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1. INTRODUCTION

Almost all applied sciences including, biomedical science, engineering, fi-
nance, demography, environmental and agricultural sciences, there is a need of
statistical analysis and modeling of the data. A number of continuous distribu-
tions for modeling lifetime data have been introduced in statistical literature such
as Exponential, Lindley, Gamma, Lognormal and Weibull. Among these Gamma
and Lognormal distributions are less popular because their survival functions
cannot be expressed in closed forms and both require numerical integration.
Researchers in probability distribution theory often use a probability distribu-
tions based on either their mathematical simplicity or because of their flexibility.
Several parametric models are used in the analysis of lifetime data and in the
problems associated with the modeling of the failure process. The Exponential
distribution is often used to model the time interval between successive random
events but Gamma and Weibull distribution is the most widely used model for
lifetime distribution due to its flexibility. The exponential distribution is a par-
ticular case of the Gamma and Weibull distribution. In order to increase the
suitability of the well-known distributions, many authors have proposed different
transformations to generate new distributions, it has been an increased interest
in defining new generators for univariate continuous distributions by introducing
one or more additional shape parameter(s) to the baseline model. This improves
the goodness-of-fit of the proposed generated distribution.

In the context of increasing flexibility in distribution, many generalization or
transformation methods are available in the literature based on baseline distribu-
tion. Ghitany et al. [6] developed a two-parameter weighted Lindley distribution
and discussed its applications to survival data. Zakerzadeh and Dolati [26] ob-
tained a generalized Lindley distribution and discussed its various properties and
applications. Shaw and Buckley [23] proposed a new transformation method
by adding one extra parameter and Kumaraswamy [9] gives another method of
proposing new distribution by taking baseline distribution. A families of dis-
tributions for the median of a random sample drawn from an arbitrary lifetime
distribution is introduced by Abd-Elrahman [1]. Since its failure rate function is
monotonically increasing with finite limit for this they generalize distribution by

making transformation X =
(
Y−δ
θ

)λ
, the parameter δ is a threshold parameter, θ

and λ are the scale and the shape parameters, respectively. Gupta et al. [7] pro-
posed an exponentiated type distribution by adding one more shape parameter.
A new generalization of Lindley distribution i.e SSD distribution appear in Singh
et al. [25]. In very recent compounded exponential lindley distribution (CEL)
has been studied by Singh et al. [24]. A new class of distribution by adding
two additional shape parameters is found (see Cordeiro et al. [4]). Also some
well-known generators are the beta-G by Eugene et al. [5], gamma-G by Zografos
and Balakrishnan [27], the Zografos-Balakrishnan-G family by Nadarajah et al.
[13].
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2. GENESIS OF THE DISTRIBUTION

In this study, an attempt has been made to develop a new continuous distribution
using concept discussed by Gupta and Kirmani [8]. LetX be a continuous random
variable with the cumulative distribution function (cdf) F (x) and expectation
E(X). It is worthwhile to mention here that the E(X) can be defined in terms
of cdf of any distribution as follows

E(X) =

∞∫
0

[1− F (x)]dx

Let us for positive x, we have,

∞∫
0

[1− F (x)] dx = lim
k→∞

k∫
0

1. [1− F (x)] dx

Now integrating by part we have,

lim
k→∞

[{1− F (k)} k] + lim
k→∞

k∫
0

xf(x)dx; where
d

dx
[F (x)] = f(x)(2.1)

Now since F (∞) = 1; lim
k→∞

[{1− F (k)} k] = 0 and then

(2.2)

∞∫
0

[1− F (x)] dx = lim
k→∞

k∫
0

xf(x)dx =

∞∫
0

xf(x)dx = E(X)

Now keeping the above concept into mind we define a pdf g∗(x) as

g∗(x) =
1− F (x)

E(X)
; x > 0(2.3)

If g∗(x) is a pdf then its integration over the range should be equal to 1. Now we
have

∞∫
0

g∗(x)dx =

∞∫
0

[1− F (x)]

E(X)
dx =

1

E(X)

∞∫
0

[1− F (x)]dx =
E(X)

E(X)
= 1

Therefore the generated pdf using the above transformation technique will be a
valid pdf. This g∗(x) may be called an induced or equilibrium distribution. Actu-
ally this distribution is a particular case of weighted distribution defined by Patil
and Rao [14]. According to the Patil and Rao [14], if f(x; θ) be the probability
distribution function of random variable X and the unknown parameter θ the
weighted distribution is defined as;
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f∗(x; θ) =
w(x)f(x; θ)

E[w(x)]
; x ∈ R, θ > 0

where w(x) is the weight function, and f(x; θ) is the base line distribution. We

know that 1− F (x) = S(x) = f(x)
h(x) , i.e if we take w(x) = h(x)−1, we can get the

induced distribution defined above in equation number (2.3). This distribution
is well connected to its parent distribution and many of the statistical properties
can be easily studied.

