent to say that G is the set of probability
generating functions associated with random variables taking values in N0 with finite
mean. Let g(t; θ) be defined as in (1.3). Then, g(t; θ) is the only pgf in G satisfying the
differential equation given in (2.4).

Therefore, the BT pgf is the only pgf satisfying the differential equation (2.4).
Also, the pgf g(t) and its derivatives can be consistently estimated by the epgf and the
derivatives of the epgf. Under the null hypothesis H0, it then follows that the empir-
ical version of (2.4) denoted by Gn(t; θ̂) and given in (2.5) should be close to zero,
∀ t ∈ [0, 1], where θ̂ = (â, b̂) is a consistent estimator of θ = (a, b). Additionally,
Gn(t; θ̂) can be expressed in the form Gn(t; θ̂) =

∑
k≥0 d̂(k; θ̂)tk, where p̂(k) and

d̂(k; θ̂) are defined in (2.1) and (2.6), respectively. It implies that (under the null hy-
pothesis) Sn(θ̂) =

∑
k≥0 d̂(k; θ̂)2 ≈ 0. Note that Sn(θ̂) = ‖d̂(·; θ̂)‖22, where d̂(·; θ̂) =

(d̂(0; θ̂), d̂(1; θ̂), . . .), and d̂(k; θ̂) is given in (2.6). Also, d̂(k; θ) = 1
n

∑n
i=1 φ(Xi; k, θ),

where

(3.1) φ(X; k, θ) = (k + 1)I(X = k + 1)− b
k∑

u=0

au+1

u!
I(X = k − u).

In this paper, we propose and study a new gof test for the BT family of distributions
based on the statistic Sn(θ̂). In order to give a solid justification of Sn(θ̂) as a test
statistic for testing H0, we derive its limit distribution in the next theorem.

Theorem 3.1. LetX1, . . . , Xn be independent and identically distributed from
X , a random variable taking values inN0 with probability mass function p(k) = Pr(X =
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k), k ∈ N0, so that E(X2) < ∞. Assume that θ̂
a.s.(P )−→ θ, then Sn(θ̂)

a.s.(P )−→ η =
‖d(·; θ)‖22, where d(·; θ) = (d(0; θ), d(1; θ), . . .), and d(k; θ) = (k + 1)p(k + 1) −
b
∑k

u=0
au+1

u! p(k − u), k ∈ N0.

It should be noted that η ≥ 0 and, from Proposition 3.1, η = 0 if and only if
H0 is true. Hence, the null hypothesis H0 should be rejected for large values of the test
statistic Sn(θ̂). Now, to determine what is a large value we have to obtain the distribution
of the test statistic Sn(θ̂) under the null hypothesis H0, or at least an approximation to
it. With this aim, we next derive its asymptotic null distribution. We will assume that
the estimator θ̂ = (â, b̂) satisfies the following regularity condition.

Assumption 1. Under H0, if θ = (a, b) ∈ Θ denotes the true parameter value,
then

√
n(θ̂ − θ) = 1√

n

∑n
i=1 `(Xi; θ) + oP (1), with Eθ{`(Xi; θ)} = 0 and J(θ) =

Eθ{`(Xi; θ)
T `(Xi; θ)} <∞.

Assumption 1 implies that when the null hypothesis is true and θ denotes the true
parameter value, then

√
n(θ̂−θ) is asymptotically normally distributed. This assumption

is not restrictive at all since it is fulfilled by commonly used estimators such as the the
ML estimator and the moment estimator (see White [51] and Jiménez-Gamero and Kim
[24], among others). In Appendix B, the form of the function ` is provided for the
aforementioned estimators under the BT family of distributions, and we show that the
conditions of Assumption 1 really holds for them.

The next theorem gives the asymptotic null distribution of Sn(θ̂).

Theorem 3.2. LetX1, . . . , Xn be independent and identically distributed from
X ∼ BT(θ), where θ = (a, b) ∈ Θ. Suppose that θ̂ satisfies Assumption 1. Then,

nSn(θ̂)
L−→ ‖S(θ)‖22, where {S(θ) = (S(0; θ), S(1; θ), . . .)} is a centered Gaussian

process in l2 with covariance kernel %(k, r) = Covθ{Y (X; k, θ), Y (X; r, θ)} for k ∈
N0 and r ∈ N0, Y (X; k, θ) = φ(X; k, θ) + (µ1(k; θ), µ2(k; θ))`(X; θ)T , φ is defined
in (3.1), µ1(k; θ) = Eθ{(∂/∂a)φ(X; k, θ)}, and µ2(k; θ) = Eθ{(∂/∂b)φ(X; k, θ)}.

Remark 3.1. If someone specifies the function ` for a specific estimator, then
the covariance kernel appeared in the statement of the previous theorem can be given ex-
plicitly since one has just to calculate an expectation. For the BT family of distributions,
when the moment estimators are used, we have proved in Appendix B that the function
` can be obtained in a closed, but rather complicated, form. On the other hand, when
the ML estimators are used, the function ` cannot be obtained in a closed form. For the
previous reasons, we did not provide the form of the covariance kernel %(k, r) for the
aforementioned estimators.

Note that the null distribution of ‖S(θ)‖22 is that of
∑

j≥1 λj χ
2
1j , where χ2

11, χ2
12,

. . . are independent χ2 variates with one degree of freedom, and the set {λj} are the
positive eigenvalues of the linear operator f 7→ Cf on l2 associated with the kernel %
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given in Theorem 3.2; that is, (Cf)(k) =
∑

r≥0 %(r, k)f(r). Since these eigenvalues
depend on the unknown θ, it is evident that the asymptotic null distribution of the test
statistic nSn(θ̂) depends on the unknown true value of the parameter vector θ = (a, b).
However, even if θ was known or replaced by an appropriate estimator θ̂, to determine
the eigenvalues of an operator is a quite hard problem and unfortunately we did not
succeed in finding explicit expressions for such eigenvalues. For similar problems and
arguments see Novoa-Muñoz and Jiménez-Gamero [41] and Jiménez-Gamero and Alba-
Fernandez [22], among others. Based on the previous remarks, it is concluded that
the asymptotic null distribution of nSn(θ̂) given in Theorem 3.2 does not provide a
useful approximation to its null distribution. Therefore, one should find another way of
approximating the null distribution of the test statistic nSn(θ̂).

A common approach is to consider a parametric bootstrap approach to estimate the
null distribution of ‖S(θ)‖22. In the sequel, the parametric bootstrap approach is defined.
Given the data X1, . . ., Xn, let X∗1 , . . ., X∗n be independent and identically distributed
from X∗ ∼ BT(θ̂). Let S∗n(θ̂∗) be the bootstrap version of Sn(θ̂) obtained by replacing
X1, . . . , Xn and θ̂ = θ̂(X1, . . . , Xn) with X∗1 , . . . , X

∗
n and θ̂∗ = θ̂(X∗1 , . . . , X

∗
n), re-

spectively, in the expression of Sn(θ̂). Then, we approximate Pθ{Sn(θ̂) ≤ x} by means
of its bootstrap version, i.e. P∗{S∗n(θ̂∗) ≤ x}. In order to show that the parametric boot-
strap consistently approximates the null distribution of Sn(θ̂), we need the following
assumption, which is a bit stronger than Assumption 1.

Assumption 2. Assumption 1 holds, and the functions `(X; θ) and J(θ) sat-
isfy:

(1) supϑ∈∆ Eϑ
{
‖`(X;ϑ)‖2I (‖`(X;ϑ)‖ > ε

√
n)
}
−→ 0, ∀ ε > 0, where ∆ ⊆ Θ is

an open neighborhood of θ.

(2) `(X;ϑ) and J(ϑ) are continuous as functions of ϑ at ϑ = θ.

Theorem 3.3. LetX1, . . . , Xn be independent and identically distributed from

X , a random variable taking values in N0. Assume that θ̂
a.s.(P )−→ θ, for some θ ∈ Θ, and

that Assumption 2 holds. Then, supx∈R

∣∣∣P∗{S∗n(θ̂∗) ≤ x} − Pθ{Sn(θ̂) ≤ x}
∣∣∣ a.s.(P )−→ 0.

