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1. INTRODUCTION

Recently, many distributions have been defined for modeling lifetime data.
The Weibull distribution has survival and hazard rate functions in closed-forms;
see Murthy et al. [14]. Gupta and Kundu [8] introduced the exponentiated ex-
ponential (EE) distribution as an alternative to the gamma and Weibull distri-
butions. It has many properties similar to those of the gamma and Weibull with
closed-form survival and hazard rate functions; see Gupta and Kundu [9]. The
hazard rate functions (hrfs) of the gamma, Weibull and EE distributions can not
be upside-down bathtub and bathtub shapes but only monotonically increasing,
monotonically decreasing or constant shapes.

Taking into account these points, we define a new two-parameter alternative
to the above distributions to overcome the above-mentioned drawback. Further,
it is common in practical situations to use an appropriate regression based on
an asymmetric distribution for censored data and survival time data. Recently,
various papers have been published on that subject such as those by Lanjoni et
al. [10], Cordeiro et al. [5], among others. Another objective of this work is to
propose a location-scale regression based on the logistic-exponential distribution
named the log-logistic exponential regression. It is a new regression that can be
applied to data sets with the presence of censored data.

The paper is outlined as follows. In Section 2, the new logistic-G (LG)
family is introduced and some of its structural properties are studied. A special
model of the LG family called the logistic-exponential (LE) distribution is pre-
sented in Section 3. Some of its mathematical properties are addressed in Section
4. The parameters of the LE distribution are estimated by maximum likelihood
(ML) in Section 5. Further, a Monte Carlo simulation study is conducted to
assess the performance of the ML method. An extended regression model is pro-
posed and studied in Section 6. In Section 7, the usefulness of the new models
is shown empirically by means of three real data sets. Finally, Section 8 offers
some concluding remarks.

2. THE NEW LG FAMILY

Alzaatreh et al. [2] defined the T-X family of distributions as follows. Let
r(t) be the probability density function (pdf) of a random variable (rv) T ∈ [a, b]
for −∞ ≤ a < b < ∞ and let W (·) : [0, 1] −→ R be an adequate link function.
The cumulative distribution function (cdf) of the T-X family is

F (x; ξ) =

∫ W [G(x;ξ)]

a
r(t) dt,

where ξ is the parameter vector of G.
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Based on the above definition, if the function W [G(x; ξ)] is monotonically
non-increasing with W (0) → b and W (1) → a, one can redefine the T-X family
cdf as

(2.1) F (x; ξ) = 1−
∫ W [G(x;ξ)]

a
r(t) dt.

Let T be a logistic rv with pdf r(t) = α e−α t(1 + e−α t)−2 and support in
R, where α > 0. By setting W [G(x; ξ)] = log {− log[G(x; ξ)]}, a monotonically
non-increasing function in G(x; ξ), the cdf of the LG family follows from (2.1)

(2.2) F (x;α, ξ) = 1−
[
1 + {− log[G(x; ξ)]}−α

]−1
, x ∈ R.

If g(x; ξ) = dG(x; ξ)/dx, the associated pdf to (2.2) is

(2.3) f(x;α, ξ) =
α g(x; ξ)

{
− log[G(x; ξ)]

}−α−1
G(x; ξ) [1 + {− log[G(x; ξ)]}−α]2

.

The dependence on the baseline vector ξ and α is omitted and then G(x) =
G(x; ξ) and f(x) = f(x;α, ξ). Hereafter, a rv with pdf (2.3) is denoted by
X ∼ LG(α, ξ).

The hrf of X has the form

(2.4) h(x) =
α g(x)

{
− log[G(x)]

}−α−1
G(x) [1 + {− log[G(x)]}−α]

.

The quantile function (qf) of X follows by inverting F (x) = u in (2.2)

(2.5) Q(u) = QG
(
e−v
)
,

where QG(v) = G−1(v) is the parent qf and v = [(1−u)/u]1/α. Then, the solution
of the nonlinear equation X = Q(U) has density (2.3) if U has a uniform U(0, 1)
distribution.

Equation (2.5) gives a simple interpretation for the LG family. If T has a
logistic density r(t) with shape parameter α, the LG family is obtained from the

qf of the G distribution by X = QG(e−e
T

).

Proposition 2.1. Let c = inf{x|G(x) > 0}. The asymptotics of equa-
tions (2.2), (2.3) and (2.4) when x→ c are

F (x) ∼ {− log [G(x)]}−α ,

f(x) ∼ α g(x)

G(x)
{− log [G(x)]}−α−1 ,

h(x) ∼ α g(x)

G(x)
{− log [G(x)]}−α−1 .
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Proposition 2.2. The asymptotics of equations (2.2), (2.3) and (2.4)
when x→∞ are given by

1− F (x) ∼ Ḡ(x)α, f(x) ∼ α g(x) Ḡ(x)α−1 and h(x) ∼ α g(x)

Ḡ(x)
.