2.1. Proposed distribution

We consider cdf of one parameter Lindley distribution and using the idea of
induced distribution given in the equation (2.3), the pdf and cdf of transformed
distribution is given in equation (2.4) and (2.5) respectively.

(2.4) f(x; θ) =
θ

θ + 2
(1 + θ + θx) e−θx

(2.5) F (x; θ) = 1−
[
1 +

θx

θ + 2

]
e−θx;x > 0, θ > 0.

In fact this distribution is Garima distribution and already discussed by Shanker
[20], which is a mixture of Exponential (θ) and Gamma (2, θ) distribution with
mixing proportion θ+1

θ+2 . Also he discussed its various statistical properties.
Therefore in this paper, we consider cdf F (x) of Garima distribution as a base
line distribution and try to develop a new distribution. The pdf and cdf of the
new distribution is as follows

g(x; θ) =
θ

θ + 3
(2 + θ + θx) e−θx; x > 0, θ > 0.(2.6)

and the corresponding cdf is

G(x; θ) = 1−
[
1 +

θx

θ + 3

]
e−θx; x > 0, θ > 0.(2.7)

The above distribution is similar to the base line distribution and develop using
concept of induced distribution thus named as induced Garima (i-Garima) dis-
tribution. This distribution can also be consider as second order induced Lindley
distribution. The cdf of i-Garima distribution is displayed in Figure (1).

The proposed distribution i.e. i-Garima distribution can be easily expressed as a
mixture of Exponential (θ) and Gamma (2, θ) as

f(x; θ) = pg1(x) + (1− p)g2(x)(2.8)

where p = θ+2
θ+3 , g1(x) = θe−θx, and g2(x) = θ2xe−θx
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Figure 1: Cumulative distribution function of i-Garima distribution

3. PROPERTIES

The rth order moments about origin is given by

E(Xr) =

∞∫
0

xrg(x)dx =
θ

θ + 3

∞∫
0

xre−θx (2 + θ + θx) dx

Hence

µ′
r =

r!

θr
(θ + r + 3)

(θ + 3)
; r = 1, 2, 3, ...(3.1)

Hence first four moments about origin is obtained as

µ′
1 =

1

θ

(θ + 4)

(θ + 3)
; µ′

2 =
2

θ2
(θ + 5)

(θ + 3)
; µ′

3 =
6

θ3
(θ + 6)

(θ + 3)
; µ′

4 =
24

θ4
(θ + 7)

(θ + 3)

Using the above expression we get the four moments about mean, i.e. central
moments of the proposed distribution is given by

µ1 =
θ + 4

θ (θ + 3)
; µ2 =

θ2 + 8θ + 14

θ2 (θ + 3)2
;

µ3 =
2
(
θ3 + 12θ2 + 42θ + 46

)
θ3 (θ + 3)3

; µ4 =
3
(
3θ4 + 48θ3 + 260θ2 + 592θ + 488

)
θ4 (θ + 3)4

;

The coefficient of variation (CV), coefficient of skewness
√
β1, coefficient of kur-

tosis β2 and index of dispersion γ of proposed distribution is obtained as

CV =
σ

µ1
=

√
θ2 + 8θ + 14

θ + 4
;

√
β1 =

µ3

µ
3
2
2

=
2
(
θ3 + 12θ2 + 42θ + 46

)
(θ2 + 8θ + 14)

3
2

β2 =
µ4

µ2
2

=
3
(
3θ4 + 48θ3 + 260θ2 + 592θ + 488

)
(θ2 + 8θ + 14)2

; γ =
µ2

µ1
=

(
θ2 + 8θ + 14

)
θ(θ + 3)(θ + 4)