Theorem 3.3 holds whether H0 is true or not. It states that the conditional dis-
tribution of S∗n(θ̂∗) and the distribution of Sn(θ̂) are close when the sample is drawn
from a population with BT(θ) distribution, θ = (a, b) being the limit of θ̂ = (â, b̂). In
particular, if the null hypothesis H0 is true, then Theorem 3.3 states that the conditional
distribution of S∗n(θ̂∗) is close to the null distribution of Sn(θ̂). Let α ∈ (0, 1). Hence,
the test function

Ψ∗ =

{
1, if Sn(θ̂) ≥ s∗n,α,
0, otherwise,

or, equivalently, the test that rejects H0 when p∗ = P∗{S∗n(θ̂∗) ≥ Sobs} ≤ α, is asymp-
totically correct in the sense that when H0 is true, limn→∞ Pθ(Ψ

∗ = 1) = α, where
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s∗n,α = inf{x : P∗(S
∗
n(θ̂∗) ≥ x) ≤ α} is the α upper percentile of the bootstrap dis-

tribution of Sn(θ̂), and Sobs is the observed value of the test statistic obtained from a
given dataset. An immediate consequence of Theorem 3.1 and Theorem 3.3 is that the
test Ψ∗ is consistent; that is, it is able to detect any fixed alternative, in the sense that
Pr(Ψ∗ = 1)→ 1 whenever X � BT(θ), for any θ ∈ Θ.

Remark 3.2. A parametric bootstrap estimator of the null distribution of nSn(θ̂)
was previously discussed. As observed before, the most important difficulty with the dis-
tribution of ‖S(θ)‖22 is the determination of the positive eigenvalues λj which, however,
can be consistently (a.s.) approximated following Dehling and Mikosch [11]. In this
context, another solution is to approximate the null distribution of nSn(θ̂) through the
conditional distribution, given X1, . . . , Xn, of

∑
j≥1 λ̂j χ

2
1j , where χ2

11, χ
2
12, . . . are in-

dependent χ2 variates with one degree of freedom and λ̂j is a consistent estimator of
the eigenvalue λj , by means of weighted bootstrap in the sense of Burke [6] (see also,
for instance, Kojadinovic and Yan [30] and references therein). From a computational
point of view, the weighted bootstrap is more efficient than the parametric bootstrap. On
the other hand, it has the disadvantage that one needs to estimate the function ` (see, for
instance, Jiménez-Gamero and Kim [24]). In this paper, we rely on parametric bootstrap
similar to the existing gof tests described in Section 2.

Before closing this section, we have to note that the bootstrap p-value of any of the
five tests, namely Sn(θ̂), Rn,w(θ̂), Mn,w(θ̂), Hn and Wn cannot be exactly computed.
In the sequel, let T denote any of the five test statistics and let Tobs stand for the observed
value of such statistic. Then, the bootstrap p-value can be approximated as follows:

1. Calculate the observed values of the gof test statistics for the available dataset
X1, . . . , Xn, say Sobs(θ̂), Mobs(θ̂), Robs(θ̂), Hobs and Wobs.

2. GenerateB bootstrap samplesX∗v1 , . . . , X∗vn fromX∗ ∼ BT(θ̂), for v = 1, . . . , B.

3. Calculate the test statistics Sn(θ̂), Mn,w(θ̂), Rn,w(θ̂), Hn and Wn for each boot-
strap sample and denote them, respectively, by S∗v , M∗v , R∗v, H∗v and W ∗v for
v = 1, . . . , B.

4. Compute the p-values of the tests based on the statistics Sn(θ̂),Mn,w(θ̂),Rn,w(θ̂),
Hn and Wn by means, respectively, of the expressions

p̂S =
#{S∗v ≥ Sobs(θ̂)}

B
, p̂M =

#{M∗v ≥Mobs(θ̂)}
B

, p̂R =
#{R∗v ≥ Robs(θ̂)}

B
.

p̂H =
#{H∗v ≥ Hobs}

B
, p̂W =

#{W ∗v ≥Wobs}
B

.

For a good discussion of bootstrap p-values, see Efron and Tibshirani [12, Chapter 16].
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4. FINITE-SAMPLE SIZE AND POWER PROPERTIES

The properties studied in the previous section related to the test statistic Sn(θ̂)
are asymptotic, which means that they describe the behavior of the proposed test when
the sample size is large. In this section, we empirically investigate its performance in
small and moderate sample sizes through Monte Carlo simulation experiments. We also
include in the Monte Carlo studies the test statistics Rn,w(θ̂), Mn,w(θ̂), Hn and Wn

for comparison. We have not considered the test statistic Kn(t; θ̂) in the Monte Carlo
experiments since the question on how to select t remains unsolved and its performance
depends on different values of t. It is worth stressing that the numerical results regarding
the existing gof tests applied in the BT distribution are new, and so it also represents an
additional contribution of the current paper in studying the performance of these specific
existing gof tests for this two-parameter discrete distribution. All computations were
performed by using the R language [43]. In all cases, 10,000 Monte Carlo replications
were considered. Without loss of generality, we consider a = 0.8 and 1.4, and b =
0.6, 1.2 and 1.8.

The computation of the test statistics Rn,w(θ̂) and Mn,w(θ̂) depend on the weight
function w(t) in their computations. Here, we consider the weight function in the form
w(t) = tγ , where t ∈ (0, 1) and γ = 0, 1, 2, 5 and 10. It is interesting to note that γ = 0
corresponds to the probability density function of the uniform distribution on (0, 1) as a
weight function. The resulting tests when w(t) = tγ is used as a weight function will be
denoted by Rn,γ(θ̂) and Mn,γ(θ̂). In particular, we have that

Rn,γ(θ̂) =
∞∑

r,k=0

{p(r; θ)− p̂(r)}{p(k; θ)− p̂(k)}
r + k + γ + 1

,

and

Mn,γ(θ̂) =

∞∑
r,k=0

d̂(r; θ̂)d̂(k; θ̂)

r + k + γ + 1
.

It should be emphasized that the test statistics Sn(θ̂), Rn,γ(θ̂) and Mn,γ(θ̂) are defined
by means of infinite sums and, hence, these sums have to be truncated at some finite
value, sayM . We have noted thatM = 20 yields sufficiently precise values of these test
statistics.

Random variates from BT(θ) distribution were generated by following Proposi-
tion 9 and Remark 13 in Castellares et al. [8]. To estimate θ = (a, b), we considered
the ML method. Finally, we adopted the warp-speed method [16] for evaluating the
proposed resampling scheme to reduce the computational burden. On the basis of the
warp-speed method, instead of computing critical points for each Monte Carlo sample,
one resample is generated for each Monte Carlo sample and each test statistic, say T , is
computed for that sample, obtaining say T ∗. Then, the resampling critical values for T
are computed from the empirical distribution determined by the resampling repetitions
of T ∗. It is worth mentioning that the idea behind the warp-speed bootstrap method is
that taking just one bootstrap draw for each simulated sample is sufficient to provide a
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useful approximation to the statistic of interest. Applying this insight to Monte Carlo
evaluation of bootstrap-based tests yields evaluation methods that work with B = 1
[16]. Because of the resulting dramatic computational savings, Giacomini et al. [16]
called their method as “Warp-Speed” Monte Carlo method.

4.1. Size properties

First, the type I error of the gof tests based on the statisticsRn,γ(θ̂), Mn,γ(θ̂), Hn,
Wn and Sn(θ̂) are investigated. We consider the sample sizes n = 50, 70, 90 and 150.
The nominal levels of the tests are α = 0.10 and 0.05. We report the null rejection rates
of H0 : X ∼ BT(θ) for all the tests at the 10% and 5% nominal significance levels;
i.e. the percentage of times that the corresponding statistics exceed the 10% and 5%
upper points obtained from the reference distribution generated by parametric bootstrap.
These rates estimate the type I error probability of the tests. The null rejection rates
of the gof tests Rn,γ(θ̂) and Mn,γ(θ̂) are listed in Table 1, while Table 2 lists the null
rejection rates of the gof tests Sn(θ̂), Hn and Wn.