Theorem 2.1. The Shannon’s entropy of the LG family takes the form

(2.6) ηX = E
[
log
{
g[G−1(e−e

T
)]
}]
−B

(
1− 1

α , 1 + 1
α

)
− log α+ 2,

where B(·, ·) is the beta function.

Proof: Alzaatreh et al. [2] obtained the Shannon entropy of the T-X
family, where W [G(x)] = − log[1 − G(x)]. One can use their same technique to
obtain this entropy for the LG family in (2.2) when W [G(x)] = log{− log[G(x)]}
as

(2.7) ηX = E
[
log
{
g[G−1(e−e

T
)]
}]
− E(eT ) + µT + ηT ,

where µT and ηT are the mean and Shannon entropy of the rv T , respectively. If
T has the logistic distribution, (2.6) follows easily from (2.7).

2.1. Linear representation

We can rewrite equation (2.2) as

(2.8) F (x) =
{− log[G(x)]}−α

1 + {− log[G(x)]}−α
.

The power series {− log[G(x)]}−α =
∑∞

k=0 pk [1−G(x)]k holds, where p0 =
1, p1 = −α/2, p2 = (3α2 − 5α)/24, p3 = (−α3 + 5α2 − 6α)/48, etc. The radius
of convergence of this series is infinite for 0 < G(x) <1 and then it converges for
all real numbers x with great rapidity.

Then, we can express equation (2.8) as a ratio of two convergent power
series of G(x)

F (x) =

∑∞
k=0 pk [1−G(x)]k∑∞
k=0 qk [1−G(x)]k

=
∞∑
k=0

bk [1−G(x)]k.

Here, q0 = 1 + p0, b0 = p0/q0 and, for k ≥ 1, qk = pk and

bk =
1

q0

(
pk − 1

q0

k∑
r=1

qr bk−r

)
.
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Further, F (x) can be rewritten as

F (x) =
∞∑
k=0

bk [1−G(x)]k =
∞∑
j=0

∞∑
k=j

(−1)j bk

(
k

j

)
G(x)j

and then

(2.9) F (x) =
∞∑
j=0

dj G(x)j ,

where dj =
∑∞

k=j(−1)j bk

(
k

j

)
and G(x)j denotes the exponentiated-G (“exp-G”

for short) cdf with power parameter j.

Hence, the density of X has a linear representation in terms of exp-G
densities, namely

(2.10) f(x) =
∞∑
j=0

dj+1 hj+1(x),

where hj+1(x) = (j + 1) g(x)G(x)j is the exp-G density with power parameter
j + 1. Some exp-G properties are addressed in more than 50 papers cited by
Tahir and Nadarajah [19].

Clearly, some mathematical properties of the LG family can be derived
from equation (2.10) and those exp-G properties.

2.2. Moments

Let Yj+1 be a rv having density hj+1(x). The nth moment of X follows
from (2.10) as

E(Xn) =
∞∑
j=0

dj+1 E(Y n
j+1) =

∞∑
j=0

(j + 1) dj+1 τn,j ,(2.11)

where τn,j =
∫∞
−∞ x

nG(x)j g(x)dx =
∫ 1
0 QG(u)n ujdu. Cordeiro and Nadara-

jah [4] determined the quantity τn,j for the normal, beta, gamma and Weibull
distributions. Their developments can be used to other distributions.

The nth incomplete moment of X, say mn(y) =
∫ y
0 xn f(x)dx, is given by

mn(y) =
∞∑
j=0

dj+1

∫ y

0
xn hj+1(x)dx

=

∞∑
j=0

(j + 1) dj+1

∫ G(y)

0
QG(u)n ujdu.(2.12)
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The main application of the first incomplete moment m1(y) refers to the
deviations from the mean and median and the Bonferroni and Lorenz curves of
X. A further important application is related to the mean residual life (MRL) of
X, i.e. the function measuring the remaining life expectancy at age t, given by
ν(t) = [1−m1(t)]/[1−F (t)]− t. This function is like the density and generating
functions: for a distribution with a finite mean, it completely determines the
distribution. The use of the MRL is a helpful tool in model building.

2.3. Generating function

The moment generating function (mgf) M(t) = E(etX) of X can be deter-
mined from (2.10) as

M(t) =

∞∑
j=0

dj+1Mj+1(t) =

∞∑
i=0

(j + 1) dj+1 ρ(t, j),(2.13)

where Mj+1(t) is the mgf of Yj+1 and ρ(t, j) =
∫ 1
0 exp[tQG(u)]ujdu.