The coefficient of variation (CV), index of dispersion (γ), coefficient of skewness
(
√
β1) and kurtosis (β2) are calculated for different values of θ. Coefficient of vari-

ation (CV) is observed less than 1 for all values of θ. Coefficient of skewness (
√
β1)
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and kurtosis (β2) are found more than 1 and 3 respectively for different values of
θ, therefore the proposed distribution is positively skewed and leptokurtic. The
index of dispersion (γ) shows that the proposed distribution is under-dispersed
as well as over-dispersed. It is observed that for θ= 1.1474, the value of γ is
1. For θ > 1.1474, the distribution is under-dispersed and for θ < 1.1474, it is
over-dispersed. The graph for CV, γ,

√
β1 and β2 for different values of θ are

shown in Figure 2.
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Figure 2: Graph of the CV, γ, β1 and β2 for different values of θ

3.1. Generating functions

The moment generating function Mx(t), characteristic function Φx(t) and
cumulant generating function κx(t) of proposed distribution are given by

Mx(t) =

[
1− (2 + θ)t

(3 + θ)θ

](
1− t

θ

)−2

;

∣∣∣∣ tθ
∣∣∣∣ < 1(3.2)

Φx(t) =

[
1− (2 + θ)it

(3 + θ)θ

](
1− it

θ

)−2

; i =
√
−1(3.3)

κx(t) = log

(
1− (2 + θ)it

(3 + θ)θ

)
− 2 log

(
1− it

θ

)
(3.4)

By series expansion of log(1− x) = −
∞∑
r=0

xr

r ,we get

κx(t) = −
∞∑
r=0

(
(2 + θ)

(3 + θ)θ

)r (it)r

r
+ 2

∞∑
r=0

(
it
θ

)r
r

= 2

∞∑
r=0

(r − 1)!

θr
(it)r

r!
−

∞∑
r=0

(r − 1)!

[
θ + 2

θ(θ + 3)

]r (it)r
r!

Hence rth cumulant of i-Garima distribution is given by
κr=coefficient of (it)r

r! in κx(t)

= 2
(r − 1)!

θr
− (r − 1)!(θ + 2)r

[θ(θ + 3)]r
; r = 1, 2, 3, ...
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From the above equation we have four moments, that are same as obtained earlier
by equation (3.1)

µ1 = κ1 =
θ + 4

θ(θ + 3)
; µ2 = κ2 =

θ2 + 8θ + 14

θ2 (θ + 3)2
;

µ3 = κ3 =
2
(
θ3 + 12θ2 + 42θ + 46

)
θ3 (θ + 3)3

; µ4 = κ4 + 3κ22 =
3
(
3θ4 + 48θ3 + 260θ2 + 592θ + 488

)
θ4 (θ + 3)4

;

3.2. Hazard rate and mean residual life function

Let X be a random variable with pdf g(x) and cdf G(x). The hazard
function is given as

h(x) = lim
∆x→∞

P (X < x+∆x|X > x)

∆x
=

g(x; θ)

1−G(x; θ)
(3.5)

After using pdf and cdf of i-Garima distribution in above expression we get the
hazard rate function h(x) of i-Garima distribution as

h(x) =
θ(2 + θ + θx)

(3 + θ + θx)
(3.6)

taking limit as x → 0 in (3.6), we get,

lim
x→0

h(x) = lim
x→0

θ

[
1− 1

(3 + θ + θx)

]
= θ

[
1− 1

(3 + θ)

]
> 0; θ ∈ R+

and for x → ∞ we get,

lim
x→∞

h(x) = lim
x→∞

θ

[
1− 1

(3 + θ + θx)

]
= θ > 0; θ ∈ R+

Hence, h(x) > 0 for x > 0, θ > 0. Therefore, h(x) is an increasing function. The
figure of hazard function is displayed in the Figure (3).  
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Figure 3: Hazard function of i-Garima distribution

Now the mean residual life function (MRLF) is given as (3.7). We know that
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if a component of age t, the remaining lifetime after age t will be random. The
expected value of the random life time is called the mean residual life and the
mathematical form is known as MRLF. This may be more relevant than the haz-
ard rate function in the study of repairable or replacement time. The MRLF
provide idea about the entire residual life distribution or life expectancy, whereas
the hazard rate is related only to the risk of immediate failure. We have

m(x) = E [X − x|X > x] =
1

1−G(x; θ)

∞∫
x

[1−G(t; θ)] dt

m(x) =
(4 + θ + θx)