For γ = 0 (i.e., the weight function w(t) corresponds to the probability density
function of the uniform distribution on the unit interval), note that the gof tests based
on the statistics Rn,0(θ̂) and Mn,0(θ̂) have not a good performance, mainly for small
sample sizes and when the parameter a is less than 1 (a < 1). On the other hand, the
performance of these gof tests improves considerably as γ increases for a < 1. It is also
evident that values of γ greater than 5 have no effect on improving the performance of
the gof tests based on the statistics Rn,γ(θ̂) and Mn,γ(θ̂) in such a case; compare the
null rejection rates of the tests for γ = 5 and γ = 10 when a < 1. Hence, for a < 1, the
weight function w(t) = tγ with γ = 5 seems to be a good choice for the test statistics
Rn,γ(θ̂) and Mn,γ(θ̂) in the BT discrete distribution. It is interesting to note that the gof
tests that use Rn,0(θ̂) and Mn,0(θ̂) as test statistics present better results when a > 1.
However, the performance of these gof tests deteriorates as γ increases and when a > 1,
and so the probability density function of the uniform distribution on the unit interval as
weight function in such a case seems to be a good choice for these test statistics. In short,
the numerical results in Table 1 reveals the difficulty of selecting the best value of γ for
the gof tests based on the test statisticsRn,γ(θ̂) andMn,γ(θ̂). From Table 2, note that the
null rejection rates of the gof tests that use Hn and Wn as test statistics are close to the
significance levels considered. It is worth stressing that the proposed gof test that uses
Sn(θ̂) as test statistic also presents a good performance, mainly for small sample sizes,
when compared with the existing gof tests and, hence, can be an interesting alternative
to these gof tests.
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Table 1: Null rejection rates of the gof tests Rn,γ := Rn,γ(θ̂) and Mn,γ :=

Mn,γ(θ̂) for some weight functions w(t).
a = 0.8 and b = 0.6

α n Rn,0 Rn,1 Rn,2 Rn,5 Rn,10 Mn,0 Mn,1 Mn,2 Mn,5 Mn,10

0.10 50 .066 .077 .080 .082 .083 .066 .072 .078 .080 .082
70 .077 .087 .090 .092 .092 .081 .085 .088 .091 .092
90 .085 .092 .095 .094 .093 .078 .089 .093 .093 .093
150 .091 .097 .098 .098 .098 .090 .098 .098 .098 .097

0.05 50 .025 .031 .034 .038 .038 .025 .031 .034 .036 .037
70 .035 .040 .042 .045 .045 .035 .038 .042 .044 .044
90 .036 .039 .041 .042 .042 .035 .037 .040 .041 .041
150 .037 .040 .042 .042 .043 .041 .041 .043 .043 .043

a = 0.8 and b = 1.2
α n Rn,0 Rn,1 Rn,2 Rn,5 Rn,10 Mn,0 Mn,1 Mn,2 Mn,5 Mn,10

0.10 50 .060 .063 .069 .078 .086 .078 .073 .074 .080 .087
70 .066 .075 .086 .089 .092 .083 .078 .084 .089 .093
90 .066 .075 .086 .095 .099 .085 .083 .088 .097 .101
150 .073 .078 .085 .090 .096 .086 .084 .086 .094 .096

0.05 50 .025 .027 .030 .036 .039 .033 .030 .033 .036 .038
70 .028 .034 .036 .042 .043 .038 .039 .040 .042 .043
90 .025 .031 .036 .041 .044 .038 .035 .039 .042 .045
150 .028 .035 .038 .040 .041 .040 .040 .042 .042 .041

a = 1.4 and b = 1.8
α n Rn,0 Rn,1 Rn,2 Rn,5 Rn,10 Mn,0 Mn,1 Mn,2 Mn,5 Mn,10

0.10 50 .098 .086 .085 .071 .074 .088 .082 .080 .082 .085
70 .094 .091 .084 .073 .078 .089 .082 .078 .078 .081
90 .096 .093 .087 .078 .081 .091 .084 .079 .078 .079
150 .106 .100 .091 .080 .080 .098 .092 .088 .086 .090

0.05 50 .046 .041 .038 .035 .036 .042 .039 .036 .035 .035
70 .047 .046 .041 .040 .041 .043 .039 .038 .034 .035
90 .047 .045 .039 .035 .039 .041 .038 .037 .036 .037
150 .050 .049 .044 .036 .038 .049 .042 .041 .041 .043

Table 2: Null rejection rates of the gof tests Hn, Wn and Sn := Sn(θ̂).
a = 0.8 and b = 1.2 a = 0.8 and b = 1.2 a = 0.8 and b = 1.2

α n Hn Wn Sn Hn Wn Sn Hn Wn Sn
0.10 50 .103 .098 .079 .101 .107 .083 .095 .099 .091

70 .095 .099 .084 .097 .099 .090 .101 .103 .086
90 .095 .099 .082 .110 .110 .087 .105 .111 .085
150 .101 .099 .089 .100 .098 .094 .098 .105 .090

0.05 50 .049 .045 .036 .051 .052 .040 .050 .050 .041
70 .047 .049 .037 .050 .050 .042 .050 .052 .041
90 .048 .045 .037 .054 .054 .040 .054 .057 .039
150 .047 .045 .043 .049 .048 .042 .048 .052 .045



Neyman type A distribution 15

4.2. Power properties

Next, the power of the tests based on the statistics Rn,γ(θ̂), Mn,γ(θ̂), Sn(θ̂), Hn

andWn are investigated. To compute the powers of the tests, we carried out Monte Carlo
simulation experiments similar to that described above, however, the data were generated
from perturbed BT distributions, and from the geometric (Geo), binomial (Bin), discrete
Weibull (dWei) and negative binomial (NB) distributions. We consider two kinds of per-
turbations for the BT distribution. Let X1 ∼ BT(θ) and X2 be another random variable
taking values on N0, not having a BT distribution and independent of X1. Then, the ran-
dom variablesX1 +X2 and max{X1, X2} also take values onN0, but the corresponding
distributions of these perturbed random variables do not belong to the BT family of dis-
tributions and, hence, they can be used as alternatives. In the Monte Carlo simulations,
we consider X2 as a discrete uniform random variable taking values on {0, 1, . . . , k},
for k = 2, 4 and 5, being denoted as dU2, dU4 and dU5, respectively. Thus, we have
the following alternative distributions: Alt1 = X1 + dU2, Alt2 = max{X1, dU2}, Alt3
= X1 + dU4, Alt4 = max{X1, dU4}, Alt5 = X1 + dU5 and Alt6 = max{X1, dU5}.

Here, we consider w(t) = tγ with γ = 0, 2, 5, n = 60, 80, and a = 0.8 and b =
0.6. The Monte Carlo simulation results regarding the power of the gof tests Rn,w(θ̂)

and Mn,w(θ̂) are listed in Table 3, and Table 4 lists the power results of the gof tests
Sn(θ̂), Hn and Wn. From Table 3, note that there is no great difference in powers when
different weight functions are considered. It is interesting to note that the test based on
the proposed statistic Sn(θ̂) is the most powerful among the gof tests in the great majority
of the cases; compare Tables 3 and 4. However, it is evident that no gof test provides
the highest power against all alternatives; that is, for some alternative distributions, the
new gof test exhibits the highest power, but for other ones, the existing gof tests yield
greater power. In summary, there is no uniform superiority of one gof test with respect
to the others, as expected from the theoretical results in [20]. As expected, as the sample
size increases, the power of the tests increases. In short, the numerical results of this
section reveal that the proposed gof test on the basis of the new statistic Sn(θ̂) can be
an interesting alternative to the existing gof tests based on the test statistics Rn,w(θ̂),
Mn,w(θ̂), Hn and Wn. The main advantage of the test statistic Sn(θ̂) in relation to the
test statistics Rn,w(θ̂), Mn,w(θ̂) is that it is not necessary to consider a weight function
for its computation. On the other hand, we have to truncate an infinite sum in a finite
value to calculate the new test statistic.