Hence, M(t) can be determined from the exp-G generating function. The
characteristic function of X is simply M(−i t), where i =

√
−1, and it always

exists, even when the generating function does not.

3. THE LE DISTRIBUTION

Consider the baseline exponential with cdf G(x) = 1 − e−λx. The cdf of
the LE distribution can be determined from (2.2) as

(3.1) F (x) = F (x;α, λ) = 1−
[
1 + {− log(1− e−λx)}−α

]−1
.

Hereafter, let X ∼ LE(α, λ) have the cdf (3.1). The pdf of X is

(3.2) f(x) =
αλ {− log(1− e−λx)}−α−1

(eλx − 1) [1 + {− log(1− e−λx)}−α]
2 .

The hrf of X becomes

(3.3) h(x) =
αλ {− log(1− e−λx)}−α−1

(eλx − 1) [1 + {− log(1− e−λx)}−α]
.

Equation (3.1) has two parameters α and λ such as the gamma, log-normal,
Weibull and EE distributions. The LE model has closed-form survival and hazard
functions like the Weibull and EE distributions.
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Figures 1 and 2 display some plots of the density and hrf of X for selected
values of α when λ = 1. Figure 1 shows that the LE density is a right-skewed
distribution. The plots in Figure 2 indicate that the hrf of X can have decreasing
failure rate (DFR), bathtub (BT) and decreasing-increasing-decreasing (DID)
shapes. The limiting behavior of this hrf is limx→∞ h(x) = α and limx→0 h(x) =
∞, and it always approaches α when X goes to infinity.
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Figure 1: Plots of the LE density varying α with λ = 1
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Figure 2: Plots of the LE hrf varying α for λ = 1

4. PROPERTIES OF LE DISTRIBUTION

In this section, we obtain some properties of the LE distribution.
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4.1. Asymptotics and shapes

Proposition 4.1. The asymptotics of the cdf, pdf and hrf of X when
x→ 0 are

F (x) ∼ 1−
{

1 + [− log(λx)]−α
}−1

,

f(x) ∼ α

x
[− log(λx)]−α−1

{
1 + [− log(λx)]−α

}−2
,

h(x) ∼ α

x
[− log(λx)]−α−1

{
1 + [− log(λx)]−α

}−1
.

Proposition 4.2. The asymptotics of the cdf, pdf and hrf of X when
x→∞ are

1− F (x) ∼ e−αλ x, f(x) ∼ αλe−αλ x and h(x) ∼ αλ.

4.2. Transformation

If Y has the logistic distribution with parameter α, then X = −λ−1 log(1−
e−e

Y
) follows the LE(α, λ) model.

4.3. Mode

Lemma 4.1. The modes of the LE density are the solutions of k(x) = 0,
where

k(x) = −λ− λ

eλx − 1

[
1− α+ 1

{− log(1− e−λx)}
+

2α {− log(1− e−λx)}−α−1

1 + {− log(1− e−λx)}−1

]
.

4.4. Quantile function

The qf of X is Q(u) = −λ−1 log(1 − e−v), u ∈ (0, 1), where v = [(1 −
u)/u]1/α.
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4.5. Shannon entropy

Theorem 4.1. The Shannon entropy of X is

ηX =
λ

λ− 1
−B

(
1− 1

α , 1 + 1
α

)
− log α+ 2.(4.1)

Proof: For the LE distribution, the result holds:

E
[
log
{
g[G−1(e−e

T
)]
}]

= E(eT ) =
λ

λ− 1
.

Equation (4.1) follows by substituting the above result in (2.6).

4.6. Moments and generating function

The LE density comes from (2.10) as

f(x) =
∞∑
j=0

dj+1 (j + 1) λ e−λx
(

1− e−λx
)j
.

The moments of X follow from the EE distribution and (2.11)

µ′n = E(Xn) = n!

∞∑
j,l=0

(−1)l (j + 1) dj+1A(j, l)

λj+1 (l + 1)n+1
,(4.2)

where A(j, l) = j(j − 1) · · · (j − l)/l!.

The skewness and kurtosis of X for some values of α by taking λ = 1 are
displayed in Figure 3. The distribution of X is right-skewed. For fixed λ, the
skewness is a decreasing function of α, whereas the kurtosis decreases steadily
towards asymptotic limits when α increases.

The nth incomplete moment of X is obtained from (2.12)

mn(y) = λ−n
∞∑
j=0

(j + 1) dj+1A
∗
n(j + 1),(4.3)

where

A∗n(j + 1) =
∞∑
p=0

(−1)p

(p+ 1)r+1

(
j

p

)
γ(n+ 1, (p+ 1)λ y), n = 1, 2, . . . ,
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Figure 3: (a) Skewness and (b) Kurtosis plots of X for λ = 1.

and γ(p, x) =
∫ x
0 w

p−1 e−w dw (for p > 0) is the incomplete gamma function.