θ (3 + θ + θx)
(3.7)

If x = 0, we get, m(0) = θ+4
θ(θ+3) which is E(X) of the proposed distribution and

also m(x) is decreasing function for all x > 0 and θ > 0. The graph of MRLF of
i-Garima distribution is given in the Figure (4), which is decreasing type.
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Figure 4: Mean residual life function (MRLF) of i-Garima distribution

3.3. Quantile function

Theorem 3.1. If X ∼ i − Garima(θ), then Quantile function of X is
defined as

Q(p) = −1− 3

θ
− 1

θ
W−1

(
−(1− p)(θ + 3)e−(−θ+3)

)
where p ∈ (0, 1) and W−1 is the negative branch of the Lambert W function.

Proof: Let,

Q(p) = F−1(p), p ∈ (0, 1)

The quantile function, say q(p), defined byG(Q(p)) = p is the root of the equation

1−
(
1 +

θQ(p)

θ + 3

)
e−θQ(p) = p

[3 + θ + θQ(p)] e−θQ(p) = (1− p)(θ + 3)
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Multiplying both side by −e−(θ+3) we get

− [3 + θ + θQ(p)] e−(3+θ+θQ(p)) = −(1− p)(θ + 3)e−(3+θ)

Now (3 + θ + θQ(p)) > 1∀θ > 0, Q(p) > 0 By applying W-function defined as the
solution of the equation w(z)eW (z) = z, the above equation can be written as

W−1

(
−(1− p)(θ + 3)e−(−θ+3)

)
= − (3 + θ + θQ(p))

where and W−1(.) is the negative branch of the Lambert W function and we get
the required result

Q(p) = −1− 3

θ
− 1

θ
W−1

(
−(1− p)(θ + 3)e−(−θ+3)

)
(3.8)

3.4. Stochastic ordering

Stochastic ordering of a continuous random variable is an important tool to
judging their comparative behaviour. A random variable X is said to be smaller
than a random variable Y .
(i) Stochastic order X ≤st Y if FX(x) ≥ FY (x) for all x.
(ii) Hazard rate order X ≤hr Y if hX(x) ≥ hY (x) for all x.
(iii) Mean residual life order X ≤mrl Y if mX(x) ≥ mY (x) for all x.

(iv) Likelihood ratio order X ≤lr Y if fX(x)
fY (x) decreases in x.

The following results by Shaked and Shanthikumar [16] are well known for intro-
ducing stochastic ordering of distributions

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y

⇓
X ≤st Y

With the help of following theorem we claim that i-Garima distribution is ordered
with respect to strongest likelihood ratio ordering.

Theorem 3.2. Let X ∼ i − Garima(θ1) distribution and Y ∼ i −
Garima(θ2) distribution. If θ1 > θ2 then X ≤lr Y and therefore X ≤hr Y ,
X ≤mrl Y and X ≤st Y .

Proof: We have

fX(x)

fY (x)
=

θ1(θ2 + 3)

θ2(θ1 + 3)

(
2 + θ1 + θ1x

2 + θ2 + θ2x

)
e−(θ1−θ2)x; x > 0
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Now taking log both side we get

log

[
fX(x)

fY (x)

]
= log

[
θ1(θ2 + 3)

θ2(θ1 + 3)

]
− (θ1 − θ2)x

By differentiating both side we get

d

dx
log

[
fX(x)

fY (x)

]
=

θ1 − θ2
(2 + θ1 + θ1x)(2 + θ2 + θ2x)

− (θ1 − θ2)

Thus for θ1 > θ2,
d
dx log

[
fX(x)
fY (x)

]
< 0.This means that X ≤lr Y and hence X ≤hr

Y , X ≤mrl Y and X ≤st Y .

3.5. Order statistics

LetX1, X2, ..., Xm be a random sample of sizem from i-Garima distribution
and also let X(1), X(2), ..., X(m) be the corresponding order statistics. The pdf and

cdf of rth order statistics say Y = X(r) are given by

f(r:m)(y) =
m!

(r − 1)!(m− r)!
F r−1(y) [1− F (y)]m−r f(y)

=
m!