Finally, we compute the powers of the gof tests by considering moment estima-
tors. Castellares et al. [8] have provided the following moment estimators for a and b:
ã = s2

X̄
− 1, b̃ = X̄ exp(1−s2/X̄)

s2/X̄−1
, where X̄ and s2 are the sample mean and standard

deviation. Castellares et al. [8] proved that ã and b̃ are consistent estimators for a and
b, respectively. The power results when using these estimators are presented in Tables
5 and 6. Note that the powers of the gof tests under the moment estimates are near the
powers under the ML estimates. However, the powers under the ML estimates are in
general greater than the ones under the moment estimates.
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Table 3: Nonnull rejection rates of Rn,w(θ̂) and Mn,w(θ̂) for some weight
functions w(t): power.

n = 60 n = 80

Rn,0(θ̂) Mn,0(θ̂) Rn,0(θ̂) Mn,0(θ̂)
Alternative 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05
Alt1 0.248 0.189 0.310 0.220 0.252 0.180 0.302 0.227
Alt2 0.842 0.787 0.861 0.812 0.885 0.847 0.900 0.867
Alt3 0.276 0.162 0.446 0.303 0.321 0.199 0.506 0.390
Alt4 0.947 0.931 0.970 0.952 0.971 0.959 0.988 0.976
Alt5 0.287 0.125 0.496 0.325 0.384 0.225 0.597 0.469
Alt6 0.870 0.798 0.936 0.880 0.924 0.867 0.972 0.943
Geo 0.680 0.551 0.658 0.521 0.779 0.713 0.764 0.689
Bin 0.785 0.780 0.800 0.784 0.802 0.789 0.825 0.806
dWei 0.952 0.922 0.961 0.935 0.969 0.955 0.974 0.962
NB 0.395 0.257 0.398 0.257 0.484 0.379 0.480 0.377

Rn,2(θ̂) Mn,2(θ̂) Rn,2(θ̂) Mn,2(θ̂)
Alternative 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05
Alt1 0.291 0.218 0.340 0.240 0.294 0.218 0.339 0.257
Alt2 0.878 0.810 0.900 0.835 0.927 0.879 0.945 0.903
Alt3 0.344 0.178 0.493 0.308 0.406 0.254 0.567 0.428
Alt4 0.945 0.926 0.964 0.939 0.969 0.955 0.982 0.969
Alt5 0.424 0.181 0.611 0.395 0.551 0.357 0.712 0.590
Alt6 0.863 0.770 0.915 0.842 0.918 0.859 0.950 0.921
Geo 0.719 0.581 0.727 0.590 0.811 0.741 0.818 0.750
Bin 0.788 0.784 0.794 0.785 0.802 0.793 0.814 0.798
dWei 0.998 0.998 0.065 0.955 0.974 0.966 0.988 0.988
NB 0.375 0.217 0.418 0.217 0.464 0.359 0.500 0.387

Rn,5(θ̂) Mn,5(θ̂) Rn,5(θ̂) Mn,5(θ̂)
Alternative 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05
Alt1 0.297 0.209 0.332 0.226 0.300 0.214 0.337 0.243
Alt2 0.881 0.803 0.897 0.821 0.933 0.876 0.946 0.894
Alt3 0.394 0.195 0.517 0.293 0.478 0.290 0.592 0.427
Alt4 0.929 0.907 0.943 0.914 0.954 0.937 0.963 0.947
Alt5 0.541 0.252 0.678 0.436 0.674 0.477 0.779 0.647
Alt6 0.892 0.783 0.932 0.839 0.944 0.883 0.966 0.931
Geo 0.725 0.585 0.739 0.600 0.816 0.741 0.822 0.752
Bin 0.779 0.775 0.781 0.775 0.792 0.782 0.797 0.784
dWei 0.999 0.998 0.998 0.998 0.999 0.981 0.999 0.994
NB 0.386 0.228 0.429 0.238 0.475 0.350 0.491 0.338

5. REAL DATA ILLUSTRATIONS

In this section, we apply the gof tests based on the test statisticsRn,w(θ̂),Mn,w(θ̂),
Sn(θ̂), Hn and Wn in some real datasets for the sake of illustration. We consider the
weight function w(t) = tγ with γ = 5 to compute the test statistics Rn,w(θ̂) and
Mn,w(θ̂). All computations were done using the R language [43]. The code used in
the real data applications can be obtained from the authors upon request. The datasets
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Table 4: Nonnull rejection rates of Sn(θ̂), Hn and Wn: power.
Sn(θ̂) Hn Wn

n Alternative α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05
60 Alt1 0.720 0.654 0.540 0.406 0.380 0.267

Alt2 0.982 0.973 0.985 0.967 0.948 0.871
Alt3 0.944 0.929 0.564 0.408 0.422 0.238
Alt4 0.999 0.999 0.992 0.998 0.981 0.932
Alt5 0.999 0.998 0.678 0.494 0.515 0.286
Alt6 0.999 0.999 0.999 0.983 0.939 0.880
Geo 0.919 0.826 0.557 0.426 0.648 0.512
Bin 0.830 0.736 0.794 0.735 0.790 0.767
dWei 0.928 0.907 0.997 0.952 0.999 0.999
NB 0.682 0.546 0.378 0.252 0.375 0.233

80 Alt1 0.783 0.648 0.571 0.462 0.372 0.306
Alt2 0.999 0.992 0.999 0.994 0.981 0.962
Alt3 0.969 0.919 0.648 0.475 0.478 0.352
Alt4 0.999 0.999 0.999 0.995 0.999 0.986
Alt5 0.999 0.992 0.758 0.610 0.606 0.445
Alt6 0.999 0.999 0.999 0.999 0.996 0.941
Geo 0.939 0.890 0.646 0.497 0.774 0.674
Bin 0.875 0.856 0.867 0.802 0.822 0.799
dWei 0.983 0.909 0.999 0.996 0.999 0.999
NB 0.734 0.596 0.440 0.303 0.458 0.345

we consider correspond to the number of chromatid aberrations in 24 hours [9, 10], the
number of absences of workers in a particular division of a large steel corporation in an
observational period of six months [47], the number of claims of automobile liability
policies [28, pp. 244], and the number of hemocytometer yeast cell on European red
mites on apple leaves [44]. Descriptive measures for these datasets are listed in Table 7.
The ML estimates of the BT distribution parameters, asymptotic standard errors (SE),
and the 90% confidence intervals (CI) for the model parameters for each dataset are pre-
sented in Table 8. Table 9 lists the bootstrap p-values (with B = 5000) of the gof tests
on the basis of the test statistics Rn,w(θ̂), Mn,w(θ̂), Sn(θ̂), Hn and Wn for testing gof
to the BT distribution. It can be noted that the five gof tests agree that the two-parameter
BT discrete distribution is not adequate for fitting the chromatid dataset, once the boot-
strap p-value for all tests are < 0.01. In addition, the five gof tests agree that the BT
distribution is adequate for fitting the absence data, claims data, and cell data; that is,
the five tests agree that the null hypothesis cannot be rejected at any usual significance
levels.