The mgf of X follows from (2.13) as

(4.4) M(t) = Γ(1− t
λ)

∞∑
j=0

(j + 1)! dj+1

Γ(j + 2− t
λ)
.

Equations (4.2), (4.3) and (4.4) are the main results of this section.

4.7. Order statistics

Order statistics make their appearance in many areas of statistical theory
and practice. Suppose X1, · · · , Xn is a random sample from the LE distribution.
Let Xi:n denote the ith order statistic. The pdf of Xi:n can be expressed as

fi:n(x) = K
n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1,

where K = 1/B(i, n− i+ 1).

Gradshteyn and Ryzhik [7] provied a power series raised to a positive integer
n ( ∞∑

i=0

ai u
i

)n
=

∞∑
i=0

bn,i u
i,(4.5)
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where the coefficients bn,i (for i = 1, 2, . . .) satisfy the recurrence equation (with
bn,0 = an0 )

bn,i = (i a0)
−1

i∑
m=1

[m(n+ 1)− i] am bn,i−m.

The density function of Xi:n can be reduced to

fi:n(x) =
∞∑

r,k=0

mr,k πEE(x;λ, r + k + 1),(4.6)

where πEE(x;λ, r + k + 1) (for r, k ≥ 0) denotes the EE density function with
parameters λ and r + k + 1, and

mr,k =
n! (r + 1) (i− 1)! dr+1

(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k
(n− i− j)! j!

.

Here, dr is defined in (2.9) and the quantities fj+i−1,k follow recursively from (for
k ≥ 1)

fj+i−1,k = (k d0)
−1

k∑
m=1

[m (j + i)− k] dm fj+i−1,k−m,

and fj+i−1,0 = dj+i−10 .

Equation (4.6) shows that the pdf of the LE order statistics is a double
linear combination of EE densities. Therefore, several mathematical quantities
of these order statistics can be derived from this result.

5. ESTIMATION

The maximum likelihood estimates (MLEs) enjoy desirable properties for
constructing confidence intervals. We consider the estimation of the unknown
parameters of the LE distribution by the maximum likelihood method. Further
works could be addressed using different methods to estimate the LE parameters
such as moments, least squares, weighted least squares, bootstrap, Jackknife,
Cramér-von-Mises, Anderson-Darling, Bayesian, among others, and compare the
estimators from these methods.

Let x1, · · · , xn be n observed values from the LE distribution given in equa-
tion (3.2) with vector of parameters Θ = (α, λ)>. The log-likelihood ` = `(Θ)
for Θ is

` = n log (αλ)−
n∑
i=1

log(eλxi − 1)− (α+ 1)
n∑
i=1

log
{
− log

(
1− e−λxi

)}
−2

n∑
i=1

log
[
1 +

{
− log

(
1− e−λxi

)}−α]
.(5.1)
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Equation (5.1) can be maximized either directly by using well-known plat-
forms such as R (optim function), SAS (PROC NLMIXED) and Ox program (MaxBFGS
sub-routine).

5.1. Simulation results

We examine the accuracy of the MLEs of the parameters of the LE dis-
tribution using Monte Carlo simulations. The simulation analysis is carried out
by generating 5,000 samples for some sample sizes and parameter combinations.
Table 1 gives the average biases (Biases) of the MLEs, mean square errors (M-
SEs), coverage probabilities (CPs) and average widths (AWs) of 95% confidence
intervals for α and λ. These results indicate that the MLEs are accurate. The
biases, MSEs and AWs of X are small for large samples. Further, the CPs are
quite close to the 95% nominal levels. So, we conclude that the MLEs can be used
for estimating and constructing confidence intervals for the model parameters.

Table 1: Simulation results.

Parameter n Bias MSE CP AW Bias MSE CP AW

α = 0.3, λ = 1 α = 0.8, λ = 1

α 25 −0.006 0.003 0.92 0.210 −0.091 0.029 0.92 0.599
50 −0.004 0.002 0.93 0.149 −0.070 0.016 0.96 0.437
75 −0.004 0.001 0.94 0.121 −0.073 0.013 0.96 0.354
100 −0.002 0.001 0.95 0.106 −0.067 0.011 0.95 0.309

λ 25 0.013 0.018 0.93 0.510 −0.039 0.083 0.95 0.988
50 0.011 0.009 0.95 0.360 −0.035 0.044 0.96 0.707
75 0.006 0.006 0.96 0.292 −0.059 0.028 0.95 0.559
100 0.005 0.004 0.95 0.254 −0.053 0.021 0.95 0.488