(r − 1)!(m− r)!

m−r∑
l=0

(
m− r

l

)
(−1)lF r+l−1(y)f(y)(3.9)

and

F(r:m)(y) =

m∑
j=r

(
m

j

)
F j(y) [1− F (y)]m−j

=

m∑
j=r

m−j∑
l=0

(
m

j

)(
m− j

l

)
(−1)lF j+l(y)(3.10)

respectively, for r = 1(1)m
Based on equation (3.9) and (3.10) the pdf and cdf of rth order statistics of
i-Garima distribution is given by in equation number (3.11) and (3.12).

f(r:m)(y) =
m!θ(3 + θ + θx)e−θx

(θ + 3)(r − 1)!(m− r)!

m−r∑
l=0

(
m− r

l

)[
1− θx+ (θ + 3)

(θ + 3)
e−θx

]r+l−1

(3.11)

and

F(r:m)(y) =
m∑
j=r

m−j∑
l=0

(
m

j

)(
m− j

l

)[
1− θx+ (θ + 3)

(θ + 3)
e−θx

]j+l

(3.12)
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3.6. Bonferroni and Lorenz curves

Let the random variable X is non-negative with a continuous and twice dif-
ferentiable cumulative function. The Bonferroni [3] curve of the random variable
X is defined as

B(p) =
1

pµ

q∫
0

xg(x)dx =
1

pµ

 ∞∫
0

xg(x)dx−
∞∫
q

xg(x)dx

 =
1

pµ

µ−
∞∫
q

xg(x)dx


(3.13)

and the Lorenz curve (see Lorenz [12]) is defined by

L(p) =
1

µ

q∫
0

xg(x)dx =
1

µ

 ∞∫
0

xg(x)dx−
∞∫
q

xg(x)dx

 =
1

µ

µ−
∞∫
q

xg(x)dx


(3.14)

where q = G−1(p) and µ = E(X), p ∈ (0, 1]
The Gini index is given by

G = 1− 1

µ

∞∫
0

(1−G(x))2 dx =
1

µ

∞∫
0

G(x) (1−G(x)) dx(3.15)

The Bonferroni, Lorenz curve and Gini index have application not only
in economics to study income and poverty, but also in other fields like reliabil-
ity,population studies,insurance, medicine. Using the equation (3.13), (3.14) and
(3.15) we get the Bonferroni curve, Lorenz curve and the Gini index as

B(p) =
1

p

[
1− {θ2q2 + (θ2 + 4θ)q + (θ + 4)}e−θq

θ + 4

]
(3.16)

L(p) = 1− {θ2q2 + (θ2 + 4θ)q + (θ + 4)}e−θq

θ + 4
(3.17)

and

G =
2θ2 + 16θ + 29

4(θ + 3)(θ + 4)
(3.18)

4. ENTROPIES

Entropy, measures the variation in uncertainties associated with a random
variable of a probability distributions. Rényi’s and Shannon entropy are widely
used to understand the uncertainty involved in random variables.
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4.1. Rényi entropy

If X is a continuous random variable having probability density function
g(.), then the Rényi Entropy (see Rényi [15]) is defined as

e(η) =
1

1− η
log

 ∞∫
0

gη(x)dx

(4.1)

where η > 0 and η = 0.
The Rényi entropy for the i-Garima distribution is defined as

e(η) =
1

1− η
log

 ∞∫
0

(
θ

θ + 3

)η

(2 + θ + θx)η e−ηθxdx


=

1

1− η
log

 ∞∫
0

θη(θ + 2)η

(θ + 3)η

(
1 +

θx

θ + 2

)η

e−ηθxdx

(4.2)

Now from above equation (4.2), applying binomial expansion (1+x)n =
n∑

k=0

(
n

k

)
xk,

we get

1

1− η
log

 ∞∫
0

θη(θ + 2)η

(θ + 3)η

η∑
j=0

(
η

j

)(
θx

θ + 2

)j

e−ηθxdx


i.e

1

1− η
log

 η∑
j=0

(
η

j

)
θη+j(θ + 2)η−j

(θ + 3)η

∞∫
0

xje−ηθxdx

(4.3)

After solving equation number (4.3), we get the required results in equation (4.4)

=
1

1− η
log

 η∑
j=0

(
η

j

)
θη−1(θ + 2)η−j

(θ + 3)η
Γ(j + 1)

(η)j+1

(4.4)

Since
∞∫
0

xn−1e−θxdx = Γ(n)
θn
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4.2. Shannon entropy