A referee reminds us that the dataset regarding the absences of workers [47] was
originally fitted with the Negative Binomial (NB) distribution. From Table 9, it is evident
that the BT distribution (i.e., the NTA distribution) is not rejected by any of the gof tests,
and so an interesting question is: which distribution fits better this dataset, BT or NB?
The pmf of the two-parameter NB distribution, specified in terms of its mean, µ say, is
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Table 5: Nonnull rejection rates of Rn,w(θ̃) and Mn,w(θ̃) for some weight
functions w(t): power under moment estimators.

n = 60 n = 80

Rn,0(θ̃) Mn,0(θ̃) Rn,0(θ̃) Mn,0(θ̃)
Alternative 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05
Alt1 0.242 0.183 0.304 0.214 0.246 0.174 0.296 0.221
Alt2 0.811 0.756 0.830 0.781 0.854 0.816 0.869 0.836
Alt3 0.257 0.143 0.427 0.284 0.302 0.180 0.487 0.371
Alt4 0.909 0.893 0.932 0.914 0.933 0.921 0.950 0.938
Alt5 0.266 0.104 0.475 0.304 0.363 0.204 0.576 0.448
Alt6 0.822 0.750 0.888 0.832 0.876 0.819 0.924 0.895
Geo 0.672 0.543 0.650 0.513 0.771 0.705 0.756 0.681
Bin 0.745 0.740 0.760 0.744 0.762 0.749 0.785 0.766
dWei 0.948 0.918 0.957 0.931 0.965 0.951 0.970 0.958
NB 0.392 0.254 0.395 0.254 0.481 0.376 0.477 0.374

Rn,2(θ̃) Mn,2(θ̃) Rn,2(θ̃) Mn,2(θ̃)
Alternative 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05
Alt1 0.265 0.192 0.314 0.214 0.268 0.192 0.313 0.231
Alt2 0.831 0.763 0.853 0.788 0.880 0.832 0.898 0.856
Alt3 0.322 0.156 0.471 0.286 0.384 0.232 0.545 0.406
Alt4 0.912 0.893 0.931 0.906 0.936 0.922 0.949 0.936
Alt5 0.408 0.165 0.595 0.379 0.535 0.341 0.696 0.574
Alt6 0.859 0.766 0.911 0.838 0.914 0.855 0.946 0.917
Geo 0.693 0.555 0.701 0.564 0.785 0.715 0.792 0.724
Bin 0.743 0.739 0.749 0.740 0.757 0.748 0.769 0.753
dWei 0.978 0.961 0.983 0.970 0.984 0.975 0.988 0.982
NB 0.372 0.214 0.415 0.214 0.461 0.356 0.497 0.384

Rn,5(θ̃) Mn,5(θ̃) Rn,5(θ̃) Mn,5(θ̃)
Alternative 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05
Alt1 0.287 0.199 0.322 0.216 0.290 0.204 0.327 0.233
Alt2 0.843 0.765 0.859 0.783 0.895 0.838 0.908 0.856
Alt3 0.366 0.167 0.489 0.265 0.450 0.262 0.564 0.399
Alt4 0.914 0.892 0.928 0.899 0.939 0.922 0.948 0.932
Alt5 0.505 0.216 0.642 0.400 0.638 0.441 0.743 0.611
Alt6 0.879 0.770 0.919 0.826 0.931 0.870 0.953 0.918
Geo 0.708 0.568 0.722 0.583 0.799 0.724 0.805 0.735
Bin 0.743 0.739 0.745 0.739 0.756 0.746 0.761 0.748
dWei 0.989 0.979 0.992 0.984 0.991 0.986 0.994 0.990
NB 0.382 0.224 0.425 0.234 0.471 0.346 0.487 0.334

given by

Pr(Y = y) =

(
ϕ

ϕ+ µ

)ϕ( µ

ϕ+ µ

)y Γ(y + ϕ)

Γ(ϕ)Γ(y + 1)
, y = 0, 1, 2, . . . ,

where Γ(·) is the gamma function, and µ > 0 and ϕ > 0. It can be shown that the vari-
ance can be written as µ+µ2/ϕ and hence the parameter ϕ is referred to as the “disper-
sion parameter”. The ML estimates of µ and ϕ are (asymptotic SE between parentheses):
µ̂ = 0.6698(0.0754) and ϕ̂ = 0.3951(0.0752). The maximized log-likelihood function
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Table 6: Nonnull rejection rates of Sn(θ̃), Hn and Wn: power under moment
estimators.

Sn(θ̃) Hn Wn

n Alternative α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05
60 Alt1 0.706 0.605 0.490 0.392 0.331 0.217

Alt2 0.961 0.941 0.967 0.946 0.916 0.853
Alt3 0.942 0.901 0.552 0.406 0.394 0.226
Alt4 0.997 0.994 0.981 0.969 0.954 0.921
Alt5 0.980 0.960 0.634 0.475 0.477 0.242
Alt6 0.998 0.996 0.977 0.953 0.922 0.836
Geo 0.898 0.822 0.551 0.405 0.644 0.506
Bin 0.794 0.700 0.769 0.699 0.754 0.742
dWei 0.917 0.862 0.956 0.941 0.990 0.982
NB 0.676 0.540 0.372 0.246 0.369 0.227

80 Alt1 0.733 0.634 0.522 0.412 0.358 0.257
Alt2 0.982 0.971 0.986 0.976 0.960 0.930
Alt3 0.957 0.917 0.620 0.463 0.476 0.324
Alt4 0.999 0.998 0.991 0.984 0.975 0.959
Alt5 0.987 0.973 0.720 0.566 0.587 0.407
Alt6 0.999 0.999 0.991 0.978 0.966 0.924
Geo 0.933 0.869 0.642 0.491 0.753 0.670
Bin 0.850 0.820 0.831 0.777 0.786 0.763
dWei 0.942 0.898 0.967 0.955 0.992 0.988
NB 0.730 0.592 0.436 0.299 0.454 0.341

Table 7: Descriptive measures.
Chromatid Absence Claims Cell

n 400 318 298 80
Mean (x̄) 0.55 0.67 1.71 1.15
Variance (s2) 1.13 1.53 3.67 2.10
Skewness 3.12 2.19 1.72 1.27
Kurtosis 15.68 7.72 6.90 3.96
CV 1.94 1.85 1.12 1.26
ID 2.05 2.29 2.15 1.83
CV: Coefficient of variation (= s/x̄); ID: Index of dispersion (= s2/x̄).

for the NB distribution is −347.95, and so the AIC is given by 699.89. The maximized
log-likelihood function for the BT distribution is given by −345.60, which results in an
AIC value of 695.20. On the basis of the AIC values, it seems that the two-parameter
BT distribution fits better the absences of workers’ data than the two-parameter NB dis-
tribution and, hence, should be preferred.

Finally, it is well-known that the NTA distribution is traditionally fitted to datasets
from ecology, entomology, etc. For example, McGuire et al. [34] studied the distribution
of larval populations of the European corn borer, Pyrausta nubilalis (Hbni.). A total of
n = 3205 corn plants growing in an area located in Northwest Iowa were dissected
and, hence, the data correspond to the number of borers per plant dissected; see Table 1
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Table 8: ML estimates.
Chromatid aberrations

Parameter ML estimate SE 90% CI
a 0.6453 0.1112 (0.4630; 0.8277)
b 0.4450 0.1201 (0.2480; 0.6420)

Absence proneness
Parameter ML estimate SE 90% CI
a 1.2320 0.1589 (0.9714; 1.4926)
b 0.1586 0.0427 (0.0886; 0.2286)

Claims of automobile
Parameter ML estimate SE 90% CI
a 0.9795 0.1342 (0.7594; 1.1995)
b 0.6548 0.1728 (0.3714; 0.9382)

Yeast cell
Parameter ML estimate SE 90% CI
a 0.9340 0.2684 (0.4938; 1.3741)
b 0.4839 0.2596 (0.0582; 0.9096)

Table 9: Bootstrap p-values; B = 5000.
Dataset Rn,w(θ̂) Mn,w(θ̂) Sn(θ̂) Hn Wn

Chromatid aberrations < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Absence proneness 0.5220 0.5290 0.1632 0.5540 0.3915
Claims of automobile 0.4614 0.3822 0.3050 0.5935 0.6100
Yeast cell 0.6804 0.6716 0.8694 0.7825 0.6355

in McGuire et al. [34, p. 74]. The ML estimates of the BT distribution parameters are
(asymptotic SE between parentheses): â = 0.2756(0.0325) and b̂ = 7.1346(1.0695).
The bootstrap p-values (with B = 5000) of the gof tests on the basis of the test statistics
Rn,w(θ̂), Mn,w(θ̂), Sn(θ̂), Hn and Wn for testing gof to the BT distribution are given,
respectively, by 0.082, 0.098, 0.005, 0.034 and 0.056. Note that the gof tests deliver
small p-values, which indicates that the two-parameter BT discrete distribution (i.e., the
NTA distribution) seems not adequate for fitting these data. In short, this empirical
application illustrates that the NTA distribution, which is quite common in ecology and
entomology, should be used with some caution in these areas, since for some cases, as
evidenced by the gof tests, it cannot be adequate to fit such datasets. This indeed reveals
the importance of gof tests to the BT distribution (i.e., the NTA distribution).