Parameter n Bias MSE CP AW Bias MSE CP AW

α = 1.5, λ = 1 α = 3, λ = 1

α 25 0.175 0.149 0.96 1.362 0.156 0.400 0.94 2.260
50 0.111 0.067 0.95 0.932 0.084 0.188 0.94 1.565
75 0.097 0.046 0.96 0.758 0.048 0.104 0.95 1.267
100 0.090 0.036 0.95 0.653 0.044 0.084 0.96 1.095

λ 25 0.002 0.068 0.93 0.968 0.020 0.025 0.92 0.572
50 −0.007 0.034 0.95 0.677 0.011 0.012 0.93 0.401
75 −0.013 0.021 0.96 0.551 0.007 0.007 0.96 0.326
100 −0.027 0.016 0.96 0.465 0.002 0.005 0.95 0.280



ON ANALYZING NON-MONOTONE FAILURE DATA 13

6. THE LOG-LOGISTIC EXPONENTIAL REGRESSION WITH
CENSORED DATA

If X follows the LE distribution (3.2), Y = log(X) will have the log-logistic
exponential (LLE) distribution. The density function of Y (for y ∈ R), parame-
terized in terms of λ = e−µ, takes the form

f(y) =
α exp[(y − µ)− exp(y − µ)] [− log {1− exp[− exp(y − µ)]}]−α−1

{1− exp[− exp(y − µ)]}{1 + [− log{1− exp[exp(y − µ)]}]−α}2
,(6.1)

where µ ∈ R is a location parameter and α is a positive shape parameter.

We refer to equation (6.1) as the LLE distribution, say Y ∼ LLE(α, µ). Thus,

if X ∼ LE(α, λ) then Y = log(X) ∼ LLE(α, µ).

Some shapes of the density function of Y are given in Figure 4.

The survival function of Y is

S(y) =
1

1 + [− log{1− exp[− exp(y − µ)]}]−α
.(6.2)

The density function of Z = (Y − µ) is

π(z;α) =
α exp[z − exp(z)][− log{1− exp[− exp(z)]}]−α−1

{1− exp[− exp(z)]}{1 + [− log{1− exp[− exp(z)]}]−α}2
, z ∈ R.(6.3)
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Figure 4: The LLE density function. (a) For different values of α > 1 with µ = 0.
(b) For different values of α < 1 with µ = 0.

Based on the LLE density, we propose the location-scale linear regression

(6.4) yi = vTi β + zi, i = 1, . . . , n,
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where the random error zi has density function (6.3), vTi = (vi1, . . . , vip) is the vector of
explanatory variables, β = (β1, . . . , βp)

T and α are unknown parameters. The parameter
µi = vTi β is the location of yi. The location parameter vector µ = (µ1, . . . , µn)T is
represented by a linear model µ = Vβ, where V = (v1, . . . ,vn)T is a known model
matrix. Equation (6.4) is referred to as the LLE regression for censored data and opens
new possibilities for fitting several types of data. It is an extension of the log-exponential
regression for censored data.

Consider a sample (y1,v1), · · · , (yn,vn) of n independent observations, where each
random response is defined by yi = min{log(Xi), log(Di)} assuming that the observed
lifetimes and censoring times are independent. Let F and D be the sets of individuals
for which yi is the log-lifetime or log-censoring, respectively.

The log-likelihood function for the vector of parameters θ = (α,βT )T from regre-
ssion (6.4) is

l(θ) = r log(α) +
∑
i∈F

zi −
∑
i∈F

exp(zi)− (α+ 1)
∑
i∈F

log[− log{1− exp[− exp(zi)]}]

−
∑
i∈F

log{1− exp[− exp(zi)]} − 2
∑
i∈F

log{1 + [− log{1− exp[− exp(zi)]}]−α}

−
∑
i∈D

log{1 + [− log{1− exp[− exp(zi)]}]−α},(6.5)

where zi = (yi − vTi β), and r is the number of uncensored observations (failures). The

MLE θ̂ of the vector of unknown parameters can be determined by maximizing the
log-likelihood (6.5) using the subroutine NLMixed in SAS. .

The NLMixed procedure of SAS has been exhaustively used to estimate the param-
eters for several distributions. Further, Molenberghs et al. [13] adopted this procedure
to obtain the estimates in generalized linear models for repeated measures with normal
and conjugate random effects, whereas Vangeneugden et al. [20] used it to calculate the
estimates of extended random-effects models for repeated and overdispersed counts.

The estimated survival function for yi (ẑi = yi − vTi β̂) is

S(yi; α̂, β̂) =
1

1 + [− log{1− exp[− exp(yi − vTi β̂)]}]−α̂
.(6.6)

We can adopt likelihood ratio (LR) statistics in the usual way for comparing some
special models with the LLE regression.