The Shannon entropy (see Shannon [22]) of i-Garima distribution is given
as

Ω = E(− log x) = −
∞∫
0

log(f(x))f(x)dx

= − log

(
θ

θ + 3

) ∞∫
0

f(x)dx−
∞∫
0

log (2 + θ + θx) f(x)dx+

∞∫
0

θxf(x)dx

= − log

(
θ

θ + 3

)
− log(θ + 2)−

∞∫
0

log

(
1 +

θx

θ + 2

)
f(x)dx+ θE(x)(4.5)

Here E(X) = θ+4
θ(θ+3) , mean of the distribution, applying log(1+x) =

∞∑
n=1

(−1)n+1 xn

n ; |x| <

1 in equation (4.5), we get

= − log

(
θ(θ + 2)

θ + 3

)
+

(
θ + 4

θ + 3

)
− θ

θ + 3

∞∫
0

∞∑
k=1

(−1)k+1

k

(
θx

θ + 2

)k

(2 + θ + θx)e−θxdx

= − log

(
θ(θ + 2)

θ + 3

)
+

(
θ + 4

θ + 3

)
− θ

θ + 3

∞∑
k=1

(−1)k+1

k

(
θ

θ + 2

)k
∞∫
0

xk(2 + θ + θx)e−θxdx

After simplification above equation we obtained Shannon entropy as

Ω =

(
θ + 4

θ + 3

)
− log

(
θ(θ + 2)

θ + 3

)
− 1

θ + 3

∞∑
k=1

(−1)k+1

k

k!(θ + k + 3)

(θ + 2)k
(4.6)

5. STRESS-STRENGTH RELIABILITY

Stress-strength model describes the life of a system of component having
a random strength X and random stress Y . If stress is more than strength, the
system of component fails immediately. The measure of system reliability R =
P (Y < X) is also known as stress-strength parameter. It is used in engineering
science such as deterioration of any structures, motors, static fatigue of ceramic
components and aging of concrete pressure vessels.
Let X and Y be independently distributed, with X ∼ i −Garima(θ1) and Y ∼
i−Garima(θ2). The CDF F1 of X and pdf f2 of Y are obtained from equation
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(2.7) and (2.6),respectively. Then stress-strength reliability R is obtained as

R = P (Y < X) =

∞∫
0

P (Y < X|X = x)fx(X)dx =

∞∫
0

f(x; θ1)F (x; θ2)dx

= 1−
θ1

[
(θ1θ2 + 3θ1 + 2θ2 + 6)(θ1 + θ2)

2 + (2θ1θ2 + 3θ1 + 2θ2)(θ1 + θ2) + 2θ1θ2
]

(θ1 + 3)(θ2 + 3)(θ1 + θ2)3

(5.1)

6. MAXIMUM LIKELIHOOD ESTIMATION

Let (x1, x2, ..., xn) be a random sample from X ∼ i − Garima(θ). The
likelihood function, L is obtained as

L =

(
θ

θ + 3

)n n∏
i=1

(2 + θ + θxi)e
−θ

n∑
i=1

xi

(6.1)

Taking log both side of equation number (6.1) we get

logL = n log

(
θ

θ + 3

)
+

n∑
i=1

log(2 + θ + θxi)− θ
n∑

i=1

xi(6.2)

Now differentiate both side (6.2) by θ we get

d(logL)

dθ
=

3n

θ2 + 3θ
+

n∑
i=1

1 + xi
2 + θ + θxi

− nx̄ = 0(6.3)

Where x̄ is the sample mean. The maximum likelihood estimate (θ̂) of θ is the
solution of the equation (6.3). Since this is non-linear equation thus we solve this
by numerical method.

7. EMPIRICAL ILLUSTRATIONS AND GOODNESS OF FIT

In this section, we present applications of the proposed distribution and
their competent models for two real data sets to illustrate their potentiality. We
estimate the unknown parameters of the model by the maximum likelihood esti-
mation (MLE) using Newton-Raphson method. First data is about vinyl chloride
obtained from clean up gradient monitoring wells in mg/l, provided by Bhaumik
et al. [2], second data set represents completed remission times (in months) of
a random sample of 128 bladder cancer patients reported in Lee and Wang [10].
The summary measures of the two data sets are given below in Table 1.



On an Induced Distribution 15

Table 1: Summary measures of two data sets.