6. CONCLUSIONS

In this paper, a new gof test for the Neyman type A distribution was introduced,
which is based on the interesting property that its pgf is the unique pgf satisfying a
certain differential equation. The new gof test statistic is a function of the coefficients
of the polynomial of the resulting equation when one replaces the pgf with the empir-
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ical pgf in the aforementioned differential equation. Also, other four related gof test
statistics already introduced in the statistical literature were particularized for the two-
parameter Bell-Touchard distribution for the first time, and studied by means of Monte
Carlo simulations. We have that these five tests (the four already proposed and the new
one) are consistent against fixed alternative hypotheses. Also, the practical computa-
tion of p-values of these tests requires a parametric bootstrap approximation to the null
distribution of the corresponding test statistics. We consider Monte Carlo simulation ex-
periments to verify the performance of the gof tests in finite samples. The Monte Carlo
simulation results indicate that the null rejection rates of the five tests are, in general,
close to the nominal levels. In addition, the numerical results regarding the power of the
tests reveals that no test provides the highest power against all alternatives considered:
for some alternatives the new test exhibits the highest power, but for other ones the com-
peting tests yield greater power. In short, there is no uniform superiority of one test with
respect to the others. Finally, it is worth emphasizing that the new test statistic Sn(θ̂)
has no need of choosing a weight function for its computation, unlike the test statistics
Rn,w(θ̂) and Mn,w(θ̂), which can be a great advantage in practice. On the other hand,
we have to truncate an infinite sum in a finite value to calculate the new test statistic.

A. APPENDIX: Proofs

Here we prove the results provided in the previous sections.

Proof of Proposition 3.1 It can be checked that the pgf of X ∼ BT(θ) given in (1.3)
satisfies the differential equation given in (2.4). Obviously, this part of the proof can also
be obtained by the result given by Meintanis [35] since the BT(θ) distribution belongs
to the compound Poisson family of distributions. Next, we proof that it is the only pgf
in G satisfying such differential equation. It is well-known that the solution of the linear
differential equation of order one of the form y′ + p(t)y = 0, where y = y(t), y′ =
(∂/∂t)y(t) and p(t) is a continuous function in t, is given by y = C exp(−

∫
p(t)dt),

where C is an arbitrary constant. Since the differential equation (2.4) is of this form, we
have that g(t) = C exp(

∫
abea tdt) = C exp(bea t). Taking into account that g is a pgf,

it must satisfy g(1) = 1, implying that C = exp (−bea) and, hence, the desired result is
obtained.

Let φ(x; θ) = (φ(x; 0, θ), φ(x; 1, θ), . . .), and fr(a, b) = br
∑

u≥0(u + r)a
u

u! =
br(a+ r)ea. We have the following lemmas.

Lemma 1.1. Let X1, . . . , Xn be independent and identically distributed from
X , a random variable taking values inN0 with probability mass function p(k) = Pr(X =
k), k ∈ N0, so that E(X2) < ∞. Then, E(‖φ(X; θ)‖22) ≤ E(X2) + b2f2

0 (a, b) < ∞,
∀ θ = (a, b) ∈ Θ.
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Proof: By definition,

‖φ(X; θ)‖22 =
∑
k≥0

(k + 1)2I(X = k + 1) +
∑
k≥0

k∑
u=0

b2a2u+2

(u!)2
I(X = k − u),

and, thus, E(‖φ(X; θ)‖22) = E(X2) +
∑

k≥0

∑k
u=0

b2a2u+2

(u!)2
p(k − u). To show the

finiteness of E(‖φ(X; θ)‖22), we must prove that
∑

k≥0

∑k
u=0

b2a2u+2

(u!)2
p(k − u) < ∞.

The rest of the proof is parallel with the one in Lemma 1 of Batsidis et al. [3] and for
this reason is omitted.

Let ∂
∂θi
d̂(·; θ) =

(
∂
∂θi
d̂(0; θ), ∂

∂θi
d̂(1; θ), . . .

)
, where i = 1, 2, and so θ1 := a and

θ2 := b.

Lemma 1.2. Let X1, . . . , Xn be independent and identically distributed from
X , a random variable taking values in N0. Then, ∀ θ = (a, b) ∈ Θ, we have that

(I) ∥∥∥∥ ∂

∂θ1
d̂(·; θ)

∥∥∥∥2

2

6 b2(a+ 1)2e2a = f2
1 (a, b) <∞,∥∥∥∥ ∂

∂θ2
d̂(·; θ)

∥∥∥∥2

2

6 a2e2a = f2
0 (a, b) <∞.

(II) ∥∥∥∥E{ ∂

∂θi
d̂(·; θ)

}∥∥∥∥2

2

<∞, i = 1, 2.

Proof: (I) We have that

(1.1)
∂

∂a
d̂(k; θ) = −b

k∑
u=0

(u+ 1)au

u!
p̂(k − u).

Therefore,∥∥∥∥ ∂∂ad̂(·; θ)
∥∥∥∥2

2

= b2
∑
u,v>0

(u+ 1)au

u!

(v + 1)av

v!

∑
k>max{u,v}

p̂(k − u)p̂(k − v)

6 (b(a+ 1)ea)2 = f2
1 (a, b) <∞,

once
∑

k>max{u,v} p̂(k−u)p̂(k−v) 6
∑

k>0 p̂(k) = 1 and
∑

l>0(l+1)a
l

l! = (a+1)ea.
Furthermore, we have that

(1.2)
∂

∂b
d̂(k; θ) = −

k∑
u=0

au+1

u!
p̂(k − u).
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Therefore, ∥∥∥∥ ∂∂bd̂(·; θ)
∥∥∥∥2

2

=
∑
u,v>0

au+1

u!

av+1

v!

∑
k>max{u,v}

p̂(k − u)p̂(k − v)

6 (aea)2 = f2
0 (a, b) <∞.

(II) The result follows from part (I) by replacing p̂(k − u) and p̂(k − v) with p(k − u)
and p(k − v), respectively.

Lemma 1.3. Let X1, . . . , Xn be independent and identically distributed from
X , a random variable taking values in N0. For each k ∈ N0, let θl = (al, bl) so that
θl = γlθ + (1− γl)θ̂, for some γl ∈ [0, 1]. Then,∑

k≥0

{
∂

∂θi
d̂(k; θ)− ∂

∂θi
d̂(k; θl)

}2
a.s.(P )−→ 0, i = 1, 2.

Proof: From relation (1.1), and after some algebra, we have that

∆1 =
∑
k≥0

{
∂

∂a
d̂(k; θ)− ∂

∂a
d̂(k; θl)

}2

=
∑
u,v>0

u+ 1

u!
(bla

u
l − bau)

v + 1

v!
(bla

v
l − bav)M1(u, v),

with 0 ≤ M1(u, v) =
∑

k≥max{u,v} p̂(k − u)p̂(k − v) ≤ 1. By applying the mean

value theorem, we have that blaul = bau + ub̃uã
u−1
u (ãu − a) + ãuu(̃bu − b), ∀u ≥ 1,

where θ̃u = (ãu, b̃u) with θ̃u = γuθl + (1 − γu)θ, for some γu ∈ (0, 1). Therefore,
ãu − a = γu(al − a) and b̃u − b = γu(bl − a). Taking into further consideration that
au ≤ max{al, a} ≤ max{â, a} := ã, bu ≤ max{bl, b} ≤ max{b̂, b} := b̃, we have that
| blaul −bau |≤ ub̃ãu−1 | al−a | +ãu | bl−b |≤ ub̃ãu−1 | â−a | +ãu | b̂−b |, ∀u ≥ 1.
Similarly, we have that | blavl − bav |≤ vb̃ãv−1 | â− a | +ãv | b̂− b |, ∀v ≥ 1. From
the above considerations. we have that | ∆1 |≤ (â − a)2(̃b(ã + 2)eã)2 + 2 | â − a ||
b̂ − b | b̃(ã + 1)eã(ã + 2)eã + (̂b − b)2((ã + 1)eã)2. Taking into account that in the
right-hand side of the above expression all the functions are continuous functions of θ,

it follows that (â − a)2(̃b(ã + 2)eã)2 a.s.(P )−→ (a − a)2 (b(a+ 2)ea)2 = 0, | â − a ||
b̂ − b | b̃(ã + 1)eã(ã + 2)eã

a.s.(P )−→ | a − a || b − b | b(a + 1)ea(a + 2)ea = 0,

(̂b− b)2((ã+ 1)eã)2 a.s.(P )−→ (b− b)2 ((a+ 1)ea)2 = 0. Thus, ∆1
a.s.(P )−→ 0.