7. EMPIRICAL ILLUSTRATIONS WITH LIFETIME DATA

We now prove empirically that the LE distribution is a good alternative to the
gamma, log-normal, Weibull, EE, Nadarajah-Haghighi (NH) introduced by Nadarajah
and Haghighi [16], power Lindley (PL) defined by Ghitney et al. [6], exponentiated
Lindley (EL) studied by Nadarajah et al. [15], Birnbaum-Saunders (BS) and inverse
Gaussian (IG) distributions. For model comparison, we adopt the Anderson-Darling
(A∗), Cramér–von Mises (W ∗) and Kolmogorov-Smirnov (K-S) measures. The cdfs of



ON ANALYZING NON-MONOTONE FAILURE DATA 15

the EE, NH, PL, EL, BS and pdf of the IG distributions (for x > 0) are, respectively,

FEE(x;α, λ) =
(
1− e−λ x

)α
, θ > 0,

FNH(x;α, λ) = 1− e1−(1+λx)
α

, α, λ > 0,

FPL(x;β, θ) = 1−
(

1 + θ + θ xβ

1 + θ

)
e−θ x

β

, β, θ > 0,

FEL(x;α, θ) =

[
1−

(
1 + θ + θ x

1 + θ

)
e−θx

]α
, α, θ > 0,

FBS(x;α, β) = Φ

[
1

α

{(
x

β

)1/2

−
(
β

x

)1/2
}]

, α,> 0,

fIG(x;µ, λ) =

√
λ

2πx3
exp

[
−λ(x− µ)2/(2xµ2)

]
, µ, λ > 0.

7.1. Application 1: Failure of electrical appliances in life test

The data set taken from Lawless [11] represents the 1000 cycles to failure for
a group of 60 electrical appliances in a life test. These data were also analyzed by
Chesneau et al. [3] and Mazucheli et al. [12]. Some descriptive statistics for these data are:
n= 60, x̄=2.19297, s=1.920062, skewness=1.2614 and kurtosis=2.23207. The histogram
displayed in Figure 5(a) and the skewness indicates that the distribution is right-skewed.
The TTT plot (Aarset [1]) is given in Figure 5(b). It is first convex and then concave,
which suggests a bathtub failure rate. So, the LE distribution could in principle be
appropriate for modeling the current data.

Table 2 provides the MLEs of the parameters and the values of A∗, W ∗ and K-S statistics
and associated p-value for each fitted model. We can conclude that the LE distribution
provides the best fit and has the ability to fit right-skewed data with BT failure rate. We
also provide QQ-plots for all fitted models in Figure 6. Clearly, the new model provides
the closest fit to the data.

7.2. Application 2: Lung cancer patients data

This data is also taken from a study reported by Lawless [11]. These data repre-
sents 21 advanced lung cancer patients who were randomly assigned the chemotherapy
treatments termed as standard. Survival times t, measured from the start of treatment
for each patient. The main objective was to compare the effects of two chemotherapy
treatments in prolonging survival time. The basic statistics for these data are: n= 21,
x̄= 101.7619, s=110.8147, skewness=1.29047 and kurtosis=1.00438. The histogram dis-
played in Figure 7(a) and the skewness indicate that the distribution is right-skewed.
The TTT plot of these data shown in Figure 7(b) indicates a decreasing failure rate.

The measures reported in Table 3 indicate that the LE model provides the most accurate
fit to the data. Further, the QQ-plots for all fitted models in Figure 8 also suggest the
same conclusion.
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Figure 5: (a) Histogram (b) TTT plot for failure data.

Table 2: Estimated quantities and goodness-of-fit measures for failure data.

Distribution Estimates A∗ W ∗ K-S K-S p-value

LE(α, λ) 1.9798 0.2625 0.3258 0.0374 0.0547 0.9491
(0.2555) (0.0357)

Gamma(α,θ) 0.9307 2.3562 0.7184 0.1042 0.0897 0.6860
(0.1486) (0.4909)

Weibull(c, λ) 1.0008 0.4555 0.7154 0.1036 0.0777 0.8342
(0.1066) (0.0814)

Log-normal(µ, σ) 0.1597 1.4392 2.5241 0.4291 0.1653 0.0666
(0.1858) (0.1313)

NH(α, λ) 1.6133 0.2274 0.4574 0.0615 0.0914 0.6632
(0.8016) (0.1575)

EE(α, λ) 0.9159 0.4311 0.7103 0.1028 0.0921 0.6543
(0.1502) (0.0735)

PL(β, θ) 0.8883 0.8042 0.6467 0.0766 0.0766 0.8155
(0.0891) (0.1031)

EL(α, θ) 0.7522 0.6203 0.4615 0.0644 0.0698 0.8522
(0.1274) (0.0873)

IG(µ, λ) 2.1929 0.3113 4.6132 0.8576 0.30548 0.0000
(0.7513) (0.1104)

BS(α, β) 1.9391 0.6483 2.4479 0.4343 0.3719 0.0000
(0.1824) 0.1111)
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Figure 6: Q-Q plots for failure data.
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Figure 7: (a) Histogram (b) TTT plot for cancer data.