Datasets n mean sd median skewness kurtosis min max

1st data set 34 1.953 1.879 1.150 1.604 5.005 0.10 8.000
2nd data set 128 9.209 10.40 6.280 3.399 19.39 0.08 79.05

Table 1 reveals that both data sets are positively skewed and leptokurtic. First
data set is under-dispersed however second data set is over-dispersed. We applied
the i-Garima distributions for the above data sets and compared the results with
some other competent distributions (see Lindley [11], Shanker [17, 18, 19, 20, 21]).
The goodness of fit of the i-Garima distribution has been explained for two real
data sets using -2LL (-2log lokelihood), AIC (Akaike Information Criterion), BIC
(Bayesian Information Criterion) and K-S Statistic (Kolmogorov-Smirnov Statis-
tic). The estimate of these have been computed and shown in the Table 2 and 3
respectively. Smaller values of the AIC and BIC indicates better model fittings.
The formulae for computing AIC, BIC, and K-S Statistics are as follows:

AIC = −2LL+ 2k, BIC = −2LL+ k log n

D = sup
x
|Fn(x)− F0(x)|

where k= the number of parameters
n= the sample size, and
Fn(x)=empirical distribution function.

Table 2: MLE’s, - 2LL, AIC, K-S and p-values of the fitted distributions for the
vinyl chloride dataset given by Bhaumik et al [2].

Distribution Estimate -2LL AIC BIC K-S p-value

i-Garima 0.674 111.18 113.18 114.71 0.1039 0.8567
Garima 0.723 111.50 113.50 115.03 0.1135 0.7731

Aradhana 1.133 116.06 118.06 119.59 0.1695 0.2826
Sujatha 1.146 115.54 117.54 119.07 0.1640 0.3196
Akash 1.166 115.15 117.15 118.68 0.1564 0.3762
Shanker 0.853 112.91 114.91 116.44 0.1308 0.6062
Lindley 0.199 112.61 114.61 116.13 0.1326 0.5881

Table 3: MLE’s, - 2LL, AIC, K-S and p-values of the fitted distributions for the
bladder cancer patients data given by Lee and Wang [10].

Distribution Estimate -2LL AIC BIC K-S p-value

i-Garima 0.143 825.57 827.57 830.42 0.0768 0.4374
Garima 0.158 826.49 828.49 831.34 0.0873 0.2835

Aradhana 0.295 868.28 870.28 873.13 0.1713 0.0011
Sujatha 0.303 873.22 875.22 878.08 0.1792 0.0005
Akash 0.315 881.04 883.04 885.89 0.1904 0.0002
Shanker 0.214 841.68 843.68 846.53 0.1243 0.0382
Lindley 0.199 833.79 835.79 838.64 0.1114 0.0832
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Table 2 and 3 reveals that i-Garima distribution provides closer fit for both
data sets as it has lower -2LL, AIC, BIC, K-S values and higher p-values cor-
responding to K-S statistics than the other competitor models. Therefor, the
proposed distribution i-Garima will consider as a potential alternative in model-
ing life time data and can be recommended for modelling data from engineering,
medical, biological science and other applied sciences.

8. CONCLUSIONS

Better modeling of the survival data is a major concern for statisticians
and applied researchers. As a consequence, a significant progress has been made
towards the extension of lifetime models and their application to various data
sets. The present study suggests a technique for developing new probability
distribution. A Single parameter distribution named i-Garima, is suggested and
investigated in this study. Different statistical properties have been derived and
studied for the proposed model. Moments about origin and mean have been
obtained. The nature of pdf, cdf, hazard rate function and mean residual life
function have been measured. The expression of stress-strength reliability is
obtained, we can calculate system reliability when stress and strength parameter
is known. Bonferroni, Lorenz curves and Gini index of the i-Garima are also
measured. Maximum likelihood estimator of the model parameter is derived and
obtained through Newton-Raphson method. The Rényi and Shannon entropies,
order statistics and stochastic ordering are derived. An application of i-Garima
distribution is given using two real lifetime data sets to show the suitability and
the goodness of fit. Although the second data set have some censored cases but
here we use only completed cases for the analysis. i-Garima provides a better fit
over Garima, Aradhana, Sujatha, Akash, Shanker and Lindley distributions. It
is realized that the proposed distribution in this study will consider some data
sets in view of different censored mechanisms when specific interest comes into
survival or reliability aspects. The article also opens a scope for studying under
Bayesian paradigm of the parameters under different loss functions. The work in
this direction will perform in near future.
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