From relation (1.2), and after some algebra, we have that

∆2 =
∑
k≥0

{
∂

∂b
d̂(k; θ)− ∂

∂b
d̂(k; θl)

}2

=
∑
u,v>0

1

u!
(au+1
l − au+1)

1

v!
(av+1
l − av+1)M1(u, v).
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By applying the mean value theorem as done when studying ∆1 and following simi-
lar steps, we get |∆2| ≤ (â − a)2((ã + 1)eã)2. Then, it follows that (â − a)2((ã +

1)eã)2 a.s.(P )−→ (a− a)2 ((a+ 1)ea)2 = 0, and, hence, ∆2
a.s.(P )−→ 0.

Lemma 1.4. Let X1, . . . , Xn be independent and identically distributed from

X , a random variable taking values in N0. Assume that θ̂
a.s.(P )−→ θ, for some θ ∈

Θ. Given the data, let X∗1 , . . . , X
∗
n be independent and identically distributed from

X∗ ∼ BT (θ̂). Let d̂∗(k; θ) be defined as d̂(k; θ) with p̂(k) replaced with p̂∗(k) =
1
n

∑n
j=1 I(X∗j = k), k ≥ 0. Then, for i = 1, 2,

(I)
∑
k≥0

[
∂

∂θi
d̂∗(k; θ̂)− µi(k; θ̂)

]2
P∗−→ 0, a.s.(P),

(II)
∑
k≥0

[
µi(k; θ)− µi(k; θ̂)

]2
→ 0, a.s.(P).

Proof: (I) We have that

∑
k≥0

[
∂

∂a
d̂∗(k; θ̂)− µ1(k; θ̂)

]2

=
∑
k≥0

{
−b̂

k∑
v=0

(v + 1)
av

v!

[
p̂∗(k − v)− p(k − v; θ̂)

]}2

= b̂2
∑
u,v≥0

(u+1)
âu

u!
(v+1)

âv

v!

∑
k≥max{u,v}

{
p̂∗(k − v)− p(k − v; θ̂)

}{
p̂∗(k − u)− p(k − u; θ̂)

}

≤
[
b̂(â+ 1)eâ

]2∑
k≥0

{
p̂∗(k)− p(k; θ̂)

}2
.

Since [̂b(â+1)eâ]2 is a continuous function of θ̂ = (â, b̂), we have that b̂(â+1)eâ]2
a.s.(P )−→

[b(a+ 1)ea]2 < ∞, ∀ θ ∈ Θ. We also have that (see proof of Lemma 4 in Batsidis et

al. [3])
∑

k≥0{p̂∗(k)− p(k; θ̂)}2 P∗−→ 0, and it follows that

∑
k≥0

[
∂

∂θ1
d̂∗(k; θ̂)− µ1(k; θ̂)

]2
P∗−→ 0, a.s.(P ).

Also, we have that

∑
k≥0

[
∂

∂b
d̂∗(k; θ̂)− µ2(k; θ̂)

]2

=
∑
k≥0

{
k∑
v=0

av+1

v!
[p̂∗(k − v)− p(k − v; θ̂)]

}2

=
∑
u,v≥0

âu+1

u!

âv+1

v!

∑
k≥max{u,v}

{p̂∗(k − v)− p(k − v; θ̂)}{p̂∗(k − u)− p(k − u; θ̂)}
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≤
(
âeâ
)2∑

k≥0

{p̂∗(k)− p(k; θ̂)}2.

Using similar arguments as above, we have (âeâ)2 a.s.(P )−→ (aea)2 < ∞, ∀ θ ∈ Θ.

Then, taking into account that
∑

k≥0{p̂∗(k)− p(k; θ̂)}2 P∗−→ 0, we obtain∑
k≥0

[
∂

∂θ2
d̂∗(k; θ̂)− µ2(k; θ̂)

]2
P∗−→ 0, a.s.(P ).

(II) We have that
∑

k≥0[µ1(k; θ)− µ1(k; θ̂)]2 = ∆11 + 2∆12 + ∆13, where

∆11 =
∑
k≥0

k∑
u,v=0

(u+1)
b̂âu

u!
(v+1)

b̂âv

v!
{p(k−u; θ̂)−p(k−u; θ)}{p(k−v; θ̂)−p(k−v; θ)},

∆12 =
∑
k≥0

k∑
u,v=0

(u+ 1)
b̂âu

u!

v + 1

v!
{p(k − u; θ̂)− p(k − u; θ)}p(k − v; θ){b̂âv − bav},

∆13 =
∑
k≥0

k∑
u,v=0

u+ 1

u!

v + 1

v!
p(k − u; θ)p(k − v; θ){b̂âu − bau}{b̂âv − bav}.

It follows that
∆11 ≤ (̂b(â+ 1)eâ)2

∑
k≥0

{p(k; θ̂)− p(k; θ)}2.

Since (̂b(â+ 1)eâ)2 a.s.(P )−→ (b(a+ 1)ea)2, it suffices to show that∑
k≥0

{p(k; θ̂)− p(k; θ)}2 a.s.(P )−→ 0,

then, ∆11
a.s.(P )−→ 0. Taking into account that∑

k≥0

{p(k; θ̂)− p(k; θ)}2 ≤
∑
k≥0

k2{p(k; θ̂)− p(k; θ)}2,

and that Eθ(X2) = (baea)2 + baea(1 + a), ∀θ ∈ Θ, the rest of the proof is parallel with
the proof of Lemma 4 II given in Jiménez-Gamero and Alba-Fernandez [21] and, hence,
it is omitted.

We now deal with ∆12. After some algebra and by applying the mean value
theorem as in the proof of Lemma 9, we have that |∆12| ≤ b̂(â + 1)eâb̃(â − a)(ã +

2)eã + b̂(â+ 1)eâ(̂b− b)(ã+ 1)eã. Thus, ∆12
a.s.(P )−→ 0.

Related to |∆13|, note that after some algebra and following similar arguments as
above, we have that

|∆13| ≤
∑
u≥1

u+ 1

u!
{ub̃ãu−1|â− a|+ ãu |̂b− b|}

×
∑
v≥1

v + 1

v!
{vb̃ãv−1|â− a|+ ãv |̂b− b|},
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or

|∆13| ≤ (â− a)2b̃
∑
u,v≥1

u+ 1

u!
uvãu−1ãv−1

+ (̂b− b)2
∑
u,v≥1

u+ 1

u!
ãuãv

+ 2|â− a||̂b− b|̃b
∑
u,v≥1

u+ 1

u!
uãu−1ãv.

Also, we have that
∑

k≥0[µ2(k; θ)− µ2(k; θ̂)]2 = ∆21 + 2∆22 + ∆23, where

∆21 =
∑
k≥0

k∑
u,v=0

âu+1

u!

âv+1

v!
{p(k − u; θ̂)− p(k − u; θ)}{p(k − v; θ̂)− p(k − v; θ)},

∆22 =
∑
k≥0

k∑
u,v=0

âu+1

u!

1

v!
{p(k − u; θ̂)− p(k − u; θ)}p(k − v; θ){âv+1 − av+1},

∆23 =
∑
k≥0

k∑
u,v=0

1

u!

1

v!
p(k − u; θ)p(k − v; θ){âu+1 − au+1}{âv+1 − av+1}.

Similarly, ∆21 ≤ (âeâ)2
∑

k≥0{p(k; θ̂) − p(k; θ)}2. Since (âeâ)2 a.s.(P )−→ (aea)2 and∑
k≥0{p(k; θ̂)− p(k; θ)}2 a.s.(P )−→ 0, we have that ∆21

a.s.(P )−→ 0. Also,

| ∆22 | ≤ | â− a |
∑
u≥0

âu+1

u!