7.3. Application 3: Entomology data

In this application, we take a data set from a study carried out at the Department
of Entomology of the Luiz de Queiroz School of Agriculture, University of São Paulo.
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Table 3: Estimated quantities and goodness-of-fit measures for cancer data.

Distribution Estimates A∗ W ∗ K-S K-S p-value

LE(α, λ) 0.8417 0.0108 0.5871 0.0872 0.1574 0.8755
(0.1641) (0.0028)

Gamma(α,θ) 1.2889 57.7242 0.6114 0.0912 0.1970 0.3887
(0.2607) (10.7798)

Weibull(c, λ) 0.8757 0.0185 0.6120 0.0922 0.1616 0.4425
(0.1462) (0.0142)

Log-normal(µ, σ) 3.9144 1.2982 0.7087 0.1130 0.1503 0.2299
(0.2832) (0.2003)

NH(α, λ) 0.6437 0.0217 0.6364 0.0975 0.15307 0.2088
(0.2855) (0.0192)

EE(α, λ) 0.8301 0.0087 0.6056 0.0905 0.1701 0.3776
(0.2288) (0.0025)

PL(β, θ) 0.6293 0.1195 0.6343 0.0965 0.1595 0.5590
(0.1253) (0.0023)

EL(α, θ) 0.4820 0.0274 0.6309 0.0928 0.3064 0.0386
(0.1274) (0.0873)

IG(µ, λ) 101.0077 32.1416 0.6999 0.1152 0.4718 0.0150
(38.6442) (9.9192)

BS(α, β) 1239.8960 1880.1910 1.0941 0.1844 0.5005 0.0000
(503.2201) (642.4328)

Such study aims to assess the longevity of the Mediterranean fruit fly (ceratitis capitata),
which is considered a pest in agriculture. Instead of using an insecticide, Silva et al. [18]
conducted a study using small portions of food containing substances extracted from
a tree called Azadirachta indica it is best known internationally by the name “neem”.
The experiment was completely randomized with 11 treatments, consisting of different
extracts of the neem tree at concentrations of 39, 225, and 888 ppm, where the response
variable is the lifetime of the adult flies in days after exposure to the treatments. From
the results of the experiment, these 11 treatments are allocated into two groups, namely:

1. Group 1: Control 1 (deionized water); Control 2 (acetone - 5%); aqueous extract
of seeds (AES) (39 ppm); AES (225 ppm); AES (888 ppm); methanol extract of
leaves (MEL) (225 ppm); MEL (888 ppm); and dichloromethane extract of branch-
es (DMB) (39 ppm) 425.

2. Group 2: MEL (39 ppm); DMB (225 ppm); and DMB (888 ppm).

Lanjoni et al. [10] analyzed these data by fitting the log-Burr XII geometric type
I (LBXIIGI) and log-Burr XII geometric type II (LBXIIGII) models. Recently, these
data were also analyzed by Cordeiro et al. [5] and Zubair et al. [21] using the generalized
Weibull-logistic regression and log-power-Cauchy negative-binomial regressions, respec-
tively. Following the same procedure from these surveys, we compare the proposed model
with these regressions in this application.
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Figure 8: Q-Q plots for cancer data.

The response variable in the experiment is the lifetime of the adult lies in days
after exposure to the treatments. The total sample size is n = 72. So, the variables used
in this study are:

• yi : log-lifetime of ceratitis capitata adults in days,

• δi : censoring indicator,

• vi1 : sex of the larvae,

• vi2 : group (0=group 1, 1=group 2), i = 1, . . . , 74.

Lanjoni et al. [10] introduced two lifetime distributions by compounding the Burr
XII and geometric distributions, and also defined two extended regressions based on the
logarithms of these distributions. Let F and D be the sets of individuals for which yi is
the log-lifetime or log-censoring, respectively. We adopt the classical log-Weibull (LW)
regression as an example to illustrate that the LE regression can provides better fits. In
this case, the total log-likelihood function for the parameters θ = (σ,βT )T is

l(θ) = r∗ log

(
1

σ

)
+
∑
i∈F

zi −
∑
i∈F

exp(zi)−
∑
i∈D

exp(zi),

where zi =
(
yi − vTi β

)
/σ.