∑
v≥0

v + 1

v!
ãv

= | â− a | âeâ(ã+ 1)eã.

Since | â− a | âeâ(ã+ 1)eã
a.s.(P )−→ 0, it follows that ∆22

a.s.(P )−→ 0.

Finally, it holds that

| ∆23 | ≤
∑
u,v≥0

âu+1 − au+1

u!

âv+1 − av+1

u!

≤ (â− a)2
(
ã+ 1)eã

)2
,

and since (â− a)2
(
ã+ 1)eã

)2 a.s.(P )−→ 0, it follows that ∆23
a.s.(P )−→ 0.

Proof of Theorem 3.1 By applying the mean value theorem, we get, for each k ∈ N0,
that

(1.3) d̂(k; θ̂) = d̂(k; θ)+

{
∂

∂θ
d̂(k; θ)

}
(θ̂−θ)T+

{
∂

∂θ
d̂(k; θl)−

∂

∂θ
d̂(k; θ)

}
(θ̂−θ)T ,
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with θl = γlθ+ (1− γl)θ̂, for some γl ∈ (0, 1). From Lemma 1.1, E(‖φ(X; θ)‖22) <∞
and thus by the strong law of large number (SLLN) in Hilbert spaces and the continuous
mapping theorem, it follows that

(1.4) ‖d̂(k; θ)‖22
a.s.−→ ‖E{φ(X; θ)}‖22 = η <∞.

Finally, the result follows from (1.3), (1.4) and Lemmas 1.2 and 1.3.

Proof of Theorem 3.2 From expansion (1.3), Assumption 1 and Lemmas 1.2 and 1.3,
it follows that

(1.5)
√
nd̂(·; θ̂) =

√
nd̂(·; θ) +

{
∂

∂θ
d̂(·; θ)

}√
n(θ̂ − θ)T + r1,

with ‖r1‖2 = oP (1). Now, by applying the SLLN in Hilbert spaces and Assumption 1,
we get

(1.6)
√
nd̂(·; θ) +

{
∂

∂θ
d̂(·; θ)

}√
n(θ̂ − θ)T =

1√
n

n∑
i=1

Y (Xi; ·, θ) + r2,

with ‖r2‖2 = oP (1). By the central limit theorem in Hilbert spaces,

(1.7)
1√
n

n∑
i=1

Y (Xi; ·, θ)
L−→ S(θ),

where Y (X; ·, θ) = (Y (X; 0, θ), Y (X; 1, θ), . . .). The result follows from (1.5)–(1.7)
and the continuous mapping theorem.

Proof of Theorem 3.3 Proceeding as in the proof of Theorem 3.2, we have that

√
nd̂∗(·; θ̂∗) =

√
nd̂∗(·; θ) +

{
∂

∂θ
d̂∗(·; θ̂)

}√
n(θ̂∗ − θ̂)T + r∗1,

with ‖r∗1‖2 = oP∗(1) a.s.(P ). Let Y ∗n = 1√
n

∑n
i=1 Y (X∗i ; ·, θ̂). By applying Lemma 1.4

and Assumption 2, we get

√
nd̂∗(·; θ) +

{
∂

∂θ
d̂∗(·; θ̂)

}√
n(θ̂∗ − θ̂)T = Y ∗n + r∗2,

with ‖r∗2‖2 = oP∗(1) a.s.(P ). To prove the result we derive the asymptotic distribution
of Y ∗n , showing that it coincides with the asymptotic distribution of Sn(θ̂) when the data
come from X ∼ BT(θ). With this aim, we apply Theorem 1.1 in Kundu et al. [31]. So,
we will show that conditions (i)–(iii) in that theorem hold. This can be done in a similar
way with the proof of Theorem 3 in Jiménez-Gamero and Alba-Fernandez [21].
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B. APPENDIX: Function `

Here, the form of the function `, appeared in Assumption 1, associated with the
ML estimators, and the moment estimators are provided. Moreover, it is proved that
the conditions given in Assumption 1 really hold for the aforementioned estimators.
For details about the existence of the ML estimators, and ways of computing them in
practice, we refer to Section 4.2 in Castellares et al. [8].

In this context, when the ML estimators of the BT distribution are used, particu-
larized for this special distribution, the general relation given in the the proof of Theorem
3.2 in White [51] (see also Jiménez-Gamero and Kim [24]), the ` function is given by
`(x; θ) = −A(θ)−1∇ log f(x; θ), with

A(θ) = −
(
ba−1(1 + a)ea ea

ea Kbb

)
,

where Kbb cannot be obtained in closed-form and is provided in Castellares et al. [8,
p. 4846], and∇ log f(x; θ) =

(
−be−a + x

a , (1− ea) + ∂
∂b log Tx(b)

)T
. Note that−A(θ) =

K(θ) is the unit (per observation) expected Fisher information matrix. Despite the fact
thatK(θ) cannot be obtained in closed-form, we have from Castellares et al. [8, p. 4846]
that Kbb ≤ eab−1 and det(K(θ)) < ∞. This implies that the inverse of this matrix ex-
ists. Furthermore, we have from Castellares et al. [8] that Eθ( ∂

∂θ1
log f(x; θ)) = 0 and

Eθ( ∂
∂θ2

logf(x; θ)) = 0. Therefore, the relation Eθ{`(Xi; θ)} = 0 is fulfilled when
the ML estimator is used. Finally, we have that J(θ) = Eθ{`(Xi; θ)

T `(Xi; θ)} =
tr((K(θ))−1K(θ)−1Σ1) = tr(K(θ)−1) < ∞, where tr(A) denotes the trace of the
matrix A, and Σ1 = Covθ(∇ log f(X; θ)) = K(θ).

Now, we consider the moment estimators of the BT distribution parameters to find
the expression ` and to confirm that the conditions given in Assumption 1 are satisfied.
Initially, note that from Remark 12 in Castellares et al. [8], we have after some algebra
that (a, b)T = (g1(µ1, µ2), g2(µ1, µ2))T , where

g1(µ1, µ2) =
µ2 − (µ1)2

µ1
− 1, g2(µ1, µ2) =

µ1 exp(1− µ2−µ21
µ1

)

µ2−(µ1)2

µ1
− 1

,

with µk = E(Xk), given in Remark 12 by Castellares et al. [8]. Therefore, since g =
(g1, g2)T is continuously differential at (µ1, µ2)T and E(||X||4) <∞, we have that (see
for instance Jiménez-Gamero and Kim [24]) `(x; θ) = (`1(x; θ), `2(x; θ))T , and

`1(x; θ) =

(
∂

∂µ1
g1(µ1, µ2),

∂

∂µ2
g1(µ1, µ2)

)
(x− µ1, x

2 − µ2)T ,

`2(x; θ) =

(
∂

∂µ1
g2(µ1, µ2),

∂

∂µ2
g2(µ1, µ2)

)
(x− µ1, x

2 − µ2)T .

Obviously, Eθ{`(Xi; θ)} = 0 since Eθ(X − µ1) = Eθ(X2 − µ2) = 0. Therefore,
the condition Eθ{`(Xi; θ)} = 0 is fulfilled when the moment estimator is used. In the
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sequel, let us denote by K1(θ) the 2× 2 matrix with (i, j) element (i, j = 1, 2) equal to
∂
∂µj

gi(µ1, µ2). The elements of the matrix K1(θ), which depend only on µ1 and µ2, are
omitted here, however, they are available upon request and can be given in closed-form.
Finally, we have that J(θ) = Eθ{`(Xi; θ)

T `(Xi; θ)} = tr(K1(θ)TK1(θ)Σ2), where

Σ2 = Covθ
(
X − µ1, X

2 − µ2

)T
=

(
µ2 − µ2

1 µ3 − µ1µ2

µ3 − µ1µ2 µ4 − µ2
2

)
.

Therefore, J(θ) <∞ since tr((K1(θ))T K1(θ)Σ2) <∞.
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