Next, we present results by fitting the regression (for i = 1, . . . , 172)

yi = β0 + β1vi1 + β2v21 + σzi,
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where Yi can follow the LLE, LBXIIGII and LBXIIGI distributions. For some fitted re-
gressions, Table 4 lists the MLEs (and the corresponding standard errors in parentheses)
of the parameters and the values of the following statistics: Akaike information crite-
rion (AIC), Bayesian Information Criterion (BIC) and Consistent Akaike Information
Criterion (CAIC). The computations are performed using the NLMixed subroutine in
SAS. These results indicate that the LLE regression model with censored data could be
chosen as the best regression. So, this regression is really competitive to the log-Weibull
regression.

Table 4: Estimated quantities, p-values in [·] and goodness-of-fit measures from
some regressions fitted to entomology data.

Regression α β0 β1 β2 AIC CAIC BIC

LLE 3.9444 3.8567 0.0581 −0.3474 334.5 334.7 347.1
(0.2774) (0.0607) (0.0791) (0.0882)

[<0.0001] [0.4636] [<0.0001]

LE 3.1724 0.1369 −0.4430 423.3 423.5 432.8
(0.1198) (0.1569) (0.1766)
[<0.0001] [0.3843] [0.0130]

σ β0 β1 β2

LW 0.5151 3.2435 0.1358 −0.4158 344.3 344.6 356.9
(0.03256) (0.06309) (0.08111) (0.09124)

[<0.0001] [0.0960] [<0.0001]

σ k p β0 β1 β2

LBXIIGI 0.4877 9.3993 1E-8 4.3085 0.1104 −0.4014 348.1 348.6 367.0
(0.0596) (8.5578) (1E-9) (1.1316) (0.0962) (0.0978)

[0.0002] [0.2525] [<0.0001]
LBXIIGII 0.9107 6.0541 0.9798 3.1649 0.0354 −0.3252 335.7 336.2 354.6

(0.3379) (4.8403) (0.0247) (0.8847) (0.0803) (0.0876)
[0.0005] [0.6605] [0.0003]

LBXII 0.4877 9.4002 0 4.3085 0.1104 −0.4014 346.1 346.4 361.8
(0.0597) (8.6141) (1.1349) (0.0963) (0.0978)

[0.0002] [0.2528] [<0.001]

The MLEs of the parameters and their standard errors are listed in Table 4. Note
that the covariate (v2) is significant at the 1% level, whereas the other covariate is not
significant at the usual significance level.

Finally, we turn to a simplified model retaining only v2 as an explanatory variable

yi = β0 + β2vi2 + σ zi.

The MLEs for the LLE regression model fitted to the data are given in Table 5. In

Table 5: MLEs of the parameters from the fitted LLE regression model to the
entomology data.

Model α β0 β2

LLE 3.9489 3.8845 −0.3486
(0.2777) (0.0475) (0.0878)

[<0.001] [0.0001]

order to assess if the model is appropriate, Figure 9(a) displays the plots of the empirical
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survival function and the estimated survival function from the fitted LLE regression. The
plots of its hrfs in Figure 9(b) reveal decreasing shapes. There is a significant difference
between the levels of the covariable v2. In fact, this regression provides a good fit to
these data.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

S
(y

|x
)

Kaplan−Meier
LLE regression model (v2=0)
LLE regression model (v2=1)

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

y

E
st

im
at

es
 h

rf

LLE regression model  (v2=0)
LLE regression model  (v2=1)

(a) (b)

Figure 9: Entomology data: (a) Estimated LLE survival function and empirical
survival. (b) Estimated hrf.

8. CONCLUDING REMARKS

The Weibull, gamma and exponentiated-exponential distributions have two pa-
rameters and they are used quite often in survival analysis. These distributions can have
increasing or unimodal probability density functions, and monotone hazard functions.
However, none of which can have non-monotone hazard rate function shape. In many
practical situations, one might observe non-monotone hazard rate functions, and clearly
in those cases, none of these distribution functions can be used. The proposed LE dis-
tribution can have decreasing or unimodal density function shapes. It is also interesting
to note that the hazard rate function possesses three different shapes: decreasing failure
rate, bathtub and decreasing-increasing- decreasing.
Moreover, the LE distribution has only two parameters which makes estimating the
parameters not very difficult. It may be mentioned that not too many two-parameter
distributions can have non-monotone hazard function shape. Therefore, the proposed
distribution will be quite useful. Furthermore, its survival and hazard rate functions
have closed-form representations. Accordingly, this model can readily be utilized to an-
alyze censored data sets. We also propose a new regression model that can be useful to
model real data sets. The importance of the new models is proved empirically by means
of three real data sets.
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